METHODS:: Eighty-six patients scheduled for trigger finger release between July 2016 and December 2017 were randomized into a control group (1% lignocaine and 8.4% sodium bicarbonate with arm tourniquet; given 10 min prior to procedure) and an intervention group (1% lignocaine, 1:100,000 of adrenaline and 8.4% sodium bicarbonate; given 30 min prior to procedure), with a total of 4 ml of solution injected around the A1 pulley. The onset of anesthesia and pain score upon injection of the first 1 ml were recorded. After the procedure, the surgeon rated for the hemostasis score (1-10: 1 as no bleeding and 10 being profuse bleeding). Duration of surgery and return of sensation were recorded.
RESULTS:: Hemostasis score was grouped into visibility score as 1-3: good, 4-6: moderate, and 7-10: poor. The intervention group (with adrenaline) had a 74% of good surgical field visibility compared to 44% from the controlled group (without adrenaline; p < 0.05). Duration of anesthesia was longer in the intervention group (with adrenaline), with a 2.77-h difference.
CONCLUSION:: WALANT provides excellent surgical field visibility and is safe and on par with conventional methods but without the usage of a tourniquet and its associated discomfort.
MATERIALS AND METHODS: Sixteen male New Zealand white rabbits (20 to 24 weeks old) were randomly divided into 4 experimental groups (n = 4): group 1, conventional rapid sutural expansion; group 2, accelerated sutural expansion; group 3, accelerated sutural expansion with continuous ostectomy; and group 4, accelerated sutural expansion with discontinuous ostectomy. All sutural ostectomies were performed using a piezoelectric instrument (Woodpecker DTE, DS-II, Guangxi, China) before expander application with the rabbits under anesthesia. Modified hyrax expanders were placed across the midsagittal sutures of the rabbits and secured with miniscrew implants located bilaterally in the frontal bone. The hyrax expanders were activated 0.5 mm/day for 12 days (group 1) or with a 2.5-mm initial expansion, followed by 0.5 mm/day for 7 days (groups 2 to 4). After 6 weeks of retention, the bone volume fraction, sutural separation, and new bone formation were evaluated using micro-computed tomography and histomorphometry. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney U tests and Spearman's rho correlation (P
Methods: Sixty-four patients aged 18-60 years, American Society of Anaesthesiologists (ASA) class I-II who underwent elective surgery were randomised to a Marsh group (n= 32) or Schnider group (n= 32). All the patients received a 1 μg/kg loading dose of dexmedetomidine, followed by TCI anaesthesia with remifentanil at 2 ng/mL. After the effect-site concentration (Ce) of remifentanil reached 2 ng/mL, propofol TCI induction was started. Anaesthesia induction commenced in the Marsh group at a target plasma concentration (Cpt) of 2 μg/mL, whereas it started in the Schnider group at a target effect-site concentration (Cet) of 2 μg/mL. If induction was delayed after 3 min, the target concentration (Ct) was gradually increased to 0.5 μg/mL every 30 sec until successful induction. The Ct at successful induction, induction time, Ce at successful induction and haemodynamic parameters were recorded.
Results: The Ct for successful induction in the Schnider group was significantly lower than in the Marsh group (3.48 [0.90] versus 4.02 [0.67] μg/mL;P= 0.01). The induction time was also shorter in the Schnider group as compared with the Marsh group (134.96 [50.91] versus 161.59 [39.64]) sec;P= 0.02). There were no significant differences in haemodynamic parameters and Ce at successful induction.
Conclusion: In the between-group comparison, dexmedetomidine reduced the Ct requirement for induction and shortened the induction time in the Schnider group. The inclusion of baseline groups without dexmedetomidine in a four-arm comparison of the two models would enhance the validity of the findings.
METHODS: Plasma SPM were measured in samples obtained from two double-blind controlled interventions. The first, included 51 women mean age 53 ± 1.5 years, undergoing breast surgery allocated to either intravenous saline, or dexamethasone (4 mg or 8 mg) after induction of anaesthesia. The second study included 31 women of mean age 44 ± 0.5 years undergoing laparoscopic gynecological surgery that were allocated to either saline, or dexamethasone (4 mg). SPM (18-HEPE, 17-HDHA, RvE2, RvD1 17R-RvD1 and RvD2) were measured in plasma collected prior to induction of anaesthesia and at 24 h, and 6 weeks post-surgery. Pain was assessed using a verbal analogue scale at discharge from the post-anaesthesia recovery unit. The data from each study was combined to examine the effect of dexamethasone on plasma SPM. The relationship between pain score and SPM was examined using ordinal logistic regression.
RESULTS: The SPM 18-HEPE, 17-HDHA, RvE2, RvD1 17R-RvD1 and RvD2 were detectable in all plasma samples. There was no significant difference in any SPM due to dexamethasone over the duration of the study. There was a fall in 17-HDHA between baseline and 24 h in both the dexamethasone and saline groups (P = 0.003) but no change in the downstream SPM (RvD1, 17R-RvD1 and RvD2) or 18-HEPE and RvE2. Pain score was negatively related to levels of RvE2 measured prior to induction of anaesthesia (rho = -0.2991, P = 0.006) and positively related to BMI (rho = 0.279, P = 0.011). In ordinal logistic regression the odds ratio for RvE2 was 0.931 (CI 0.880, 0.986; P = 0.014); after adjusting for the effect of BMI indicating that an increase in RvE2 of 1 pg/ml would result in a 6.9 % fall in pain score. Allocation to a dexamethasone group did not influence the pain score or the relationship between RvE2 and pain score.
CONCLUSION: Dexamethasone administered as an anti-emetic does not affect plasma SPM levels. An elevated RvE2 level prior to surgery is predictive of a lower perceived pain score post-anaesthesia.