Displaying publications 41 - 60 of 171 in total

Abstract:
Sort:
  1. Li K, Yan S, Wang N, He W, Guan H, He C, et al.
    Transbound Emerg Dis, 2020 Jan;67(1):121-132.
    PMID: 31408582 DOI: 10.1111/tbed.13330
    Since its first emergence in 1998 in Malaysia, Nipah virus (NiV) has become a great threat to domestic animals and humans. Sporadic outbreaks associated with human-to-human transmission caused hundreds of human fatalities. Here, we collected all available NiV sequences and combined phylogenetics, molecular selection, structural biology and receptor analysis to study the emergence and adaptive evolution of NiV. NiV can be divided into two main lineages including the Bangladesh and Malaysia lineages. We formly confirmed a significant association with geography which is probably the result of long-term evolution of NiV in local bat population. The two NiV lineages differ in many amino acids; one change in the fusion protein might be involved in its activation via binding to the G protein. We also identified adaptive and positively selected sites in many viral proteins. In the receptor-binding G protein, we found that sites 384, 386 and especially 498 of G protein might modulate receptor-binding affinity and thus contribute to the host jump from bats to humans via the adaption to bind the human ephrin-B2 receptor. We also found that site 1645 in the connector domain of L was positive selected and involved in adaptive evolution; this site might add methyl groups to the cap structure present at the 5'-end of the RNA and thus modulate its activity. This study provides insight to assist the design of early detection methods for NiV to assess its epidemic potential in humans.
    Matched MeSH terms: Biological Evolution
  2. Froufe E, Bolotov I, Aldridge DC, Bogan AE, Breton S, Gan HM, et al.
    Heredity (Edinb), 2020 Jan;124(1):182-196.
    PMID: 31201385 DOI: 10.1038/s41437-019-0242-y
    Using a new fossil-calibrated mitogenome-based approach, we identified macroevolutionary shifts in mitochondrial gene order among the freshwater mussels (Unionoidea). We show that the early Mesozoic divergence of the two Unionoidea clades, Margaritiferidae and Unionidae, was accompanied by a synchronous split in the gene arrangement in the female mitogenome (i.e., gene orders MF1 and UF1). Our results suggest that this macroevolutionary jump was completed within a relatively short time interval (95% HPD 201-226 Ma) that coincided with the Triassic-Jurassic mass extinction. Both gene orders have persisted within these clades for ~200 Ma. The monophyly of the so-called "problematic" Gonideinae taxa was supported by all the inferred phylogenies in this study using, for the first time, the M- and F-type mitogenomes either singly or combined. Within Gonideinae, two additional splits in the gene order (UF1 to UF2, UF2 to UF3) occurred in the Mesozoic and have persisted for ~150 and ~100 Ma, respectively. Finally, the mitogenomic results suggest ancient connections between freshwater basins of East Asia and Europe near the Cretaceous-Paleogene boundary, probably via a continuous paleo-river system or along the Tethys coastal line, which are well supported by at least three independent but almost synchronous divergence events.
    Matched MeSH terms: Biological Evolution*
  3. da Fonseca RR, Couto A, Machado AM, Brejova B, Albertin CB, Silva F, et al.
    Gigascience, 2020 Jan 01;9(1).
    PMID: 31942620 DOI: 10.1093/gigascience/giz152
    BACKGROUND: The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusc with a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the species makes it difficult to study. Thus, having a genome assembled for this deep-sea-dwelling species will allow several pending evolutionary questions to be unlocked.

    FINDINGS: We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long reads, and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from 3 different tissue types from 3 other species of squid (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein-coding genes supported by evidence, and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome.

    CONCLUSIONS: This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this species, including its gigantism and key adaptations to deep-sea environments.

    Matched MeSH terms: Biological Evolution
  4. Liew TS, Marzuki ME, Schilthuizen M, Chen Y, Vermeulen JJ, Mohd-Azlan J
    PeerJ, 2020;8:e9416.
    PMID: 32714659 DOI: 10.7717/peerj.9416
    Borneo has gone through dramatic changes in geology and topography from the early Eocene until the early Pliocene and experienced climatic cycling during the Pleistocene. However, how these changes have shaped the present-day patterns of high diversity and complex distribution are still poorly understood. In this study, we use integrative approaches by estimating phylogenetic relationships, divergence time, and current and past niche suitability for the Bornean endemic land snail genus Everettia to provide additional insight into the evolutionary history of this genus in northern Borneo in the light of the geological vicariance events and climatic fluctuations in the Pleistocene. Our results show that northern Borneo Everettia species belong to two deeply divergent lineages: one contains the species that inhabit high elevation at the central mountain range, while the other contains lowland species. Species diversification in these lineages has taken place before the Pliocene. Climate changes during the Pleistocene did not play a significant role in species diversification but could have shaped contemporary species distribution patterns. Our results also show that the species-rich highland habitats have acted as interglacial refugia for highland species. This study of a relatively sedentary invertebrate supports and enhances the growing understanding of the evolutionary history of Borneo. Species diversification in Everettia is caused by geological vicariance events between the early Miocene and the Pliocene, and the distribution patterns were subsequently determined by climatic fluctuations in the Pleistocene.
    Matched MeSH terms: Biological Evolution
  5. Chung HH, Anak Kamar CK, Kit Lim LW, Roja JS, Liao Y, Tsan-Yuk Lam T, et al.
    J Genet, 2020;99.
    PMID: 32893838
    The yellowtail rasbora (Rasbora tornieri) is a miniature ray-finned fish categorized under the genus Rasbora in the family of Cyprinidae. In this study, a complete mitogenome sequence of R. tornieri was sequenced using four primers targeting two halves of the mitogenome with overlapping flanking regions. The size of mitogenome was 16,573 bp, housing 22 transfer RNA genes, 13 protein-coding genes, two ribosomal RNA genes and a putative control region. Identical gene organization was detected between this species and other members of Rasbora genus. The heavy strand encompassed 28 genes while the light strand accommodated the other nine genes. Most protein-coding genes execute ATG as start codon, excluding COI and ND3 genes, which utilized GTG instead. The central conserved sequence blocks (CSB-E, CSB-F and CSB-D), variable sequence blocks (CSB-1, CSB-3 and CSB-2) as well as the terminal associated sequence (TAS) were conserved within the control region. The maximum likelihood phylogenetic family tree revealed the divergence of R. tornieri from the basal region of the Rasbora clade, where its evolutionary relationships with other Rasbora members are poorly resolved as indicated by the low bootstrap values. This work acts as window for further population genetics and molecular evolution studies of Rasbora genus in future.
    Matched MeSH terms: Biological Evolution*
  6. Strijk JS, Binh HT, Ngoc NV, Pereira JT, Slik JWF, Sukri RS, et al.
    PLoS One, 2020;15(5):e0232936.
    PMID: 32442164 DOI: 10.1371/journal.pone.0232936
    Natural history collections and tropical tree diversity are both treasure troves of biological and evolutionary information, but their accessibility for scientific study is impeded by a number of properties. DNA in historical specimens is generally highly fragmented, complicating the recovery of high-grade genetic material. Furthermore, our understanding of hyperdiverse, wide-spread tree assemblages is obstructed by extensive species ranges, fragmented knowledge of tropical tree diversity and phenology, and a widespread lack of species-level diagnostic characters, prohibiting the collecting of readily identifiable specimens which can be used to build, revise or strengthen taxonomic frameworks. This, in turn, delays the application of downstream conservation action. A sizable component of botanical collections are sterile-thus eluding identification and are slowing down progress in systematic treatments of tropical biodiversity. With rapid advances in genomics and bioinformatic approaches to biodiversity research, museomics is emerging as a new field breathing life into natural collections that have been built up over centuries. Using MIGseq (multiplexed ISSR genotyping by sequencing), we generated 10,000s of short loci, for both freshly collected materials and museum specimens (aged >100 years) of Lithocarpus-a widespread tropical tree genus endemic to the Asian tropics. Loci recovery from historical and recently collected samples was not affected by sample age and preservation history of the study material, underscoring the reliability and flexibility of the MIGseq approach. Phylogenomic inference and biogeographic reconstruction across insular Asia, highlights repeated migration and diversification patterns between continental regions and islands. Results indicate that co-occurring insular species at the extremity of the distribution range are not monophyletic, raising the possibility of multiple independent dispersals along the outer edge of Wallacea. This suggests that dispersal of large seeded tree genera throughout Malesia and across Wallacea may have been less affected by large geographic distances and the presence of marine barriers than generally assumed. We demonstrate the utility of MIGseq in museomic studies using non-model taxa, presenting the first range-wide genomic assessment of Lithocarpus and tropical Fagaceae as a proof-of-concept. Our study shows the potential for developing innovative genomic approaches to improve the capture of novel evolutionary signals using valuable natural history collections of hyperdiverse taxa.
    Matched MeSH terms: Biological Evolution
  7. Hua ZS, Wang YL, Evans PN, Qu YN, Goh KM, Rao YZ, et al.
    Nat Commun, 2019 10 08;10(1):4574.
    PMID: 31594929 DOI: 10.1038/s41467-019-12574-y
    Several recent studies have shown the presence of genes for the key enzyme associated with archaeal methane/alkane metabolism, methyl-coenzyme M reductase (Mcr), in metagenome-assembled genomes (MAGs) divergent to existing archaeal lineages. Here, we study the mcr-containing archaeal MAGs from several hot springs, which reveal further expansion in the diversity of archaeal organisms performing methane/alkane metabolism. Significantly, an MAG basal to organisms from the phylum Thaumarchaeota that contains mcr genes, but not those for ammonia oxidation or aerobic metabolism, is identified. Together, our phylogenetic analyses and ancestral state reconstructions suggest a mostly vertical evolution of mcrABG genes among methanogens and methanotrophs, along with frequent horizontal gene transfer of mcr genes between alkanotrophs. Analysis of all mcr-containing archaeal MAGs/genomes suggests a hydrothermal origin for these microorganisms based on optimal growth temperature predictions. These results also suggest methane/alkane oxidation or methanogenesis at high temperature likely existed in a common archaeal ancestor.
    Matched MeSH terms: Biological Evolution*
  8. Neik TX, Chai JY, Tan SY, Sudo MPS, Cui Y, Jayaraj J, et al.
    G3 (Bethesda), 2019 09 04;9(9):2941-2950.
    PMID: 31292156 DOI: 10.1534/g3.119.400021
    Weedy crop relatives are among the world's most problematic agricultural weeds, and their ability to rapidly evolve can be enhanced by gene flow from both domesticated crop varieties and wild crop progenitor species. In this study, we examined the role of modern commercial crop cultivars, traditional landraces, and wild relatives in the recent emergence and proliferation of weedy rice in East Malaysia on the island of Borneo. This region of Malaysia is separated from the Asian continent by the South China Sea, and weedy rice has become a major problem there more recently than on the Malaysian peninsular mainland. Using 24 polymorphic SSR loci and genotype data from the awn-length domestication gene An-1, we assessed the genetic diversity, population structure and potential origins of East Malaysian weeds; 564 weedy, cultivated and wild rice accessions were analyzed from samples collected in East Malaysia, Peninsular Malaysia and neighboring countries. While there is considerable evidence for contributions of Peninsular Malaysian weed ecotypes to East Malaysian populations, we find that local crop cultivars and/or landraces from neighboring countries are also likely contributors to the weedy rice infestations. These findings highlight the implications of genetic admixture from different cultivar source populations in the spread of weedy crop relatives and the urgent need for preventive measurements to maintain sustainable crop yields.
    Matched MeSH terms: Biological Evolution
  9. Cioffi MB, Ráb P, Ezaz T, Bertollo LAC, Lavoué S, Oliveira EA, et al.
    Int J Mol Sci, 2019 Sep 02;20(17).
    PMID: 31480792 DOI: 10.3390/ijms20174296
    Arowanas (Osteoglossinae) are charismatic freshwater fishes with six species and two genera (Osteoglossum and Scleropages) distributed in South America, Asia, and Australia. In an attempt to provide a better assessment of the processes shaping their evolution, we employed a set of cytogenetic and genomic approaches, including i) molecular cytogenetic analyses using C- and CMA3/DAPI staining, repetitive DNA mapping, comparative genomic hybridization (CGH), and Zoo-FISH, along with ii) the genotypic analyses of single nucleotide polymorphisms (SNPs) generated by diversity array technology sequencing (DArTseq). We observed diploid chromosome numbers of 2n = 56 and 54 in O. bicirrhosum and O. ferreirai, respectively, and 2n = 50 in S. formosus, while S. jardinii and S. leichardti presented 2n = 48 and 44, respectively. A time-calibrated phylogenetic tree revealed that Osteoglossum and Scleropages divergence occurred approximately 50 million years ago (MYA), at the time of the final separation of Australia and South America (with Antarctica). Asian S. formosus and Australian Scleropages diverged about 35.5 MYA, substantially after the latest terrestrial connection between Australia and Southeast Asia through the Indian plate movement. Our combined data provided a comprehensive perspective of the cytogenomic diversity and evolution of arowana species on a timescale.
    Matched MeSH terms: Biological Evolution*
  10. Mat Razali N, Cheah BH, Nadarajah K
    Int J Mol Sci, 2019 Jul 23;20(14).
    PMID: 31340492 DOI: 10.3390/ijms20143597
    Transposable elements (TEs) are agents of genetic variability in phytopathogens as they are a source of adaptive evolution through genome diversification. Although many studies have uncovered information on TEs, the exact mechanism behind TE-induced changes within the genome remains poorly understood. Furthermore, convergent trends towards bigger genomes, emergence of novel genes and gain or loss of genes implicate a TE-regulated genome plasticity of fungal phytopathogens. TEs are able to alter gene expression by revamping the cis-regulatory elements or recruiting epigenetic control. Recent findings show that TEs recruit epigenetic control on the expression of effector genes as part of the coordinated infection strategy. In addition to genome plasticity and diversity, fungal pathogenicity is an area of economic concern. A survey of TE distribution suggests that their proximity to pathogenicity genes TEs may act as sites for emergence of novel pathogenicity factors via nucleotide changes and expansion or reduction of the gene family. Through a systematic survey of literature, we were able to conclude that the role of TEs in fungi is wide: ranging from genome plasticity, pathogenicity to adaptive behavior in evolution. This review also identifies the gaps in knowledge that requires further elucidation for a better understanding of TEs' contribution to genome architecture and versatility.
    Matched MeSH terms: Biological Evolution
  11. Page A, Gibson J, Meyer RS, Chapman MA
    Mol Biol Evol, 2019 07 01;36(7):1359-1372.
    PMID: 31039581 DOI: 10.1093/molbev/msz062
    In the context of food security, examining the genomics of domestication will help identify genes underlying adaptive and economically important phenotypes, for example, larger fruit, improved taste, and loss of agronomically inferior phenotypes.  Examination of genome-scale single nucleotide polymorphisms demonstrates the relationships between wild ancestors of eggplant (Solanum melongena L.), confirming that Solanum insanum L. is the wild progenitor. This species is split roughly into an Eastern (Malaysian, Thai, and Vietnamese) and Western (Indian, Madagascan, and Sri Lankan) group, with domesticates derived from the former. Additional "wild" accessions from India appear to be feral escapes, derived multiple times from domesticated varieties through admixture. Accessions with small egg-shaped fruit are generally found intermixed with East Asian Solanum insanum confirming they are primitive relative to the large-fruited domesticates.  Comparative transcriptomics was used to track the loci under selection. Sequence analysis revealed a genetic bottleneck reducing variation by almost 50% in the primitive accessions relative to the wild species and a further 10% in the landraces. We also show evidence for selection on genes with a role in response to wounding and apoptosis.  Genes showing a significant difference in expression between wild and primitive or between primitive and landrace genepools were mostly (>75%) downregulated in the derived populations and enriched for gene ontologies related to defense, flowering, signaling, and response to biotic and abiotic stimuli.  This work reveals genomic changes involved in crop domestication and improvement, and the population genetics work explains why defining the eggplant domestication trajectory has been so challenging.
    Matched MeSH terms: Biological Evolution
  12. Gan HM, Grandjean F, Jenkins TL, Austin CM
    BMC Genomics, 2019 May 03;20(1):335.
    PMID: 31053062 DOI: 10.1186/s12864-019-5704-3
    BACKGROUND: The recently published complete mitogenome of the European lobster (Homarus gammarus) that was generated using long-range PCR exhibits unusual gene composition (missing nad2) and gene rearrangements among decapod crustaceans with strong implications in crustacean phylogenetics. Such atypical mitochondrial features will benefit greatly from validation with emerging long read sequencing technologies such as Oxford Nanopore that can more accurately identify structural variation.

    RESULTS: We re-sequenced the H. gammarus mitogenome on an Oxford Nanopore Minion flowcell and performed a long-read only assembly, generating a complete mitogenome assembly for H. gammarus. In contrast to previous reporting, we found an intact mitochondrial nad2 gene in the H. gammarus mitogenome and showed that its gene organization is broadly similar to that of the American lobster (H. americanus) except for the presence of a large tandemly duplicated region with evidence of pseudogenization in one of each duplicated protein-coding genes.

    CONCLUSIONS: Using the European lobster as an example, we demonstrate the value of Oxford Nanopore long read technology in resolving problematic mitogenome assemblies. The increasing accessibility of Oxford Nanopore technology will make it an attractive and useful tool for evolutionary biologists to verify new and existing unusual mitochondrial gene rearrangements recovered using first and second generation sequencing technologies, particularly those used to make phylogenetic inferences of evolutionary scenarios.

    Matched MeSH terms: Biological Evolution*
  13. Adler PH, Takaoka H, Sofian-Azirun M, Chen CD, Suana IW
    Acta Trop, 2019 May;193:1-6.
    PMID: 30772330 DOI: 10.1016/j.actatropica.2019.02.017
    A recently described species of black fly, Simulium wayani Takaoka and Chen, from the island of Timor was chromosomally mapped to provide insights into its evolutionary and biogeographic history. The morphologically based species status of S. wayani is supported by a suite of fixed chromosomal rearrangements and unique sex chromosomes derived primarily from a large pool of polymorphisms in the S. ornatipes complex in Australia. The banding patterns of its polytene chromosomes indicate that S. wayani is closely related to a pair of homosequential cryptic species (S. norfolkense Dumbleton and S. ornatipes cytoform A2) in the S. ornatipes Skuse complex on mainland Australia; all three species uniquely share the same amplified band in their chromosomal complement. The low level of polymorphism and heterozygosity in S. wayani, relative to Australian populations of the S. ornatipes complex, suggests few colonization events from the larger land mass.
    Matched MeSH terms: Biological Evolution*
  14. Jørgensen TS, Petersen B, Petersen HCB, Browne PD, Prost S, Stillman JH, et al.
    Genome Biol Evol, 2019 May 01;11(5):1440-1450.
    PMID: 30918947 DOI: 10.1093/gbe/evz067
    Members of the crustacean subclass Copepoda are likely the most abundant metazoans worldwide. Pelagic marine species are critical in converting planktonic microalgae to animal biomass, supporting oceanic food webs. Despite their abundance and ecological importance, only six copepod genomes are publicly available, owing to a number of factors including large genome size, repetitiveness, GC-content, and small animal size. Here, we report the seventh representative copepod genome and the first genome and the first transcriptome from the calanoid copepod species Acartia tonsa Dana, which is among the most numerous mesozooplankton in boreal coastal and estuarine waters. The ecology, physiology, and behavior of A. tonsa have been studied extensively. The genetic resources contributed in this work will allow researchers to link experimental results to molecular mechanisms. From PCR-free whole genome sequence and mRNA Illumina data, we assemble the largest copepod genome to date. We estimate that A. tonsa has a total genome size of 2.5 Gb including repetitive elements we could not resolve. The nonrepetitive fraction of the genome assembly is estimated to be 566 Mb. Our DNA sequencing-based analyses suggest there is a 14-fold difference in genome size between the six members of Copepoda with available genomic information. This finding complements nucleus staining genome size estimations, where 100-fold difference has been reported within 70 species. We briefly analyze the repeat structure in the existing copepod whole genome sequence data sets. The information presented here confirms the evolution of genome size in Copepoda and expands the scope for evolutionary inferences in Copepoda by providing several levels of genetic information from a key planktonic crustacean species.
    Matched MeSH terms: Biological Evolution*
  15. Chua KO, See-Too WS, Ee R, Lim YL, Yin WF, Chan KG
    Front Microbiol, 2019;10:1758.
    PMID: 31447806 DOI: 10.3389/fmicb.2019.01758
    The most common quorum sensing (QS) system in Gram-negative bacteria consists of signaling molecules called N-acyl-homoserine lactones (AHLs), which are synthesized by an enzyme AHL synthase (LuxI) and detected by a transcriptional regulator (LuxR) that are usually located in close proximity. However, many recent studies have also evidenced the presence of LuxR solos that are LuxR-related proteins in Proteobacteria that are devoid of a cognate LuxI AHL synthase. Pandoraea species are opportunistic pathogens frequently isolated from sputum specimens of cystic fibrosis (CF) patients. We have previously shown that P. pnomenusa strains possess QS activity. In this study, we examined the presence of QS activity in all type strains of Pandoraea species and acquired their complete genome sequences for holistic bioinformatics analyses of QS-related genes. Only four out of nine type strains (P. pnomenusa, P. sputorum, P. oxalativorans, and P. vervacti) showed QS activity, and C8-HSL was the only AHL detected. A total of 10 canonical luxIs with adjacent luxRs were predicted by bioinformatics from the complete genomes of aforementioned species and publicly available Pandoraea genomes. No orphan luxI was identified in any of the genomes. However, genes for two LuxR solos (LuxR2 and LuxR3 solos) were identified in all Pandoraea genomes (except two draft genomes with one LuxR solo gene), and P. thiooxydans was the only species that harbored no QS-related activity and genes. Except the canonical LuxR genes, LuxIs and LuxR solos of Pandoraea species were distantly related to the other well-characterized QS genes based on phylogenetic clustering. LuxR2 and LuxR3 solos might represent two novel evolutionary branches of LuxR system as they were found exclusively only in the genus. As a few luxR solos were located in close proximity with prophage sequence regions in the genomes, we thus postulated that these luxR solos could be transmitted into genus Pandoraea by transduction process mediated by bacteriophage. The bioinformatics approach developed in this study forms the basis for further characterization of closely related species. Overall, our findings improve the current understanding of QS in Pandoraea species, which is a potential pharmacological target in battling Pandoraea infections in CF patients.
    Matched MeSH terms: Biological Evolution
  16. Hoh BP, Abdul Rahman T, Yusoff K
    Hereditas, 2019;156:1.
    PMID: 30636949 DOI: 10.1186/s41065-019-0080-1
    Prevalence of hypertension (HTN) varies substantially across different populations. HTN is not only common - affecting at least one third of the world's adult population - but is also the most important driver for cardiovascular diseases. Yet up to a third of hypertensive patients are resistant to therapy, contributed by secondary hypertension but more commonly the hitherto inability to precisely predict response to specific antihypertensive agents. Population and individual genomics information could be useful in guiding the selection and predicting the response to treatment - an approach known as precision medicine. However this cannot be achieved without the knowledge of genetic variations that influence blood pressure (BP). A number of evolutionary factors including population demographics and forces of natural selection may be involved. This article explores some ideas on how natural selection influences BP regulation in ethnically and geographically diverse populations that could lead to them being susceptible to HTN. We explore how such evolutionary factors could impact the implementation of precision medicine in HTN. Finally, in order to ensure the success of precision medicine in HTN, we call for more initiatives to understand the genetic architecture within and between diverse populations with ancestry from different parts of the world, and to precisely classify the intermediate phenotypes of HTN.
    Matched MeSH terms: Biological Evolution
  17. Chong SY, Tiňo P, He J, Yao X
    Evol Comput, 2019;27(2):195-228.
    PMID: 29155606 DOI: 10.1162/evco_a_00218
    Studying coevolutionary systems in the context of simplified models (i.e., games with pairwise interactions between coevolving solutions modeled as self plays) remains an open challenge since the rich underlying structures associated with pairwise-comparison-based fitness measures are often not taken fully into account. Although cyclic dynamics have been demonstrated in several contexts (such as intransitivity in coevolutionary problems), there is no complete characterization of cycle structures and their effects on coevolutionary search. We develop a new framework to address this issue. At the core of our approach is the directed graph (digraph) representation of coevolutionary problems that fully captures structures in the relations between candidate solutions. Coevolutionary processes are modeled as a specific type of Markov chains-random walks on digraphs. Using this framework, we show that coevolutionary problems admit a qualitative characterization: a coevolutionary problem is either solvable (there is a subset of solutions that dominates the remaining candidate solutions) or not. This has an implication on coevolutionary search. We further develop our framework that provides the means to construct quantitative tools for analysis of coevolutionary processes and demonstrate their applications through case studies. We show that coevolution of solvable problems corresponds to an absorbing Markov chain for which we can compute the expected hitting time of the absorbing class. Otherwise, coevolution will cycle indefinitely and the quantity of interest will be the limiting invariant distribution of the Markov chain. We also provide an index for characterizing complexity in coevolutionary problems and show how they can be generated in a controlled manner.
    Matched MeSH terms: Biological Evolution*
  18. Ng SM, Lee XW, Mat-Isa MN, Aizat-Juhari MA, Adam JH, Mohamed R, et al.
    Sci Rep, 2018 Nov 22;8(1):17258.
    PMID: 30467394 DOI: 10.1038/s41598-018-35173-1
    Parasitic plants are known to discard photosynthesis thus leading to the deletion or loss of the plastid genes. Despite plastid genome reduction in non-photosynthetic plants, some nucleus-encoded proteins are transported back to the plastid to carry out specific functions. In this work, we study such proteins in Rafflesia cantleyi, a member of the holoparasitic genus well-known for producing the largest single flower in the world. Our analyses of three transcriptome datasets, two holoparasites (R. cantleyi and Phelipanche aegyptiaca) and one photosynthetic plant (Arabidopsis thaliana), suggest that holoparasites, such as R. cantleyi, retain some common plastid associated processes such as biosynthesis of amino acids and lipids, but are missing photosynthesis components that can be extensions of these pathways. The reconstruction of two selected biosynthetic pathways involving plastids correlates the trend of plastid retention to pathway complexity - transcriptome evidence for R. cantleyi suggests alternate mechanisms in regulating the plastidial heme and terpenoid backbone biosynthesis pathways. The evolution to holoparasitism from autotrophy trends towards devolving the plastid genes to the nuclear genome despite the functional sites remaining in the plastid, or maintaining non-photosynthetic processes in the plastid, before the eventual loss of the plastid and any site dependent functions.
    Matched MeSH terms: Biological Evolution
  19. van Velzen R, Holmer R, Bu F, Rutten L, van Zeijl A, Liu W, et al.
    Proc Natl Acad Sci U S A, 2018 May 15;115(20):E4700-E4709.
    PMID: 29717040 DOI: 10.1073/pnas.1721395115
    Nodules harboring nitrogen-fixing rhizobia are a well-known trait of legumes, but nodules also occur in other plant lineages, with rhizobia or the actinomycete Frankia as microsymbiont. It is generally assumed that nodulation evolved independently multiple times. However, molecular-genetic support for this hypothesis is lacking, as the genetic changes underlying nodule evolution remain elusive. We conducted genetic and comparative genomics studies by using Parasponia species (Cannabaceae), the only nonlegumes that can establish nitrogen-fixing nodules with rhizobium. Intergeneric crosses between Parasponia andersonii and its nonnodulating relative Trema tomentosa demonstrated that nodule organogenesis, but not intracellular infection, is a dominant genetic trait. Comparative transcriptomics of P. andersonii and the legume Medicago truncatula revealed utilization of at least 290 orthologous symbiosis genes in nodules. Among these are key genes that, in legumes, are essential for nodulation, including NODULE INCEPTION (NIN) and RHIZOBIUM-DIRECTED POLAR GROWTH (RPG). Comparative analysis of genomes from three Parasponia species and related nonnodulating plant species show evidence of parallel loss in nonnodulating species of putative orthologs of NIN, RPG, and NOD FACTOR PERCEPTION Parallel loss of these symbiosis genes indicates that these nonnodulating lineages lost the potential to nodulate. Taken together, our results challenge the view that nodulation evolved in parallel and raises the possibility that nodulation originated ∼100 Mya in a common ancestor of all nodulating plant species, but was subsequently lost in many descendant lineages. This will have profound implications for translational approaches aimed at engineering nitrogen-fixing nodules in crop plants.
    Matched MeSH terms: Biological Evolution*
  20. Wang MMH, Gardner EM, Chung RCK, Chew MY, Milan AR, Pereira JT, et al.
    Am J Bot, 2018 05;105(5):898-914.
    PMID: 29874392 DOI: 10.1002/ajb2.1094
    PREMISE OF THE STUDY: Underutilized crops and their wild relatives are important resources for crop improvement and food security. Cempedak [Artocarpus integer (Thunb). Merr.] is a significant crop in Malaysia but underutilized elsewhere. Here we performed molecular characterization of cempedak and its putative wild relative bangkong (Artocarpus integer (Thunb). Merr. var. silvestris Corner) to address questions regarding the origin and diversity of cempedak.

    METHODS: Using data from 12 microsatellite loci, we assessed the genetic diversity and genetic/geographic structure for 353 cempedak and 175 bangkong accessions from Malaysia and neighboring countries and employed clonal analysis to characterize cempedak cultivars. We conducted haplotype network analyses on the trnH-psbA region in a subset of these samples. We also analyzed key vegetative characters that reportedly differentiate cempedak and bangkong.

    KEY RESULTS: We show that cempedak and bangkong are sister taxa and distinct genetically and morphologically, but the directionality of domestication origin is unclear. Genetic diversity was generally higher in bangkong than in cempedak. We found a distinct genetic cluster for cempedak from Borneo as compared to cempedak from Peninsular Malaysia. Finally, cempedak cultivars with the same names did not always share the same genetic fingerprint.

    CONCLUSIONS: Cempedak origins are complex, with likely admixture and hybridization with bangkong, warranting further investigation. We provide a baseline of genetic diversity of cempedak and bangkong in Malaysia and found that germplasm collections in Malaysia represent diverse coverage of the four cempedak genetic clusters detected.

    Matched MeSH terms: Biological Evolution*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links