Displaying publications 41 - 60 of 123 in total

Abstract:
Sort:
  1. Siew-Wai L, Zi-Ni T, Karim AA, Hani NM, Rosma A
    J Agric Food Chem, 2010 Feb 24;58(4):2274-8.
    PMID: 20121195 DOI: 10.1021/jf903820s
    The in vitro fermentability of sago (Metroxylon sagu) resistant starch type III (RS(3)) by selected probiotic bacteria was investigated. Sago RS(3) with 12% RS content was prepared by enzymatic debranching of native sago starch with pullulanase enzyme, followed by autoclaving, cooling, and annealing. The fermentation of sago RS(3) by L. acidophilus FTCC 0291, L. bulgaricus FTCC 0411, L. casei FTCC 0442, and B. bifidum BB12 was investigated by observing the bacterial growth, carbohydrate consumption profiles, pH changes, and total short chain fatty acids (SCFA) produced in the fermentation media. Comparisons were made with commercial fructo-oligosaccharide (FOS), Hi-maize 1043, and Hi-maize 240. Submerged fermentations were conducted in 30 mL glass vials for 24 h at 37 degrees C in an oven without shaking. The results indicated that fermentation of sago RS(3) significantly (P < 0.05) yielded the highest count of Lactobacillus sp. accompanied by the largest reduction in pH of the medium. Sago RS(3) was significantly the most consumed substrate compared to FOS and Hi-maizes.
    Matched MeSH terms: Acetic Acid/metabolism
  2. Zuhainis Saad W, Abdullah N, Alimon AR, Yin Wan H
    Anaerobe, 2008 Apr;14(2):118-22.
    PMID: 18083606
    The effects of phenolic monomers (i.e. rho-coumaric acid, ferulic acid, rho-hydroxybenzaldehyde and vanillin) on the enzymes and fermentation activities of Neocallimastix frontalis B9 grown in ball-milled filter paper and guinea grass media were studied. The enzymes studied were carboxymethylcellulase (CMCase), filterpaperase (FPase), xylanase and beta-glucosidase. At 96 h of incubation, N. frontalis grown in ball-milled filter paper medium produced comparable xylanase and CMCase activities (0.41, 0.5 micromol/min/mg protein) while in guinea grass medium, N. frontalis produced higher xylanase activity than that of CMCase activity (2.35, 0.05 micromol/min/mg protein). The other enzymes activities were low. When N. frontalis was grown in ball-milled filter paper medium, only acetic acid was produced. However, when grown in guinea grass medium, the major end-product was acetate, but propionic, butyric and isovaleric were also produced in lesser amount. Vanillin showed the least inhibitory effects to enzyme activities of N. frontalis B9 grown in both ball-milled filter paper and guinea grass media. For total volatile fatty acid production, all phenolic monomers showed inhibitory effects, but rho-coumaric and ferulic acids were the stronger inhibitors than rho-hydroxybenzaldehyde and vanillin.
    Matched MeSH terms: Acetic Acid/metabolism
  3. Lew LC, Liong MT
    J Appl Microbiol, 2013 May;114(5):1241-53.
    PMID: 23311666 DOI: 10.1111/jam.12137
    Probiotics have been extensively reviewed for decades, emphasizing on improving general gut health. Recently, more studies showed that probiotics may exert other health-promoting effects beyond gut well-being, attributed to the rise of the gut-brain axis correlations. Some of these new benefits include skin health such as improving atopic eczema, atopic dermatitis, healing of burn and scars, skin-rejuvenating properties and improving skin innate immunity. Increasing evidence has also showed that bacterial compounds such as cell wall fragments, their metabolites and dead bacteria can elicit certain immune responses on the skin and improve skin barrier functions. This review aimed to underline the mechanisms or the exact compounds underlying the benefits of bacterial extract on the skin based on evidences from in vivo and in vitro studies. This review could be of help in screening of probiotic strains with potential dermal enhancing properties for topical applications.
    Matched MeSH terms: Acetic Acid/pharmacology
  4. Leisner JJ, Vancanneyt M, Goris J, Christensen H, Rusul G
    Int J Syst Evol Microbiol, 2000 Jan;50 Pt 1:19-24.
    PMID: 10826783 DOI: 10.1099/00207713-50-1-19
    Paralactobacillus selangorensis gen. nov., sp. nov. is described. This organism, isolated from a Malaysian food ingredient called chili bo, is an obligatory homofermentative, rod-shaped lactic acid bacterium. The G+C content is 46.1-46.2+/-0.3 mol%. Earlier 16S rRNA studies showed that this organism constitutes a new taxon distantly related to the Lactobacillus casei-Pediococcus group. A phenotypic description that distinguishes Paralactobacillus selangorensis from other genera of lactic acid bacteria is presented. The type strain of Paralactobacillus selangorensis is LMG 17710T.
    Matched MeSH terms: Acetic Acid/metabolism
  5. Hannon JC, Kerry JP, Cruz-Romero M, Azlin-Hasim S, Morris M, Cummins E
    Food Chem Toxicol, 2016 Sep;95:128-36.
    PMID: 27402098 DOI: 10.1016/j.fct.2016.07.004
    To examine the human exposure to a novel silver and copper nanoparticle (AgNP and CuNP)/polystyrene-polyethylene oxide block copolymer (PS-b-PEO) food packaging coating, the migration of Ag and Cu into 3% acetic acid (3% HAc) food simulant was assessed at 60 °C for 10 days. Significantly lower migration was observed for Ag (0.46 mg/kg food) compared to Cu (0.82 mg/kg food) measured by inductively coupled plasma - atomic emission spectrometry (ICP-AES). In addition, no distinct population of AgNPs or CuNPs were observed in 3% HAc by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). The predicted human exposure to Ag and Cu was used to calculate a margin of exposure (MOE) for ionic species of Ag and Cu, which indicated the safe use of the food packaging in a hypothetical scenario (e.g. as fruit juice packaging). While migration exceeded regulatory limits, the calculated MOE suggests current migration limits may be conservative for specific nano-packaging applications.
    Matched MeSH terms: Acetic Acid/chemistry*
  6. Noman AE, Al-Barha NS, Sharaf AM, Al-Maqtari QA, Mohedein A, Mohammed HHH, et al.
    Sci Rep, 2020 08 11;10(1):13527.
    PMID: 32782276 DOI: 10.1038/s41598-020-70404-4
    A novel bacterial strain of acetic acid bacteria capable of producing riboflavin was isolated from the soil sample collected in Wuhan, China. The isolated strain was identified as Gluconobacter oxydans FBFS97 based on several phenotype characteristics, biochemicals tests, and 16S rRNA gene sequence conducted. Furthermore, the complete genome sequencing of the isolated strain has showed that it contains a complete operon for the biosynthesis of riboflavin. In order to obtain the maximum concentration of riboflavin production, Gluconobacter oxydans FBFS97 was optimized in shake flask cultures through response surface methodology employing Plackett-Burman design (PBD), and Central composite design (CCD). The results of the pre-experiments displayed that fructose and tryptone were found to be the most suitable sources of carbon and nitrogen for riboflavin production. Then, PBD was conducted for initial screening of eleven minerals (FeSO4, FeCl3, KH2PO4, K2HPO4, MgSO4, ZnSO4, NaCl, CaCl2, KCl, ZnCl2, and AlCl3.6H2O) for their significances on riboflavin production by Gluconobacter oxydans strain FBFS97. The most significant variables affecting on riboflavin production are K2HPO4 and CaCl2, the interaction affects and levels of these variables were optimized by CCD. After optimization of the medium compositions for riboflavin production were determined as follows: fructose 25 g/L, tryptone 12.5 g/L, K2HPO4 9 g/L, and CaCl2 0.06 g/L with maximum riboflavin production 23.24 mg/L.
    Matched MeSH terms: Acetic Acid/metabolism*
  7. Chew SY, Ho KL, Cheah YK, Ng TS, Sandai D, Brown AJP, et al.
    Sci Rep, 2019 02 26;9(1):2843.
    PMID: 30808979 DOI: 10.1038/s41598-019-39117-1
    The human fungal pathogen Candida glabrata appears to utilise unique stealth, evasion and persistence strategies in subverting the onslaught of host immune response during systemic infection. However, macrophages actively deprive the intracellular fungal pathogen of glucose, and therefore alternative carbon sources probably support the growth and survival of engulfed C. glabrata. The present study aimed to investigate the role of the glyoxylate cycle gene ICL1 in alternative carbon utilisation and its importance for the virulence of C. glabrata. The data showed that disruption of ICL1 rendered C. glabrata unable to utilise acetate, ethanol or oleic acid. In addition, C. glabrata icl1∆ cells displayed significantly reduced biofilm growth in the presence of several alternative carbon sources. It was also found that ICL1 is crucial for the survival of C. glabrata in response to macrophage engulfment. Disruption of ICL1 also conferred a severe attenuation in the virulence of C. glabrata in the mouse model of invasive candidiasis. In conclusion, a functional glyoxylate cycle is essential for C. glabrata to utilise certain alternative carbon sources in vitro and to display full virulence in vivo. This reinforces the view that antifungal drugs that target fungal Icl1 have potential for future therapeutic intervention.
    Matched MeSH terms: Acetic Acid/metabolism
  8. See SF, Ghassem M, Mamot S, Babji AS
    J Food Sci Technol, 2015 Feb;52(2):753-62.
    PMID: 25694683 DOI: 10.1007/s13197-013-1043-6
    Pretreatments with different types of alkali and acid were compared to determine their effects on gelatin extraction from African catfish (Clarias gariepinus) skin. The study was divided into three parts. In the first part, the skins were only treated with alkaline (Ca(OH)2 or NaOH) solution or pretreated with acetic acid solution. For second part, combination of alkali and acid pretreatment was carried out. For the third part, the skins were first treated with NaOH solution, followed by the treatment with acetic acid, citric acid or sulfuric acid solution. Functional properties including the yield of protein recovery, gel strength, viscosity, pH and viscoelastic properties were determined on gelatins obtained with different pretreatment conditions. Pretreatment with alkali removed noncollagenous proteins effectively, whilst acid pretreatment induced some loss of collagenous proteins. Combination of alkali and acid pretreatment not only removed the noncollagenous proteins and caused a significant amount of swelling, but also provided the proper pH condition for extraction, during which some cross-linkages could be further destroyed but with less breakage of intramolecular peptide chains. Pretreatment of catfish skins with 0.2 N NaOH followed by 0.05 M acetic acid improved yield of protein recovery, gel strength, viscosity, melting temperature and gelling temperature of gelatin extract.
    Matched MeSH terms: Acetic Acid
  9. Jaafar J, Irwan Z, Ahamad R, Terabe S, Ikegami T, Tanaka N
    J Sep Sci, 2007 Feb;30(3):391-8.
    PMID: 17396598
    An online preconcentration technique by dynamic pH junction was studied to improve the detection limit for anionic arsenic compounds by CE. The main target compound is roxarsone, or 3-nitro-4-hydroxyphenylarsonic acid, which is being used as an animal feed additive. The other inorganic and organoarsenic compounds studied are the possible biotransformation products of roxarsone. The arsenic species were separated by a dynamic pH junction in a fused-silica capillary using 15 mM phosphate buffer (pH 10.6) as the BGE and 15 mM acetic acid as the sample matrix. CE with UV detection was monitored at a wavelength of 192 nm. The influence of buffer pH and concentration on dynamic pH junction were investigated. The arsenic species focusing resulted in LOD improvement by a factor of 100-800. The combined use of C18 and anion exchange SPE and dynamic pH junction to CE analysis of chicken litter and soils helps to increase the detection sensitivity. Recoveries of spiked samples ranged between 70 and 72%.
    Matched MeSH terms: Acetic Acid
  10. Yong YK, Zakaria ZA, Kadir AA, Somchit MN, Ee Cheng Lian G, Ahmad Z
    PMID: 23410184 DOI: 10.1186/1472-6882-13-32
    Bixa orellana L. has been traditionally used in Central and South America to treat a number of ailments, including internal inflammation, and in other tropical countries like Malaysia as treatment for gastric ulcers and stomach discomfort. The current study aimed to determine the major chemical constituents of the aqueous extract of B. orellana (AEBO) and to evaluate the antihistamine activity of AEBO during acute inflammation induced in rats.
    Matched MeSH terms: Acetic Acid/analysis; Acetic Acid/pharmacology; Acetic Acid/therapeutic use*
  11. Yaacob N, Mohamad Ali MS, Salleh AB, Abdul Rahman NA
    PeerJ, 2016;4:e1751.
    PMID: 26989608 DOI: 10.7717/peerj.1751
    Background. Not all yeast alcohol dehydrogenase 2 (ADH2) are repressed by glucose, as reported in Saccharomyces cerevisiae. Pichia stipitis ADH2 is regulated by oxygen instead of glucose, whereas Kluyveromyces marxianus ADH2 is regulated by neither glucose nor ethanol. For this reason, ADH2 regulation of yeasts may be species dependent, leading to a different type of expression and fermentation efficiency. Lachancea fermentati is a highly efficient ethanol producer, fast-growing cells and adapted to fermentation-related stresses such as ethanol and organic acid, but the metabolic information regarding the regulation of glucose and ethanol production is still lacking. Methods. Our investigation started with the stimulation of ADH2 activity from S. cerevisiae and L. fermentati by glucose and ethanol induction in a glucose-repressed medium. The study also embarked on the retrospective analysis of ADH2 genomic and protein level through direct sequencing and sites identification. Based on the sequence generated, we demonstrated ADH2 gene expression highlighting the conserved NAD(P)-binding domain in the context of glucose fermentation and ethanol production. Results. An increase of ADH2 activity was observed in starved L. fermentati (LfeADH2) and S. cerevisiae (SceADH2) in response to 2% (w/v) glucose induction. These suggest that in the presence of glucose, ADH2 activity was activated instead of being repressed. An induction of 0.5% (v/v) ethanol also increased LfeADH2 activity, promoting ethanol resistance, whereas accumulating acetic acid at a later stage of fermentation stimulated ADH2 activity and enhanced glucose consumption rates. The lack in upper stream activating sequence (UAS) and TATA elements hindered the possibility of Adr1 binding to LfeADH2. Transcription factors such as SP1 and RAP1 observed in LfeADH2 sequence have been implicated in the regulation of many genes including ADH2. In glucose fermentation, L. fermentati exhibited a bell-shaped ADH2 expression, showing the highest expression when glucose was depleted and ethanol-acetic acid was increased. Meanwhile, S. cerevisiae showed a constitutive ADH2 expression throughout the fermentation process. Discussion. ADH2 expression in L. fermentati may be subjected to changes in the presence of non-fermentative carbon source. The nucleotide sequence showed that ADH2 transcription could be influenced by other transcription genes of glycolysis oriented due to the lack of specific activation sites for Adr1. Our study suggests that if Adr1 is not capable of promoting LfeADH2 activation, the transcription can be controlled by Rap1 and Sp1 due to their inherent roles. Therefore in future, it is interesting to observe ADH2 gene being highly regulated by these potential transcription factors and functioned as a promoter for yeast under high volume of ethanol and organic acids.
    Matched MeSH terms: Acetic Acid
  12. Jalil N, Azma RZ, Mohamed E, Ithnin A, Alauddin H, Baya SN, et al.
    EXCLI J, 2016;15:155-62.
    PMID: 27103895 DOI: 10.17179/excli2015-604
    Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is the commonest cause of neonatal jaundice in Malaysia. Recently, OSMMR2000-D G6PD Assay Kit has been introduced to quantitate the level of G6PD activity in newborns delivered in Universiti Kebangsaan Malaysia Medical Centre (UKMMC). As duration of sample storage prior to analysis is one of the matters of concern, this study was conducted to identify the stability of G6PD enzyme during storage. A total of 188 cord blood samples from normal term newborns delivered at UKMMC were selected for this study. The cord bloods samples were collected in ethylene-diamine-tetra-acetic acid (EDTA) tubes and refrigerated at 2-8 °C. In addition, 32 out of 188 cord blood samples were spotted on chromatography paper, air-dried and stored at room temperature. G6PD enzyme activities were measured daily for 7 days using the OSMMR2000-D G6PD Assay Kit on both the EDTA blood and dried blood samples. The mean value for G6PD activity was compared between days of analysis using Student Paired T-Test. In this study, 172 out of 188 cord blood samples showed normal enzyme levels while 16 had levels corresponding to severe enzyme deficiency. The daily mean G6PD activity for EDTA blood samples of newborns with normal G6PD activity showed a significant drop on the fourth day of storage (p < 0.005) while for samples with severely deficient G6PD activity, significant drop was seen on third day of storage (p = 0.002). Analysis of dried cord blood showed a significant reduction in enzyme activity as early as the second day of storage (p = 0.001). It was also noted that mean G6PD activity for spotted blood samples were lower compared to those in EDTA tubes for all days (p = 0.001). Thus, EDTA blood samples stored at 2-8 °C appeared to have better stability in terms of their G6PD enzyme level as compared to dried blood samples on filter paper, giving a storage time of up to 3 days.
    Matched MeSH terms: Acetic Acid
  13. Azman EM, Charalampopoulos D, Chatzifragkou A
    J Food Sci, 2020 Nov;85(11):3745-3755.
    PMID: 32990367 DOI: 10.1111/1750-3841.15466
    The aim of this study was to investigate the effects of different solvent and extraction temperatures on the free and bound phenolic compounds and antioxidant activity of dried blackcurrant skins (DBS). Apart from acetic acid buffer solution, different solvent systems, including water, methanol, and mixtures of methanol/water, were also employed and the effects of solvent and temperature (30 and 50 °C) on the free and bound forms of anthocyanins, hydroxycinnamic acids, and flavonols yield were assessed. The results showed that among all solvents, acetic acid buffer resulted in the highest free anthocyanin content (1,712.3 ± 56.1 mg/100 g) (P acid hydrolysis. Acetic acid buffer extracts exhibited the highest free hydroxycinnamic acid content (268.0 ± 4.5 mg/100 g), total phenolic content (3702.2 ± 259.3 mg GAE/100 g), and DPPH activity (60.7 ± 2.0% of inhibition). However, their free flavonol content was slightly lower (60.2 ± 0.8 mg/100 g) compared to 100% methanol at 30 and 50 °C (71.4 ± 1.5 mg/100 g and 71.5 ± 6.2 mg/100 g, respectively). Two-way ANOVA indicated interactions between solvent and temperature (P acid buffer is more environmental friendly, efficient, and cost effective than other solvents, thus, offering an improved extraction method for phytochemicals as valuable ingredients for nutraceutical applications, from underutilized dried blackcurrant skins (DBS).
    Matched MeSH terms: Acetic Acid
  14. Erman Shah Jaios, Suzanah Abdul Rahman, Mooi, Ching Siew, Arifah Abdul Kadir, Mohd Nasir Mohd Desa, Zainul Amirudin Zakaria
    MyJurnal
    Objectives/Research Problem:Melastoma malabathricum L., (Melastomaceae) is a medicinally important plant known as “Senduduk”. Traditionally, the leaves are used to relieve diverse pain-related ailments. Present study aims to examine the antinociceptive activity of methanolic extract of M. malabathricum (MEMM) leaves and its fractions via in vivo models of nociception.

    Materials and Method: Extracts (100, 250, 500 mg/kg) were administered orally 60 minutes prior to subjection to the respective test, n=6/group. Evaluation of MEMM antinociceptive activity; chemically (acetic acid-induced abdominal constriction; ACT, formalin-induced paw licking test; FT) and thermally (hot plate test; HT) models of nociception and elucidation of mechanisms of action involved; role of opioid, vanilloid receptors, glutamatergic system and NO/cGMP pathway were determined. Continuously, MEMM, partitioned into three fractions: petroleum ether (PEMM), ethyl acetate (EAMM), and aqueous (AQMM) extracts and determine the most potent fraction. Therefore, experiment ED50 and its 95% confidence intervals (CI) values were conducted, and ACT was used to screen. Calculation, obtained, PEMM, the most effective was further used to assess the antinociceptive properties. Phytochemical screening, HPLC and GC-MS analysis were performed.

    Results and Discussion: First stage, MEMM exhibited significant (P
    Matched MeSH terms: Acetic Acid
  15. Fathin Nadhirah Binti Kamal Ariffin, Yusilawati Ahmad Nor, Sarina Sulaiman, Nur Ayuni Jamal
    MyJurnal
    This paper addresses the treatment of waste engine oils (WEO) by acid/clay refining method using glacial acetic acid. An optimization of the process parameters in terms of settling time, stirring speed and mixing temperature for treating the WEO was performed using Response Surface Methodology to improve the quality of treated lubricating oil. The quality of the treated WEO (Castrol brand) was evaluated in terms of viscosity index and flash point value. The treated fuel quality is found to have about 95% similarity to the fresh oil used as a standard at the settling time of 24 hours, temperature of 50 °C and mixing speed of 150 rpm. Analysis of variances (ANOVA) showed that settling time plays the most significant parameters of the process followed by the mixing temperature. Solid contaminants which were collected after the treatment were analyzed using SEM-EDS. They contained rough heteregenous shaped particles with elements such as carbon (97%), calcium (1.12%), zinc (0.74%), sulphur (0.73%) and phosphorus (0.29%). Then, four different brands of WEO (Liqui Moly, Castrol, Shell and Pennzoil) were treated at the optimized conditions to determine the feasibility of the method to treat any brands of WEO. It can be concluded that the optimized treatement method is suitable to treat most of WEO. The findings of this study provide the information on the best process condition for treating WEO as well as the solid contaminants present in it.
    Matched MeSH terms: Acetic Acid
  16. Cheah WY, Show PL, Ng IS, Lin GY, Chiu CY, Chang YK
    Int J Biol Macromol, 2019 Apr 01;126:569-577.
    PMID: 30584947 DOI: 10.1016/j.ijbiomac.2018.12.193
    The electrospinning PAN nanofiber membrane (P-CN) was hydrolysed to convert carboxylic groups as reaction sites and covalently graft chitosan molecule. The chitosan derivatives with quaternary ammonium groups exerted greater efficiency against bacteria as compared to pure chitosan. Hence, the chitosan modified membrane (P-CS), can be functionalized with quaternary amine (i.e., glycidyl trimethyl ammonium chloride, GTMAC) to form quaternized chitosan nanofiber membrane (designated as P-HTCC) under various conditions (acidic, neutral, and alkaline). N-quaternized derivatives of chitosan modified membrane (N-HTCC) showed 72% and 60% degree of quaternization (DQ) under acidic and neutral conditions, respectively. Under alkaline condition, additional quaternization of N, O-HTCC via its amino and hydroxyl groups, has improved up to 90% DQ of the chitosan. The antibacterial activity of the quaternized chitosan modified membrane prepared from acetic acid medium is stronger than that prepared from water and alkaline media. Also, antibacterial activity of quaternized chitosan is stronger than chitosan modified membrane against E. coli. The microbiological assessments showed that the water-stable P-HTCC nanofiber membrane under modification in acidic medium exerted antibacterial activity up to 99.95% against E. coli. Therefore, the P-HTCC membrane exhibited high potential to be integrated into microfiltration membrane to effectively disinfect E. coli.
    Matched MeSH terms: Acetic Acid
  17. Zentou H, Zainal Abidin Z, Yunus R, Awang Biak DR, Abdullah Issa M, Yahaya Pudza M
    ACS Omega, 2021 Feb 16;6(6):4137-4146.
    PMID: 33644536 DOI: 10.1021/acsomega.0c04025
    Despite the advantages of continuous fermentation whereby ethanol is selectively removed from the fermenting broth to reduce the end-product inhibition, this process can concentrate minor secondary products to the point where they become toxic to the yeast. This study aims to develop a new mathematical model do describe the inhibitory effect of byproducts on alcoholic fermentation including glycerol, lactic acid, acetic acid, and succinic acid, which were reported as major byproducts during batch alcoholic fermentation. The accumulation of these byproducts during the different stages of batch fermentation has been quantified. The yields of total byproducts, glycerol, acetic acid, and succinic acid per gram of glucose were 0.0442, 0.023, 0.0155, and 0.0054, respectively. It was found that the concentration of these byproducts linearly increases with the increase in glucose concentration in the range of 25-250 g/L. The results have also showed that byproduct concentration has a significant inhibitory effect on specific growth coefficient (μ) whereas no effect was observed on the half-velocity constant (Ks). A new mathematical model of alcoholic fermentation was developed considering the byproduct inhibitory effect, which showed a good performance and more accuracy compared to the classical Monod model.
    Matched MeSH terms: Acetic Acid
  18. Lasekan O, Dabaj F, Muniandy M, Juhari NH, Lasekan A
    BMC Chem, 2021 Mar 13;15(1):16.
    PMID: 33714268 DOI: 10.1186/s13065-021-00743-4
    BACKGROUND: To evaluate the impact of cold fermentation time on bagel rolls, the key aroma-active compounds in the volatile fractions obtained from three different bagel rolls through solvent assisted flavor evaporation (SAFE) were sequentially characterized by an aroma extract dilution analysis (AEDA), quantified by stable isotope dilution and analyzed by odor activity values (OAVs) respectively.

    RESULTS: Findings revealed 40 aroma-active compounds with flavor dilution (FD) factor ranges of 2-1024. Of these, 22 compounds (FD ≥ 16) were quantified by stable isotope dilution assays (SIDA). Subsequent analysis of the 22 compounds by odor activity values (OAVs) revealed 14 compounds with OAVs ≥ 1 and the highest concentrations were obtained for 2,3-butanedione, 2-phenylethanol, 3-methylbutanal and acetoin respectively. Two recombination models of the bagels (i.e. 24 h and 48 h bagels) showed similarity to the corresponding bagels. Omission tests confirmed that 2,3-butanedione (buttery), acetoin (buttery), 2-acetyl-1-pyrroline (roasty), 5-methyl-2-furanmethanol (bread-like), (Z)-4-heptenal (biscuit-like) and 4-hydroxy-2,5-dimethyl-3(2H)-furanone, were the key aroma compounds. Additionally, acetic acid, butanoic acid, 2-phenylethanol (honey-like), 3-methylbutanoic acid, 2/3-methylbutanal, vanillin, 3-methylbutanol, methional were also important odorants of the bagel.

    CONCLUSION: Whilst the long, cold fermented bagels exhibited roasty, malty, buttery, baked potato-like, smoky and biscuit-like notes, the control bagels produced similar but less intense odor notes.

    Matched MeSH terms: Acetic Acid
  19. Zadeh-Ardabili PM, Rad SK
    Biotechnol Rep (Amst), 2019 Jun;22:e00341.
    PMID: 31061816 DOI: 10.1016/j.btre.2019.e00341
    Although inflammation is a reactive to injurious stimuli and considered as beneficial process in body, but it causes some discomforts, such as pain. Murine dietary contains appreciable amounts of fatty acids and antioxidants which encourages researchers to focus on their potential therapeutic effects. This study is aimed to examine the analgesic and anti-inflammatory activity of Neptune krill oil (NKO) and fish oil (FO) in rodent model which are two well-known sources of rich content of n-3 polyunsaturated fatty acids (n-3 PUFAs), mostly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). NKO and FO were used at the same dose of 500 mg and also balanced at similar doses of EPA: 12 in NKO vs. 12 in FO wt%, DHA: 7 NKO vs. 8 FO wt%. Application of NKO and FO in acetic acid-induced writhing effect, hot plate, and formalin induced test, indicated the nociceptive activity of the two tested drugs in comparison with normal saline. Also, the anti-inflammatory effect of these supplements was confirmed by carrageenan test. Analysis of cytokines levels in the blood samples of the mice after induction inflammation by carrageenan indicated decreased levels of those proteins compared to that in the normal groups. Both tested drugs, effectively could reduce severe inflammation and pain in rodents in comparison with the references drugs (depends on the tests); however, NKO was found to be more effective.
    Matched MeSH terms: Acetic Acid
  20. Anwer AH, Khan N, Umar MF, Rafatullah M, Khan MZ
    Membranes (Basel), 2021 Mar 22;11(3).
    PMID: 33810075 DOI: 10.3390/membranes11030223
    Microbial electrosynthesis is a new approach to converting C1 carbon (CO2) to more complex carbon-based products. In the present study, CO2, a potential greenhouse gas, was used as a sole carbon source and reduced to value-added chemicals (acetate, ethanol) with the help of bioelectrochemical reduction in microbial electrosynthesis systems (MES). The performance of MES was studied with varying electrode materials (carbon felt, stainless steel, and cobalt electrodeposited carbon felt). The MES performance was assessed in terms of acetic acid and ethanol production with the help of gas chromatography (GC). The electrochemical characterization of the system was analyzed with chronoamperometry and cyclic voltammetry. The study revealed that the MES operated with hybrid cobalt electrodeposited carbon felt electrode yielded the highest acetic acid (4.4 g/L) concentration followed by carbon felt/stainless steel (3.7 g/L), plain carbon felt (2.2 g/L), and stainless steel (1.87 g/L). The alcohol concentration was also observed to be highest for the hybrid electrode (carbon felt/stainless steel/cobalt oxide is 0.352 g/L) as compared to the bare electrodes (carbon felt is 0.22 g/L) tested, which was found to be in correspondence with the pH changes in the system. Electrochemical analysis revealed improved electrotrophy in the hybrid electrode, as confirmed by the increased redox current for the hybrid electrode as compared to plain electrodes. Cyclic voltammetry analysis also confirmed the role of the biocatalyst developed on the electrode in CO2 sequestration.
    Matched MeSH terms: Acetic Acid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links