Displaying publications 41 - 60 of 597 in total

Abstract:
Sort:
  1. Sakeena MHF, Bennett AA, Jamshed S, Mohamed F, Herath DR, Gawarammana I, et al.
    BMC Infect Dis, 2018 05 08;18(1):209.
    PMID: 29739360 DOI: 10.1186/s12879-018-3107-8
    BACKGROUND: Antimicrobial resistance (AMR) is a major challenge for global health care. Pharmacists play a key role in the health care setting to help support the quality use of medicines. The education, training, and experiences of pharmacy students have the potential to impact on patterns of antibiotic use in community and hospital settings. The aim of this study was to investigate antibiotic use, knowledge of antibiotics and AMR among undergraduate pharmacy students at Sri Lankan universities and to compare this between junior and senior pharmacy student groups.

    METHODS: A cross-sectional study was conducted at the six universities in Sri Lanka that offer pharmacy undergraduate programmes. All pharmacy students in each university were invited to participate in this study using a self-administered questionnaire with ethics approval. The study instrument comprised five major sections: demographic information, self-reported antibiotic use, knowledge of antibiotic uses in human health, knowledge of AMR and antibiotic use in agriculture. Descriptive data analyses were conducted and Chi-squared analysis was used to explore associations between different variables and level of pharmacy education.

    RESULTS: Four hundred sixty-six pharmacy students completed the questionnaire. A majority of participants (76%) reported antibiotic use in the past year. More than half (57%) of the junior pharmacy students incorrectly indicated that antibiotic use is appropriate for the management of cold and flu conditions. Senior pharmacy students (n = 206) reported significantly better antibiotic knowledge than junior students (n = 260), p 

    Matched MeSH terms: Agriculture
  2. Boedeker W, Watts M, Clausing P, Marquez E
    BMC Public Health, 2020 Dec 07;20(1):1875.
    PMID: 33287770 DOI: 10.1186/s12889-020-09939-0
    BACKGROUND: Human poisoning by pesticides has long been seen as a severe public health problem. As early as 1990, a task force of the World Health Organization (WHO) estimated that about one million unintentional pesticide poisonings occur annually, leading to approximately 20,000 deaths. Thirty years on there is no up-to-date picture of global pesticide poisoning despite an increase in global pesticide use. Our aim was to systematically review the prevalence of unintentional, acute pesticide poisoning (UAPP), and to estimate the annual global number of UAPP.

    METHODS: We carried out a systematic review of the scientific literature published between 2006 and 2018, supplemented by mortality data from WHO. We extracted data from 157 publications and the WHO cause-of-death database, then performed country-wise synopses, and arrived at annual numbers of national UAPP. World-wide UAPP was estimated based on national figures and population data for regions defined by the Food and Agriculture Organization (FAO).

    RESULTS: In total 141 countries were covered, including 58 by the 157 articles and an additional 83 by data from the WHO Mortality Database. Approximately 740,000 annual cases of UAPP were reported by the extracted publications resulting from 7446 fatalities and 733,921 non-fatal cases. On this basis, we estimate that about 385 million cases of UAPP occur annually world-wide including around 11,000 fatalities. Based on a worldwide farming population of approximately 860 million this means that about 44% of farmers are poisoned by pesticides every year. The greatest estimated number of UAPP cases is in southern Asia, followed by south-eastern Asia and east Africa with regards to non-fatal UAPP.

    CONCLUSIONS: Our study updates outdated figures on world-wide UAPP. Along with other estimates, robust evidence is presented that acute pesticide poisoning is an ongoing major global public health challenge. There is a need to recognize the high burden of non-fatal UAPP, particularly on farmers and farmworkers, and that the current focus solely on fatalities hampers international efforts in risk assessment and prevention of poisoning. Implementation of the international recommendations to phase out highly hazardous pesticides by the FAO Council could significantly reduce the burden of UAPP.

    Matched MeSH terms: Agriculture
  3. Qi Qi C, Ajit Singh V
    BMJ Case Rep, 2012;2012.
    PMID: 22865804 DOI: 10.1136/bcr-2012-006401
    Marjolin's ulcers are malignancies that arise from previously traumatised, chronically inflamed or scarred skin. We present a case with childhood burns, who had repeated irritation of his forearm skin with palm oil thorns that eventually led to malignant change.
    Matched MeSH terms: Agriculture
  4. Balamurugan S, Muthu BA, Peng SL, Wahab MHA
    Big Data, 2020 10;8(5):450-451.
    PMID: 33090023 DOI: 10.1089/big.2020.29038.cfp
    Matched MeSH terms: Agriculture*
  5. Amid M, Manap MY, Zohdi NK
    Biomed Res Int, 2014;2014:259238.
    PMID: 25328883 DOI: 10.1155/2014/259238
    The thermoalkaline protease enzyme from pitaya (Hylocereus polyrhizus) waste was purified by a factor of 221.2 with 71.3% recovery using ammonium sulphate precipitation, gel filtration, and cation exchange chromatography. Gel filtration chromatography together with sodium dodecyl sulphate gel electrophoresis (SDS-PAGE) revealed that the enzyme is monomeric with a molecular weight of 26.7 kDa. The apparent K m and V max of the protease were 2.8 mg/mL and 31.20 u/min, respectively. The optimum pH and temperature were 8.0 and 70°C. The enzyme was highly active and stable over a wide pH range (from pH 3.0 to pH 11.0 with the optimum activity at pH 8.0). The protease has broad specificity toward azocasein, casein, hemoglobin, and gelatine. Activity of the enzyme was inhibited by Fe(2+) and Zn(2+), while protease activity was increased in the presence of Ca(2+) and Mg(2+) and Cu(2+) by factors of 125%, 110%, and 105%, respectively. The alkaline protease showed extreme stability toward surfactants and oxidizing agent. The purified protease exhibited extreme stability in the presence of organic solvents and inhibitors. In addition, the enzyme was relativity stable toward organic solvents and chelating agents, such as ethylenediaminetetraacetic acid (EDTA). The enzyme, derived from pitaya peel, possesses unique characteristics and could be used in various industrial and biotechnological applications.
    Matched MeSH terms: Agriculture
  6. Puteh AB, Mondal MM, Ismail MR, Latif MA
    Biomed Res Int, 2014;2014:302179.
    PMID: 24895563 DOI: 10.1155/2014/302179
    The experiment was conducted to investigate potential causes of grain sterility in widely cultivated rice variety in Malaysia, MR219 and its two mutant lines (RM311 and RM109) by examining the source-sink relations. RM311 produced increased dry matter yield both at heading and maturity and also showed higher grain yield with greater proportion of grain sterility than the other two genotypes (RM109 and MR219) resulting in the lowest harvest index (49.68%). In contrast, harvest index was greater in RM109 (53.34%) and MR219 (52.76%) with less grain sterility percentage than MR311 indicating that dry matter partitioning to economic yield was better in RM109 and MR219 than in MR311. Results indicated that dry matter allocation per spikelet from heading to maturity was important for reducing grain sterility in rice. The greater above-ground crop dry matter per spikelet was observed in RM109 and MR219 as compared to high dry matter producing genotype; RM311 implies that poor grain filling may not have resulted from dry matter production or source limitation. These findings suggest that grain sterility or poor grain filling in rice is the result of poor translocation and partitioning of assimilates into grains (sink) rather than of limited biomass production or source limitation.
    Matched MeSH terms: Agriculture/statistics & numerical data*
  7. Tabassum N, Rafique U, Balkhair KS, Ashraf MA
    Biomed Res Int, 2014;2014:831989.
    PMID: 24689059 DOI: 10.1155/2014/831989
    The toxicity of organophosphate insecticides for nontarget organism has been the subject of extensive research for sustainable agriculture. Pakistan has banned the use of methyl/ethyl parathions, but they are still illegally used. The present study is an attempt to estimate the residual concentration and to suggest remedial solution of adsorption by different types of soils collected and characterized for physicochemical parameters. Sorption of pesticides in soil or other porous media is an important process regulating pesticide transport and degradation. The percentage removal of methyl parathion and ethyl parathion was determined through UV-Visible spectrophotometer at 276 nm and 277 nm, respectively. The results indicate that agricultural soil as compared to barren soil is more efficient adsorbent for both insecticides, at optimum batch condition of pH 7. The equilibrium between adsorbate and adsorbent was attained in 12 hours. Methyl parathion is removed more efficiently (by seven orders of magnitude) than ethyl parathion. It may be attributed to more available binding sites and less steric hindrance of methyl parathion. Adsorption kinetics indicates that a good correlation exists between distribution coefficient (Kd) and soil organic carbon. A general increase in Kd is noted with increase in induced concentration due to the formation of bound or aged residue.
    Matched MeSH terms: Agriculture*
  8. Ram Talib NS, Halmi MIE, Abd Ghani SS, Zaidan UH, Shukor MYA
    Biomed Res Int, 2019;2019:5785387.
    PMID: 31240217 DOI: 10.1155/2019/5785387
    Numerous technologies and approaches have been used in the past few decades to remove hexavalent chromium (Cr[VI]) in wastewater and the environment. However, these conventional technologies are not economical and efficient in removing Cr(VI) at a very low concentration (1-100 ppm). As an alternative, the utilization of bioremediation techniques which uses the potential of microorganisms could represent an effective technique for the detoxification of Cr(VI). In this study, we reported a newly isolated bacterium identified as Acinetobacter radioresistens sp. NS-MIE from Malaysian agricultural soil. The chromate reduction potential of strain NS-MIE was optimized using RSM and ANN techniques. The optimum condition predicted by RSM for the bacterium to reduce hexavalent chromium occurred at pH 6, 10 g/L ppm of nutrient broth (NB) concentration and 100 ppm of chromate concentration while the optimum condition predicted by ANN is at pH 6 and 10 g/L of NB concentration and of 60 ppm of chromate concentration with chromate reduction (%) of 75.13 % and 96.27 %, respectively. The analysis by the ANN model shows better prediction data with a higher R2 value of 0.9991 and smaller average absolute deviation (AAD) and root mean square error (RMSE) of 0.33 % and 0.302 %, respectively. Validation analysis showed the predicted values by RSM and ANN were close to the validation values, whereas the ANN showed the lowest deviation, 2.57%, compared to the RSM. This finding suggests that the ANN showed a better prediction and fitting ability compared to the RSM for the nonlinear regression analysis. Based on this study, A. radioresistens sp. NS-MIE exhibits strong potential characteristics as a candidate for the bioremediation of hexavalent chromium in the environment.
    Matched MeSH terms: Agriculture
  9. Othman AR, Bakar NA, Halmi MI, Johari WL, Ahmad SA, Jirangon H, et al.
    Biomed Res Int, 2013;2013:371058.
    PMID: 24369531 DOI: 10.1155/2013/371058
    Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30 °C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants p max, K(s), S(m), and n was 5.88 μmole Mo-blue hr(-1), 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.
    Matched MeSH terms: Agriculture
  10. Awg-Adeni DS, Bujang KB, Hassan MA, Abd-Aziz S
    Biomed Res Int, 2013;2013:935852.
    PMID: 23509813 DOI: 10.1155/2013/935852
    Lower concentration of glucose was often obtained from enzymatic hydrolysis process of agricultural residue due to complexity of the biomass structure and properties. High substrate load feed into the hydrolysis system might solve this problem but has several other drawbacks such as low rate of reaction. In the present study, we have attempted to enhance glucose recovery from agricultural waste, namely, "sago hampas," through three cycles of enzymatic hydrolysis process. The substrate load at 7% (w/v) was seen to be suitable for the hydrolysis process with respect to the gelatinization reaction as well as sufficient mixture of the suspension for saccharification process. However, this study was focused on hydrolyzing starch of sago hampas, and thus to enhance concentration of glucose from 7% substrate load would be impossible. Thus, an alternative method termed as cycles I, II, and III which involved reusing the hydrolysate for subsequent enzymatic hydrolysis process was introduced. Greater improvement of glucose concentration (138.45 g/L) and better conversion yield (52.72%) were achieved with the completion of three cycles of hydrolysis. In comparison, cycle I and cycle II had glucose concentration of 27.79 g/L and 73.00 g/L, respectively. The glucose obtained was subsequently tested as substrate for bioethanol production using commercial baker's yeast. The fermentation process produced 40.30 g/L of ethanol after 16 h, which was equivalent to 93.29% of theoretical yield based on total glucose existing in fermentation media.
    Matched MeSH terms: Agriculture
  11. Mohd Ghazi R, Nik Yusoff NR, Abdul Halim NS, Wahab IRA, Ab Latif N, Hasmoni SH, et al.
    Bioengineered, 2023 Dec;14(1):2259526.
    PMID: 37747278 DOI: 10.1080/21655979.2023.2259526
    The continually expanding global population has necessitated increased food supply production. Thus, agricultural intensification has been required to keep up with food supply demand, resulting in a sharp rise in pesticide use. The pesticide aids in the prevention of potential losses caused by pests, plant pathogens, and weeds, but excessive use over time has accumulated its occurrence in the environment and subsequently rendered it one of the emerging contaminants of concern. This review highlights the sources and classification of herbicides and their fate in the environment, with a special focus on the effects on human health and methods to remove herbicides. The human health impacts discussion was in relation to toxic effects, cell disruption, carcinogenic impacts, negative fertility effects, and neurological impacts. The removal treatments described herein include physicochemical, biological, and chemical treatment approaches, and advanced oxidation processes (AOPs). Also, alternative, green, and sustainable treatment options were discussed to shed insight into effective treatment technologies for herbicides. To conclude, this review serves as a stepping stone to a better environment with herbicides.
    Matched MeSH terms: Agriculture
  12. Almakki, Asma, Mirghani, Mohamed E.S., Kabbashi, Nassereldeen A.
    MyJurnal
    Citric acid (CA) has a high demand due to its various uses in the food and pharmaceutical industries. However, the natural supply of CA is minimal compared to its growing industrial demand. The increasing demand for CA can be fulfilled by using biotechnological processes. This study utilized liquid state bioconversion by Aspergillus niger for CA production using sugarcane molasses as the primary substrate. Sugarcane molasses which is agricultural waste consists of significant proportion of organic matters such as lipids and carbohydrates. This makes sugarcane molasses as a potential and alternative source of producing CA at a lower cost. In this study, statistical optimization was applied to improve CA production using submerged fermentation in shake flasks. Aspergillus niger was cultured in potato dextrose agar. Then, inoculum spores were introduced into the fermentation media for a specific duration according to the experimental design from Central Composite Design (CCD) tool under Response Surface Methodology (RSM) in Design Expert 6.0 software. Three parameters were chosen to be optimized at 32⁰C i.e.agitation rate (160, 80, 200 rpm), substrate concentration (47, 60, 73%) and fermentation time (24, 72, 120 h). High Performance Liquid Chromatography (HPLC)and Fourier-transform infrared spectroscopy(FTIR) analyses were conducted to measure CA yield. The optimization study showed that the media incubated for 72 hours with a substrate concentration of 60% and an agitation speed of 180 rpm produced the highest CA yield(21.2 g/L).The analysis of variance (ANOVA) also showed that CCD quadratic model was significant with P-value< 0.0104 and R2is0.8964.
    Matched MeSH terms: Agriculture
  13. Cheng A, Mayes S, Dalle G, Demissew S, Massawe F
    Biol Rev Camb Philos Soc, 2017 Feb;92(1):188-198.
    PMID: 26456883 DOI: 10.1111/brv.12225
    There are more than 50000 known edible plants in the world, yet two-thirds of global plant-derived food is provided by only three major cereals - maize (Zea mays), wheat (Triticum aestivum) and rice (Oryza sativa). The dominance of this triad, now considered truly global food commodities, has led to a decline in the number of crop species contributing to global food supplies. Our dependence on only a few crop species limits our capability to deal with challenges posed by the adverse effects of climate change and the consequences of dietary imbalance. Emerging evidence suggests that climate change will cause shifts in crop production and yield loss due to more unpredictable and hostile weather patterns. One solution to this problem is through the wider use of underutilised (also called orphan or minor) crops to diversify agricultural systems and food sources. In addition to being highly nutritious, underutilised crops are resilient in natural and agricultural conditions, making them a suitable surrogate to the major crops. One such crop is teff [Eragrostis tef (Zucc.) Trotter], a warm-season annual cereal with the tiniest grain in the world. Native to Ethiopia and often the sustenance for local small farmers, teff thrives in both moisture-stressed and waterlogged soil conditions, making it a dependable staple within and beyond its current centre of origin. Today, teff is deemed a healthy wheat alternative in the West and is sought-after by health aficionados and those with coeliac disease or gluten sensitivity. The blooming market for healthy food is breathing new life into this underutilised crop, which has received relatively limited attention from mainstream research perhaps due to its 'orphan crop' status. This review presents the past, present and future of an ancient grain with a potential beyond its size.
    Matched MeSH terms: Agriculture/standards*; Agriculture/trends
  14. Siti Fadhilah Abd. Rahim, Normala Masrom, Muhamad Cyrill Kamal, Noor Azmi Shaharuddin, Khairul Basyar Baharudin, Norliza Abu Bakar
    MyJurnal
    Water contamination by herbicides and chelating agents is increasing mainly due to the
    increasing agricultural activities. Water contamination by these compounds has become a
    concern due to their adverse effects to the environment and humans. Seven sampling sites of
    water sources in Selangor and Johor were chosen for the study. Contamination level of
    Mecoprop (MCCP), Nitrilotriacetic acid (NTA) and Ethylenediaminetetraacetic acid (EDTA) in
    these water body areas was determined by using Gas Chromatography-Electron Capture
    Detector (GC-ECD). Our results indicated that water samples of Sungai Melot in Selangor
    showed the highest presence of EDTA. MCCP was detected at a high level at Sungai Sarang
    Buaya, Johor while NTA showed similar level of concentration at three different sites, Ladang
    10, Ladang Sayur and Mardi, Selangor.
    Matched MeSH terms: Agriculture
  15. Abdullah N, Yuzir A, Curtis TP, Yahya A, Ujang Z
    Bioresour Technol, 2013 Jan;127:181-7.
    PMID: 23131639 DOI: 10.1016/j.biortech.2012.09.047
    Understanding the relationship between microbial community and mechanism of aerobic granulation could enable wider applications of granules for high-strength wastewater treatment. The majority of granulation studies principally determine the engineering aspects of granules formation with little emphasis on the microbial diversity. In this study, three identical reactors namely R1, R2 and R3 were operated using POME at volumetric loadings of 1.5, 2.5 and 3.5 kg COD m(-3) d(-1), respectively. Aeration was provided at a volumetric flow rate of 2.5 cms(-1). Aerobic granules were successfully developed in R2 and R3 while bioflocs dominated R1 until the end of experiments. Fractal dimension (D(f)) averaged at 1.90 suggesting good compactness of granules. The PCR-DGGE results indicated microbial evolutionary shift throughout granulation despite different operating OLRs based on decreased Raup and Crick similarity indices upon mature granule formation. The characteristics of aerobic granules treating high strength agro-based wastewater are determined at different volumetric loadings.
    Matched MeSH terms: Agriculture
  16. Yahya A, Sye CP, Ishola TA, Suryanto H
    Bioresour Technol, 2010 Nov;101(22):8736-41.
    PMID: 20609579 DOI: 10.1016/j.biortech.2010.05.073
    Formation of compost from oil palm empty fruit bunches (EFB) and decanter cake slurry by adding palm oil mill effluent (POME) with regular turning operation was investigated. The experiment was conducted in a commercial composting plant under the normal production process. The addition of decanter cake slurry has hastened the composting process of the EFB. The C/N ratio after 51 days for the mature compost with the decanter cake slurry was 18.65 while that of the matured compost without the decanter cake slurry remained high at 28.96. The compost formed from the addition of decanter cake to EFB and POME had 46.4% nitrogen, 17.9% phosphorus, 17.7% potassium and 23.1% calcium more than that without decanter cake. The use of compost produced from EFB, POME and decanter cake slurry could solve more environmental problems and enhance economic benefits in the oil palm industry.
    Matched MeSH terms: Agriculture/methods*
  17. Jusoh A, Hartini WJ, Ali N, Endut A
    Bioresour Technol, 2011 May;102(9):5312-8.
    PMID: 21232934 DOI: 10.1016/j.biortech.2010.12.074
    In this batch study, the adsorption of malathion by using granular activated carbon with different parameters due to the particle size, dosage of carbons, as well as the initial concentration of malathion was investigated. Batch tests were carried out to determine the potential and the effectiveness of granular activated carbon (GAC) in removal of pesticide in agricultural run off. The granular activated carbon; coconut shell and palm shells were used and analyzed as the adsorbent material. The Langmuir and Freundlich adsorption isotherms models were applied to describe the characteristics of adsorption behavior. Equilibrium data fitted well with the Langmuir model and Freundlich model with maximum adsorption capacity of 909.1mg/g. The results indicate that the GAC could be used to effectively adsorb pesticide (malathion) from agricultural runoff.
    Matched MeSH terms: Agriculture*
  18. Chou KW, Norli I, Anees A
    Bioresour Technol, 2010 Nov;101(22):8616-22.
    PMID: 20638277 DOI: 10.1016/j.biortech.2010.06.101
    In this study, palm oil mill effluent (POME) was solubilized by batch thermo-alkaline pre-treatments. A three-factor central composite design (CCD) was applied to identify the optimum COD solubilization condition. The individual and interactive effects of three factors, temperature, NaOH concentration and reaction time, on solubilization of POME were evaluated by employing response surface methodology (RSM). The experimental results showed that temperature, NaOH concentration and reaction time all had an individual significant effect on the solubilization of POME. But these three factors were independent, or there was insignificant interaction on the response. The maximum COD solubilization of 82.63% was estimated under the optimum condition at 32.5 degrees C, 8.83g/L of NaOH and 41.23h reaction time. The confirmation experiment of the predicted optimum conditions verified that the RSM with the central composite design was useful for optimizing the solubilization of POME.
    Matched MeSH terms: Agriculture/methods
  19. Goh CS, Tan KT, Lee KT, Bhatia S
    Bioresour Technol, 2010 Jul;101(13):4834-41.
    PMID: 19762229 DOI: 10.1016/j.biortech.2009.08.080
    The present study reveals the perspective and challenges of bio-ethanol production from lignocellulosic materials in Malaysia. Malaysia has a large quantity of lignocellulosic biomass from agriculture waste, forest residues and municipal solid waste. In this work, the current status in Malaysia was laconically elucidated, including an estimation of biomass availability with a total amount of 47,402 dry kton/year. Total capacity and domestic demand of second-generation bio-ethanol production in Malaysia were computed to be 26,161 ton/day and 6677 ton/day, respectively. Hence, it was proven that the country's energy demand can be fulfilled with bio-ethanol if lignocellulosic biomass were fully converted into bio-ethanol and 19% of the total CO(2) emissions in Malaysia could be avoided. Apart from that, an integrated national supply network was proposed together with the collection, storage and transportation of raw materials and products. Finally, challenges and obstacles in legal context and policies implementation were elaborated, as well as infrastructures shortage and technology availabilities.
    Matched MeSH terms: Agriculture/methods
  20. Rosman NH, Nor Anuar A, Othman I, Harun H, Sulong Abdul Razak MZ, Elias SH, et al.
    Bioresour Technol, 2013 Feb;129:620-3.
    PMID: 23317554 DOI: 10.1016/j.biortech.2012.12.113
    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater.
    Matched MeSH terms: Agriculture/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links