Displaying publications 41 - 60 of 163 in total

Abstract:
Sort:
  1. Zhan C, Zhang X, Yuan J, Chen X, Zhang X, Fathollahi-Fard AM, et al.
    PMID: 37360563 DOI: 10.1007/s13762-023-04995-6
    As supply chains, logistics, and transportation activities continue to play a significant role in China's economic and social developments, concerns around energy consumption and carbon emissions are becoming increasingly prevalent. In light of sustainable development goals and the trend toward sustainable or green transportation, there is a need to minimize the environmental impact of these activities. To address this need, the government of China has made efforts to promote low-carbon transportation systems. This study aims to assess the development of low-carbon transportation systems in a case study in China using a hybrid approach based on the Criteria Importance Through Intercriteria Correlation (CRITIC), Decision-Making Trial and Evaluation Laboratory (DEMATEL) and deep learning features. The proposed method provides an accurate quantitative assessment of low-carbon transportation development levels, identifies the key influencing factors, and sorts out the inner connection among the factors. The CRITIC weight matrix is used to obtain the weight ratio, reducing the subjective color of the DEMATEL method. The weighting results are then corrected using an artificial neural network to make the weighting more accurate and objective. To validate our hybrid method, a numerical example in China is applied, and sensitivity analysis is conducted to show the impact of our main parameters and analyze the efficiency of our hybrid method. Overall, the proposed approach offers a novel method for assessing low-carbon transportation development and identifying key factors in China. The results of this study can be used to inform policy and decision-making to promote sustainable transportation systems in China and beyond.
  2. Zaborowski MP, Lee K, Na YJ, Sammarco A, Zhang X, Iwanicki M, et al.
    Cell Rep, 2019 Apr 02;27(1):255-268.e6.
    PMID: 30943406 DOI: 10.1016/j.celrep.2019.03.003
    Analysis of cancer-derived extracellular vesicles (EVs) in biofluids potentially provides a source of disease biomarkers. At present there is no procedure to systematically identify which antigens should be targeted to differentiate cancer-derived from normal host cell-derived EVs. Here, we propose a computational framework that integrates information about membrane proteins in tumors and normal tissues from databases: UniProt, The Cancer Genome Atlas, the Genotype-Tissue Expression Project, and the Human Protein Atlas. We developed two methods to assess capture of EVs from specific cell types. (1) We used palmitoylated fluorescent protein (palmtdTomato) to label tumor-derived EVs. Beads displaying antibodies of interest were incubated with conditioned medium from palmtdTomato-expressing cells. Bound EVs were quantified using flow cytometry. (2) We also showed that membrane-bound Gaussia luciferase allows the detection of cancer-derived EVs in blood of tumor-bearing animals. Our analytical and validation platform should be applicable to identify antigens on EVs from any tumor type.
  3. Zaborowski MP, Cheah PS, Zhang X, Bushko I, Lee K, Sammarco A, et al.
    Sci Rep, 2019 Nov 22;9(1):17387.
    PMID: 31758005 DOI: 10.1038/s41598-019-53554-y
    Extracellular vesicles (EVs) released by cells play a role in intercellular communication. Reporter and targeting proteins can be modified and exposed on the surface of EVs to investigate their half-life and biodistribution. A characterization of membrane-bound Gaussia luciferase (mbGluc) revealed that its signal was detected also in a form smaller than common EVs (<70 nm). We demonstrated that mbGluc initially exposed on the surface of EVs, likely undergoes proteolytic cleavage and processed fragments of the protein are released into the extracellular space in active form. Based on this observation, we developed a new assay to quantitatively track shedding of membrane proteins from the surface of EVs. We used this assay to show that ectodomain shedding in EVs is continuous and is mediated by specific proteases, e.g. metalloproteinases. Here, we present a novel tool to study membrane protein cleavage and release using both in vitro and in vivo models.
  4. Yu D, Zheng W, Johansson M, Lan Q, Park Y, White E, et al.
    J Natl Cancer Inst, 2018 Aug 01;110(8):831-842.
    PMID: 29518203 DOI: 10.1093/jnci/djx286
    BACKGROUND: The obesity-lung cancer association remains controversial. Concerns over confounding by smoking and reverse causation persist. The influence of obesity type and effect modifications by race/ethnicity and tumor histology are largely unexplored.

    METHODS: We examined associations of body mass index (BMI), waist circumference (WC), and waist-hip ratio (WHR) with lung cancer risk among 1.6 million Americans, Europeans, and Asians. Cox proportional hazard regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) with adjustment for potential confounders. Analyses for WC/WHR were further adjusted for BMI. The joint effect of BMI and WC/WHR was also evaluated.

    RESULTS: During an average 12-year follow-up, 23 732 incident lung cancer cases were identified. While BMI was generally associated with a decreased risk, WC and WHR were associated with increased risk after controlling for BMI. These associations were seen 10 years before diagnosis in smokers and never smokers, were strongest among blacks, and varied by histological type. After excluding the first five years of follow-up, hazard ratios per 5 kg/m2 increase in BMI were 0.95 (95% CI = 0.90 to 1.00), 0.92 (95% CI = 0.89 to 0.95), and 0.89 (95% CI = 0.86 to 0.91) in never, former, and current smokers, and 0.86 (95% CI = 0.84 to 0.89), 0.94 (95% CI = 0.90 to 0.99), and 1.09 (95% CI = 1.03 to 1.15) for adenocarcinoma, squamous cell, and small cell carcinoma, respectively. Hazard ratios per 10 cm increase in WC were 1.09 (95% CI = 1.00 to 1.18), 1.12 (95% CI = 1.07 to 1.17), and 1.11 (95% CI = 1.07 to 1.16) in never, former, and current smokers, and 1.06 (95% CI = 1.01 to 1.12), 1.20 (95% CI = 1.12 to 1.29), and 1.13 (95% CI = 1.04 to 1.23) for adenocarcinoma, squamous cell, and small cell carcinoma, respectively. Participants with BMIs of less than 25 kg/m2 but high WC had a 40% higher risk (HR = 1.40, 95% CI = 1.26 to 1.56) than those with BMIs of 25 kg/m2 or greater but normal/moderate WC.

    CONCLUSIONS: The inverse BMI-lung cancer association is not entirely due to smoking and reverse causation. Central obesity, particularly concurrent with low BMI, may help identify high-risk populations for lung cancer.

  5. Yong KW, Safwani WKZW, Xu F, Zhang X, Choi JR, Abas WABW, et al.
    J Tissue Eng Regen Med, 2017 08;11(8):2217-2226.
    PMID: 26756982 DOI: 10.1002/term.2120
    Cryopreservation represents an efficient way to preserve human mesenchymal stem cells (hMSCs) at early culture/passage, and allows pooling of cells to achieve sufficient cells required for off-the-shelf use in clinical applications, e.g. cell-based therapies and regenerative medicine. To fully apply cryopreserved hMSCs in a clinical setting, it is necessary to evaluate their biosafety, e.g. chromosomal abnormality and tumourigenic potential. To date, many studies have demonstrated that cryopreserved hMSCs display no chromosomal abnormalities. However, the tumourigenic potential of cryopreserved hMSCs has not yet been evaluated. In the present study, we cryopreserved human adipose-derived mesenchymal stem cells (hASCs) for 3 months, using a slow freezing method with various cryoprotective agents (CPAs), followed by assessment of the tumourigenic potential of the cryopreserved hASCs after thawing and subculture. We found that long-term cryopreserved hASCs maintained normal levels of the tumour suppressor markers p53, p21, p16 and pRb, hTERT, telomerase activity and telomere length. Further, we did not observe significant DNA damage or signs of p53 mutation in cryopreserved hASCs. Our findings suggest that long-term cryopreserved hASCs are at low risk of tumourigenesis. These findings aid in establishing the biosafety profile of cryopreserved hASCs, and thus establishing low hazardous risk perception with the use of long-term cryopreserved hASCs for future clinical applications. Copyright © 2016 John Wiley & Sons, Ltd.
  6. Yao M, Guo X, Shao X, Wei Y, Zhang X, Wang H, et al.
    Food Chem Toxicol, 2023 May;175:113725.
    PMID: 36925041 DOI: 10.1016/j.fct.2023.113725
    Lead (Pb) can pollute the environment and food through air, water and other means, resulting in human exposure to lead pollution, and there is no threshold level of lead toxicity, even small doses of lead will have a range of harmful effects in humans. This study demonstrates for the first time that dietary addition of soluble dietary fiber (SDF) from Prunus persica dregs reduces lead bioaccumulation in mice, and eliminates lead through feces. Compared with lead-exposed mice, SDF supplementation effectively prevented lead-induced changes in colon tissue, and increased expression of tight junction proteins (ZO-1 and occludin). We analyzed the effects of SDF on gut microbiota and metabolites by a combination of 16S rRNA high-throughput sequencing and untargeted metabolomics. The results showed that SDF altered lead-induced perturbations in the layout and structure of the gut microbiota, including increased Desulfovibrio and Alistipes abundance and decreased Bacteroidetes abundance. Meanwhile, we also provide evidence that SDF supplementation alters the levels of amino acids, bile acids, and lipids in the gut, and that these metabolites are closely associated with microbiota with good lead binding capacity. Therefore, we speculate that SDF has the potential to provide a protective effect against intestinal damage by promoting lead excretion.
  7. Yang Y, Wei X, Zhang N, Zheng J, Chen X, Wen Q, et al.
    Nat Commun, 2021 08 12;12(1):4876.
    PMID: 34385436 DOI: 10.1038/s41467-021-25075-8
    While the printed circuit board (PCB) has been widely considered as the building block of integrated electronics, the world is switching to pursue new ways of merging integrated electronic circuits with textiles to create flexible and wearable devices. Herein, as an alternative for PCB, we described a non-printed integrated-circuit textile (NIT) for biomedical and theranostic application via a weaving method. All the devices are built as fibers or interlaced nodes and woven into a deformable textile integrated circuit. Built on an electrochemical gating principle, the fiber-woven-type transistors exhibit superior bending or stretching robustness, and were woven as a textile logical computing module to distinguish different emergencies. A fiber-type sweat sensor was woven with strain and light sensors fibers for simultaneously monitoring body health and the environment. With a photo-rechargeable energy textile based on a detailed power consumption analysis, the woven circuit textile is completely self-powered and capable of both wireless biomedical monitoring and early warning. The NIT could be used as a 24/7 private AI "nurse" for routine healthcare, diabetes monitoring, or emergencies such as hypoglycemia, metabolic alkalosis, and even COVID-19 patient care, a potential future on-body AI hardware and possibly a forerunner to fabric-like computers.
  8. Yang Y, Zhang Z, Zhang L, Song F, Ren Y, Zhang X, et al.
    Sci Total Environ, 2023 Aug 01;884:163741.
    PMID: 37120025 DOI: 10.1016/j.scitotenv.2023.163741
    Wood-based panels provide efficient alternatives to materials such as plastics derived from traditional petroleum sources and thereby help to mitigate greenhouse gas emissions. Unfortunately, using indoor manufactured panel products also results in significant emissions of volatile organic compounds including olefins, aromatic and ester compounds, which negatively affect human health. This paper highlights recent developments and notable achievements in the field of indoor hazardous air treatment technologies to guide future research toward environmentally friendly and economically feasible directions that may have a significant impact on the improvement of human settlements. Summarizing and synthesizing the principles, advantages, and limitations of different technologies can assist policymakers and engineers in identifying the most appropriate technology for a particular air pollution control program based on criteria such as cost-effectiveness, efficiency, and environmental impact. In addition, insights into the development of indoor air pollution control technologies are provided and potential areas for innovation, improvement of existing technologies, and development of new technologies are identified. Finally, the authors also hope that this sub-paper will raise public awareness of indoor air pollution issues and promote a better understanding of the importance of indoor air pollution control technologies for public health, environmental protection, and sustainable development.
  9. Yang J, Chen S, Duan F, Wang X, Zhang X, Lian B, et al.
    Cells, 2022 Nov 06;11(21).
    PMID: 36359908 DOI: 10.3390/cells11213511
    Mitochondrial cardiomyopathy (MCM) is characterized by abnormal heart-muscle structure and function, caused by mutations in the nuclear genome or mitochondrial DNA. The heterogeneity of gene mutations and various clinical presentations in patients with cardiomyopathy make its diagnosis, molecular mechanism, and therapeutics great challenges. This review describes the molecular epidemiology of MCM and its clinical features, reviews the promising diagnostic tests applied for mitochondrial diseases and cardiomyopathies, and details the animal and cellular models used for modeling cardiomyopathy and to investigate disease pathogenesis in a controlled in vitro environment. It also discusses the emerging therapeutics tested in pre-clinical and clinical studies of cardiac regeneration.
  10. Yang F, Guo KX, Yang DQ, Liu RD, Long SR, Zhang X, et al.
    Trop Biomed, 2020 Jun 01;37(2):458-470.
    PMID: 33612815
    A T. spiralis serine protease 1.2 (TsSP1.2) was identified in the muscle larvae (ML) and intestinal larvae surface/excretory-secretory (ES) proteins by immunoproteomics. The aim of this study was to determine the TsSP1.2 function in the process of T. spiralis intrusion, growth and reproduction by using RNA interference (RNAi). RNAi was used to silence the expression of TsSP1.2 mRNA and protein in the nematode. On 2 days after the ML were electroporated with 2 µM of TsSP1.2-specific siRNA 534, TsSP1.2 mRNA and protein expression declined in 56.44 and 84.48%, respectively, compared with untreated ML. Although TsSP1.2 silencing did not impair worm viability, larval intrusion of intestinal epithelium cells (IEC) was suppressed by 57.18% (P < 0.01) and the suppression was siRNA-dose dependent (r = 0.976). Infection of mice with siRNA 534 transfected ML produced a 57.16% reduction of enteral adult burden and 71.46% reduction of muscle larva burden (P < 0.05). Moreover, silencing of TsSP1.2 gene in ML resulted in worm development impediment and reduction of female fertility. The results showed that silencing of TsSP1.2 by RNAi inhibited larval intrusion and development, and reduced female fecundity. TsSP1.2 plays a crucial role for worm invasion and development in T. spiralis life cycle, and is a potential vaccine/drug target against Trichinella infection.
  11. Yan L, Zhang M, Wang M, Guo Y, Zhang X, Xi J, et al.
    J Nanosci Nanotechnol, 2020 03 01;20(3):1504-1510.
    PMID: 31492313 DOI: 10.1166/jnn.2020.17350
    This research has been accomplished using the advanced selective laser melting (SLM) technique as well as HIP post-treatment in order to improve mechanical properties and biocompatibility of Mg- Ca-Sr alloy. Through this research it becomes clearly noticeable that the Mg-1.5Ca-xSr (x = 0.6, 2.1, 2.5) alloys with Sr exhibited better mechanical properties and corrosion potentials. This is more particular with the Mg-1.5Ca-2.5Sr alloy after HIP post-treatment allowing it to provide a desired combination of degradation and mechanical behavior for orthopedic fracture fixation during a desired treatment period. In vivo trials, there was a clear indication and exhibition that this Mg-1.5Ca-2.5Sr alloy screw can completely dissolve in miniature pig's body which leads to an acceleration in growth of bone tissues. Mg-Ca-Sr alloy proved potential candidate for use in orthopedic fixation devices through Our results concluded that Mg-Ca-Sr alloy are potential candidate for use in orthopedic fixation devices through mechanical strength and biocompatibility evaluations (in vitro or In vivo).
  12. Xu Z, Nan W, Zhang X, Sun Y, Yang J, Lu K, et al.
    J Mol Neurosci, 2018 Jun;65(2):222-233.
    PMID: 29845511 DOI: 10.1007/s12031-018-1075-5
    Mesenchymal stem cell (MSC) therapy is a promising prospect for the treatment of Alzheimer's disease (AD); however, the underlying mechanisms by which MSCs mediate positive effects are still unclear. We speculated that MSCs mediate microglial autophagy and enhance the clearance of Aβ. To test this hypothesis, we cultured BV2 microglial cells with umbilical cord mesenchymal stem cells conditioned medium (ucMSCs-CM) in the presence or absence of Aβ25-35 oligomers. We investigated BV2 cell proliferation, cell death, and Aβ25-35 phagocytosis as well as protein expression levels of LC3, Beclin-1, p62, insulin-degrading enzyme (IDE), and neprilysin (Nep) with western blotting. The results showed that ucMSCs-CM inhibited the proliferation and decreased cell death of BV2 cells induced by Aβ25-35. ucMSCs-CM also promoted the phagocytosis of Aβ25-35 by BV2 cells and changed the expression of autophagy-related proteins LC3, Beclin-1, and p62. Treatment also upregulated the expression of Aβ-degrading enzymes IDE and Nep. Furthermore, the culture medium in BV2 cells with Aβ25-35 and ucMSCs-CM prevented neuronal cell SH-SY5Y from cell death compared to control medium without ucMSCs-CM. Altogether, these data suggested that ucMSCs-CM protect microglial and neuronal cells from Aβ25-35-induced cell death and promote Aβ phagocytosis by modulating autophagy and enhancing the expression of Aβ-degrading enzymes in microglia.
  13. Xu Y, Li H, Wang B, Gu L, Gao Y, Fan Y, et al.
    Urol J, 2021 Oct 04;18(6):618-622.
    PMID: 34606083 DOI: 10.22037/uj.v18i.6629
    PURPOSE: To compare the treatment outcomes of robotic retroperitoneal lymph node dissection (R-RPLND) versus laparoscopic RPLND (L-RPLND) for clinical stage I non-seminomatous germ cell testicular tumors (NSGCTs).

    MATERIALS AND METHODS: We retrospectively reviewed the data of patients with stage I NSGCTs who underwent robotic or laparoscopic RPLND between 2008 and 2017. Perioperative data and oncologic outcomes were reviewed and compared between the two groups. Progression-free survival was analyzed using Kaplan-Meier survival curves and compared between two groups.

    RESULTS: A total of 31 and 28 patients underwent R-RPLND and L-RPLND respectively. The preoperative characteristics of the patients were comparable in the two groups. Patients in R-RPLND group had significantly shorter median operative time (140 vs. 175 minutes, P < .001), a shorter median duration to surgical drain removal (2 vs. 4 days, P = .002) and a shorter median postoperative hospital stay (5 vs. 6 days, P = .001). There were no statistical differences in intra- and post-operative complication rate between the groups and the oncologic outcomes were similar in the two groups.

    CONCLUSION: In expert hands, R-RPLND and L-RPLND were comparable in oncological parameter and morbidity rate; R-RPLND showed superiority in operation duration, median days to surgical drain removal and postoperative hospital stay for stage I NSGCTs. Multicenter and randomized studies with good power of study and sufficient follow-up duration are required to validate our result.

  14. Xu G, You D, Wong L, Duan D, Kong F, Zhang X, et al.
    Eur J Endocrinol, 2019 Apr;180(4):243-255.
    PMID: 30668524 DOI: 10.1530/EJE-18-0792
    Objective: Previous studies have shown sex-specific differences in all-cause and CHD mortality in type 2 diabetes. We performed a systematic review and meta-analysis to provide a global picture of the estimated influence of type 2 diabetes on the risk of all-cause and CHD mortality in women vs men.

    Methods: We systematically searched PubMed, EMBASE and Web of Science for studies published from their starting dates to Aug 7, 2018. The sex-specific hazard ratios (HRs) and their pooled ratio (women vs men) of all-cause and CHD mortality associated with type 2 diabetes were obtained through an inverse variance-weighted random-effects meta-analysis. Subgroup analyses were used to explore the potential sources of heterogeneity.

    Results: The 35 analyzed prospective cohort studies included 2 314 292 individuals, among whom 254 038 all-cause deaths occurred. The pooled women vs men ratio of the HRs for all-cause and CHD mortality were 1.17 (95% CI: 1.12-1.23, I2 = 81.6%) and 1.97 (95% CI: 1.49-2.61, I2 = 86.4%), respectively. The pooled estimate of the HR for all-cause mortality was approximately 1.30 in articles in which the duration of follow-up was longer than 10 years and 1.10 in articles in which the duration of follow-up was less than 10 years. The pooled HRs for all-cause mortality in patients with type 2 diabetes was 2.33 (95% CI: 2.02-2.69) in women and 1.91 (95% CI: 1.72-2.12) in men, compared with their healthy counterparts.

    Conclusions: The effect of diabetes on all-cause and CHD mortality is approximately 17 and 97% greater, respectively, for women than for men.

  15. Xiong X, Wong NH, Ernawati L, Sunarso J, Zhang X, Jin Y, et al.
    J Colloid Interface Sci, 2023 Aug 15;644:533-545.
    PMID: 37012113 DOI: 10.1016/j.jcis.2023.03.180
    Metal-organic polymers (MOPs) can enhance the photoelectrochemical (PEC) water oxidation performance of BiVO4 photoanodes, but their PEC mechanisms have yet to be comprehended. In this work, we constructed an active and stable composite photoelectrode by overlaying a uniform MOP on the BiVO4 surface using Fe2+ as the metal ions and 2,5-dihydroxyterephthalic acid (DHTA) as ligand. Such modification on the BiVO4 surface yielded a core-shell structure that could effectively enhance the PEC water oxidation activity of the BiVO4 photoanode. Our intensity-modulated photocurrent spectroscopy analysis revealed that the MOP overlayer could concurrently reduce the surface charge recombination rate constant (ksr) and enhance the charge transfer rate constant (ktr), thus accelerating water oxidation activity. These phenomena can be ascribed to the passivation of the surface that inhibits the recombination of the charge carrier and the MOP catalytic layer that improves the hole transfer. Our rate law analysis also demonstrated that the MOP coverage shifted the reaction order of the BiVO4 photoanode from the third-order to the first-order, resulting in a more favorable rate-determining step where only one hole accumulation is required to overcome water oxidation. This work provides new insights into the reaction mechanism of MOP-modified semiconductor photoanodes.
  16. Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, et al.
    Nature, 2020 07;583(7815):286-289.
    PMID: 32380510 DOI: 10.1038/s41586-020-2313-x
    The current outbreak of coronavirus disease-2019 (COVID-19) poses unprecedented challenges to global health1. The new coronavirus responsible for this outbreak-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-shares high sequence identity to SARS-CoV and a bat coronavirus, RaTG132. Although bats may be the reservoir host for a variety of coronaviruses3,4, it remains unknown whether SARS-CoV-2 has additional host species. Here we show that a coronavirus, which we name pangolin-CoV, isolated from a Malayan pangolin has 100%, 98.6%, 97.8% and 90.7% amino acid identity with SARS-CoV-2 in the E, M, N and S proteins, respectively. In particular, the receptor-binding domain of the S protein of pangolin-CoV is almost identical to that of SARS-CoV-2, with one difference in a noncritical amino acid. Our comparative genomic analysis suggests that SARS-CoV-2 may have originated in the recombination of a virus similar to pangolin-CoV with one similar to RaTG13. Pangolin-CoV was detected in 17 out of the 25 Malayan pangolins that we analysed. Infected pangolins showed clinical signs and histological changes, and circulating antibodies against pangolin-CoV reacted with the S protein of SARS-CoV-2. The isolation of a coronavirus from pangolins that is closely related to SARS-CoV-2 suggests that these animals have the potential to act as an intermediate host of SARS-CoV-2. This newly identified coronavirus from pangolins-the most-trafficked mammal in the illegal wildlife trade-could represent a future threat to public health if wildlife trade is not effectively controlled.
  17. Wei R, Wang Z, Zhang X, Wang X, Xu Y, Li Q
    Public Health, 2023 Sep;222:75-84.
    PMID: 37531713 DOI: 10.1016/j.puhe.2023.06.034
    OBJECTIVES: Understanding iodine deficiency (ID) burdens and trends in Asia can help guide effective intervention strategies. This study aims to report the incidence, prevalence, and disability-adjusted life years (DALYs) of ID in 48 Asian countries during the period 1990-2019.

    STUDY DESIGN: Data on ID were retrieved from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 and estimated by age, sex, geographical region, and sociodemographic index (SDI).

    METHODS: The estimated annual percentage change (EAPC) was calculated to evaluate the changing trend of age-standardized incidence rate (ASIR), age-standardized prevalence rate (ASPR), and age-standardized DALYs rate (ASDR) related to ID during the period 1990-2019.

    RESULTS: In Asia, there were 126,983,965.8 cases with 5,466,213.1 new incidence and 1,765,995.5 DALYs of ID in 2019. Between 1999 and 2019, the EAPC in ASIR, ASPR and ASDR were -0.6 (95% confidence interval [CI], -0.8 to -0.4), -0.9 (95% CI, -1.2 to -0.7), and -1.6 (95% CI, -1.8 to -1.5), respectively. Malaysia charted the largest decrease in ASIR, ASPR, and ASDR (82.4%, 85.3%, and 80.9% separately), whereas the Philippines and Pakistan were the only two countries that witnessed an increase in ASIR and ASPR. ID burdens were more pronounced in women, countries located to the south of the Himalayas, and low-middle SDI regions.

    CONCLUSIONS: The incidence, prevalence, and DALYs of ID in Asia substantially decreased from 1990 to 2019. Women and low-middle SDI countries have relatively high ID burdens. Governments need to pay constant attention to the implementation and monitoring of universal salt iodization.

  18. Wang Z, Zhang F, Zhang X, Chan NW, Kung HT, Ariken M, et al.
    Sci Total Environ, 2021 Feb 12;775:145807.
    PMID: 33618298 DOI: 10.1016/j.scitotenv.2021.145807
    Soil salinization is an extremely serious land degradation problem in arid and semi-arid regions that hinders the sustainable development of agriculture and food security. Information and research on soil salinity using remote sensing (RS) technology provide a quick and accurate assessment and solutions to address this problem. This study aims to compare the capabilities of Landsat-8 OLI and Sentinel-2A MSI in RS prediction and exploration of the potential application of derivatives to RS prediction of salinized soils. It explores the ability of derivatives to be used in the Landsat-8 OLI and Sentinel-2A MSI multispectral data, and it was used as a data source as well as to address the adaptability of salinity prediction on a regional scale. The two-dimensional (2D) and three-dimensional (3D) optimal spectral indices are used to screen the bands that are most sensitive to soil salinity (0-10 cm), and RS data and topographic factors are combined with machine learning to construct a comprehensive soil salinity estimation model based on gray correlation analysis. The results are as follows: (1) The optimal spectral index (2D, 3D) can effectively consider possible combinations of the bands between the interaction effects and responding to sensitive bands of soil properties to circumvent the problem of applicability of spectral indices in different regions; (2) Both the Landsat-8 OLI and Sentinel-2A MSI multispectral RS data sources, after the first-order derivative techniques are all processed, show improvements in the prediction accuracy of the model; (3) The best performance/accuracy of the predictive model is for sentinel data under first-order derivatives. This study compared the capabilities of Landsat-8 OLI and Sentinel-2A MSI in RS prediction in finding the potential application of derivatives to RS prediction of salinized soils, with the results providing some theoretical basis and technical guidance for salinized soil prediction and environmental management planning.
  19. Wang Z, Zhang F, Liang Y, Zheng K, Gu C, Zhang W, et al.
    Microbiol Spectr, 2021 10 31;9(2):e0046321.
    PMID: 34643440 DOI: 10.1128/Spectrum.00463-21
    Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplankton-associated marine member of the Gammaproteobacteria with a range extending from tropical waters to polar regions and including hadal zones. Here, we describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA molecule with 50.1% G+C content and 47 putative open reading frames (ORFs). Three auxiliary metabolic genes were identified, encoding metal-dependent phosphohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase. The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z) in phage genomes and help phages to evade attack from host restriction enzymes. The nucleotide pyrophosphohydrolase enables the host cells to stop programmed cell death and improves the survival rate of the host in a nutrient-depleted environment. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis revealed that ZP6 is most closely related to Enhodamvirus but with low similarity (shared genes, <30%, and average nucleotide sequence identity, <65%); it is distinct from other bacteriophages. Together, these results suggest that ZP6 could represent a novel viral genus, here named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a diaminopurine genome-biosynthetic system, and its representativeness of an understudied viral group, ZP6 could be an important and novel model system for marine virus research. IMPORTANCE Alteromonas is an important symbiotic bacterium of phytoplankton, but research on its bacteriophages is still at an elementary level. Our isolation and genome characterization of a novel Alteromonas podovirus, ZP6, identified a new viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diaminopurine genome-biosynthetic system, is different from those of other isolated Alteromonas phages and will bring new impetus to the development of virus classification and provide important insights into novel viral sequences from metagenomic data sets.
  20. Wang P, Yang J, Li X, Liu M, Zhang X, Sun D, et al.
    Sci Rep, 2017 07 26;7(1):6615.
    PMID: 28747656 DOI: 10.1038/s41598-017-06007-3
    Uncovering energy absorption and surface effects of various penetrating velocities on laminar structures is essential for designing protective structures. In this study, both quasi-static and dynamic penetration tests were systematical conducted on the front surfaces of metal sheets coated with a graphene oxide (GO) solution and other media. The addition of a GO fluid film to the front impact surface aided in increasing the penetration strength, improving the failure extension and dissipating additional energy under a wide-range of indentation velocity, from 3.33 × 10-5 m/s to 4.42 m/s. The coated -surfaces improved the specific energy dissipation by approximately 15~40% relative to the dry-contact configuration for both single-layer and double-layer configurations, and specific energy dissipations of double-layer configurations were 20~30% higher than those of the single-layer configurations. This treatment provides a facile strategy in changing the contact state for improving the failure load and dissipate additional energy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links