Displaying publications 41 - 52 of 52 in total

Abstract:
Sort:
  1. Mohammadi H, Sepantafar M
    Iran Biomed J, 2016 Sep;20(4):189-200.
    PMID: 26979401
    Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. However, these materials have been reported to have limited clinical success. The excellent bioactivity of calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a promising method, which improves their mechanical strength and chemical stability. In this review, the potential of trace element-modified silicate coatings on better bone formation of titanium implant is investigated.
    Matched MeSH terms: Calcium Phosphates/pharmacology; Calcium Phosphates/chemistry
  2. Mohamed Abdelrasoul, Jahangir Bin Kamaldin, Jer Ping Ooi, Ahmed Abd El-Fattah, Gihan Kotry, Omneya Ramadan, et al.
    MyJurnal
    Introduction: Melatonin (MEL) loaded alginate-chitosan/beta-tricalcium phosphate (Alg-CH/β-TCP) composite hy- drogel has been formulated as a scaffold for bone regeneration. MEL in the scaffold was anticipated to accelerate bone regeneration. The objective of this study is to observe signs of systemic toxicity and physical changes on surface defected bone for bone regenerative performance of the composite. Methods: The proximal-medial metaphyseal cortex of the left tibia of New Zealand white rabbit was the surgical site of the defect. A total of nine rabbits were randomly allocated to three groups; Group I; implanted with MEL loaded Alg-CH/β-TCP, Group II; Alg-CH/β-TCP and Group III defects were sham control. The rabbits were daily observed to determine systemic toxicity effects by composites. The physical changes to implanted site were observed using digital x-ray radiography and computerized tomography at weeks 0, 2, 4, 6 and 8 of post-implantation. Results: There were no clinical signs of systemic toxicity for all groups of rabbits. Digital radiography did not show adverse effects to the bone. Computerized tomography showed reduction in the area size and depth volume of the implantation site, but accelerated regeneration within the 8 weeks was not significantly different (P
    Matched MeSH terms: Calcium Phosphates
  3. Leong HY, Chang CK, Khoo KS, Chew KW, Chia SR, Lim JW, et al.
    Biotechnol Biofuels, 2021 Apr 07;14(1):87.
    PMID: 33827663 DOI: 10.1186/s13068-021-01939-5
    Global issues such as environmental problems and food security are currently of concern to all of us. Circular bioeconomy is a promising approach towards resolving these global issues. The production of bioenergy and biomaterials can sustain the energy-environment nexus as well as substitute the devoid of petroleum as the production feedstock, thereby contributing to a cleaner and low carbon environment. In addition, assimilation of waste into bioprocesses for the production of useful products and metabolites lead towards a sustainable circular bioeconomy. This review aims to highlight the waste biorefinery as a sustainable bio-based circular economy, and, therefore, promoting a greener environment. Several case studies on the bioprocesses utilising waste for biopolymers and bio-lipids production as well as bioprocesses incorporated with wastewater treatment are well discussed. The strategy of waste biorefinery integrated with circular bioeconomy in the perspectives of unravelling the global issues can help to tackle carbon management and greenhouse gas emissions. A waste biorefinery-circular bioeconomy strategy represents a low carbon economy by reducing greenhouse gases footprint, and holds great prospects for a sustainable and greener world.
    Matched MeSH terms: Calcium Phosphates
  4. Mirzasadeghi A, Narayanan SS, Ng MH, Sanaei R, Cheng CH, Bajuri MY, et al.
    Biomed Mater Eng, 2014;24(6):2177-86.
    PMID: 25226916 DOI: 10.3233/BME-141029
    The application of bone substitutes and cements has a long standing history in augmenting fractures as a complement to routine fracture fixation techniques. Nevertheless, such use is almost always in conjunction with definite means of fracture fixation such as intramedullary pins or bone plates. The idea of using biomaterials as the primary fixation bears the possibility of simultaneous fixation and bone enhancement. Intramedullary recruitment of bone cements is suggested in this study to achieve this goal. However, as the method needs primary testings in animal models before human implementation, and since the degree of ambulation is not predictable in animals, this pilot study only evaluates the outcomes regarding the feasibility and safety of this method in the presence of primary bone fixators. A number of two sheep were used in this study. Tibial transverse osteotomies were performed in both animals followed by external skeletal fixation. The medullary canals, which have already been prepared by removing the marrow through proximal and distal drill holes, were then injected with calcium phosphate cement (CPC). The outcomes were evaluated postoperatively by standard survey radiographs, morphology, histology and biomechanical testings. Healing processes appeared uncomplicated until week four where one bone fracture recurred due to external fixator failure. The results showed 56% and 48% cortical thickening, compared to the opposite site, in the fracture site and proximal and distal diaphyses respectively. This bone augmentative effect resulted in 264% increase in bending strength of the fracture site and 148% increase of the same value in the adjacent areas of diaphyses. In conclusion, IMCO, using CPC in tibia of sheep, is safe and biocompatible with bone physiology and healing. It possibly can carry the osteopromotive effect of the CPCs to provide a sustained source of bone augmentation throughout the diaphysis. Although the results must be considered preliminary, this method has possible advantages over conventional methods of bone fixation at least in bones with compromised quality (i.e. osteoporosis and bone cysts), where rigid metal implants may jeopardize eggshell cortices.
    Matched MeSH terms: Calcium Phosphates/administration & dosage*
  5. Sopyan I
    Med J Malaysia, 2008 Jul;63 Suppl A:14-5.
    PMID: 19024961
    Porous calcium phosphate ceramics have found enormous use in biomedical applications including bone tissue regeneration, cell proliferation, and drug delivery. In bone tissue engineering it has been applied as filling material for bone defects and augmentation, artificial bone graft material, and prosthesis revision surgery. Their high surface area leads to excellent osteoconductivity and resorbability providing fast bone ingrowths. Porous calcium phosphate can be produced by a variety of methods. This paper discusses briefly fundamental aspects of porous calcium phosphate for biomedical applications as well as various techniques used to prepare porous calcium phosphate.
    Matched MeSH terms: Calcium Phosphates*
  6. Trache D, Hussin MH, Haafiz MK, Thakur VK
    Nanoscale, 2017 Feb 02;9(5):1763-1786.
    PMID: 28116390 DOI: 10.1039/c6nr09494e
    Cellulose nanocrystals, a class of fascinating bio-based nanoscale materials, have received a tremendous amount of interest both in industry and academia owing to its unique structural features and impressive physicochemical properties such as biocompatibility, biodegradability, renewability, low density, adaptable surface chemistry, optical transparency, and improved mechanical properties. This nanomaterial is a promising candidate for applications in fields such as biomedical, pharmaceuticals, electronics, barrier films, nanocomposites, membranes, supercapacitors, etc. New resources, new extraction procedures, and new treatments are currently under development to satisfy the increasing demand of manufacturing new types of cellulose nanocrystals-based materials on an industrial scale. Therefore, this review addresses the recent progress in the production methodologies of cellulose nanocrystals, covering principal cellulose resources and the main processes used for its isolation. A critical and analytical examination of the shortcomings of various approaches employed so far is made. Additionally, structural organization of cellulose and nomenclature of cellulose nanomaterials have also been discussed for beginners in this field.
    Matched MeSH terms: Calcium Phosphates
  7. Majithia U, Venkataraghavan K, Choudhary P, Trivedi K, Shah S, Virda M
    Indian J Dent Res, 2016 Sep-Oct;27(5):521-527.
    PMID: 27966511 DOI: 10.4103/0970-9290.195642
    INTRODUCTION: In an attempt to manage noncavitated carious lesions noninvasively through remineralization, a range of novel fluoride varnishes with additional remineralizing agents have been made available for clinical application.

    AIM AND OBJECTIVES: The aim of this study was to compare and evaluate the remineralization potential of three commercially available varnishes on artificial enamel lesions.

    MATERIALS AND METHODS: This in vitro study involves eighty intact enamel specimens prepared from premolars extracted for orthodontic purposes. After specimen preparation, the eighty samples were divided randomly into two groups (n = 40) for measurement of baseline surface Vickers microhardness and baseline calcium/phosphorus ratio (% weight) through EDAX testing. Thereafter, the specimens were subjected to demineralization for 96 h to induce initial enamel lesions and the measurements were repeated. Following demineralization, each of the two groups was divided randomly into four subgroups (n = 10) from which one was used as the control group and the others three were allotted to each of the three test varnishes. After varnish application, all the specimens were subjected to a pH cycling regimen that included alternative demineralization (3 h) and remineralization (21 h) daily, for 5 consecutive days. The Vickers microhardness and EDAX measurements were then repeated.

    RESULTS: One-way ANOVA and post hoc Tukey's tests were conducted for multiple group comparison. All the three commercially available varnishes were capable of remineralizing initial enamel lesions that were induced artificially. No difference was noted in the remineralizing efficacy of the varnishes despite their different compositions. MI Varnish™ (casein phosphopeptide-amorphous calcium phosphate fluoride varnish) showed slightly better recovery in surface microhardness as compared to the other two varnishes.

    CONCLUSION: All the varnishes used in this in vitro study are capable of reversing early enamel lesions.
    Matched MeSH terms: Calcium Phosphates/pharmacology
  8. Sofia Beagem Mohd Noal, Roslinda Shamsudin, Tan, Lee Phin, Wan Khartini Wan Abdul Khodir
    MyJurnal
    Hydroxyapatite (HA) powder was synthesized via wet method using calcium nitrate hydrate (Ca(NO3)2.H2O) and diammonium hydrogen phosphate ((NH4)2HPO4) as raw materials. Powder obtained was milled using various milling speed ranging from 250 to 400 r.p.m. and sintered at 1300°C for 2hrs. Due to the nature of HA powder that decomposed at high temperature, XRD technique have been used in this work to determine the phase composition of the HA powder and also the crystallite size. The unmilled sample was used as the control group. Results show that sufficient heat supply generated from the milling process, initiates the decomposition of HA phase into ȕ-tricalcium phosphate (ȕ-TCP). Decomposition of HA starts to occur at the milling speed of 300 rpm, i.e the formation of ȕ-TCP was occurred at lower sintering temperature. It was believed that the decomposition of HA was associated with the formation of an intermediate phase, oxyapatite. Moreover, the crystallinity and particle size of the produced powder is very much affected by the milling speed and the stability of the HA. All milled powders possess spherical shape particle.
    Matched MeSH terms: Calcium Phosphates
  9. Kamalaldin N', Jaafar M, Zubairi SI, Yahaya BH
    Adv Exp Med Biol, 2019;1084:1-15.
    PMID: 29299875 DOI: 10.1007/5584_2017_130
    The use of bioceramics, especially the combination of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), as a three-dimensional scaffold in bone engineering is essential because together these elements constitute 60% of the bone content. Different ratios of HA and β-TCP were previously tested for their ability to produce suitable bioceramic scaffolds, which must be able to withstand high mechanical load. In this study, two ratios of HA/TCP (20:80 and 70:30) were used to create pellets, which then were evaluated in vitro to identify any adverse effects of using the material in bone grafting. Diametral tensile strength (DTS) and density testing was conducted to assess the mechanical strength and porosity of the pellets. The pellets then were tested for their toxicity to normal human fibroblast cells. In the toxicity assay, cells were incubated with the pellets for 3 days. At the end of the experiment, cell morphological changes were assessed, and the absorbance was read using PrestoBlue Cell Viability Reagent™. An inversely proportional relationship between DTS and porosity percentage was detected. Fibroblasts showed normal cell morphology in both treatments, which suggests that the HA/TCP pellets were not toxic. In the osteoblast cell attachment assay, cells were able to attach to the surface of both ratios, but cells were also able to penetrate inside the scaffold of the 70:30 pellets. This finding suggests that the 70:30 ratio had better osteoconduction properties than the 20:80 ratio.
    Matched MeSH terms: Calcium Phosphates
  10. Chahal S, Chalal S, Fathima SJ, Yusoff MB
    Biomed Mater Eng, 2014;24(1):799-806.
    PMID: 24211966 DOI: 10.3233/BME-130871
    In this study, randomly oriented hydroxyethyl cellulose/polyvinyl alcohol (HEC/PVA) nanofibers were fabricated by electrospinning. The blend solutions of HEC/PVA with different weight ratio of HEC to PVA were prepared using water as solvent to fabricate nanofibers. These nanofibrous scaffolds were coated with bone-like apatite by immersing into 10x simulated body fluid (SBF) for different time periods. The morphology and structure of the nanofibers were characterized by SEM, FTIR and DSC. FESEM-EDS and FTIR analysis were used to confirm the deposition of apatite on the surface of nanofibers. The results of this study suggest that this apatite coated nanofibrous scaffolds could be a suitable biomaterial for bone tissue engineering.
    Matched MeSH terms: Calcium Phosphates/chemistry
  11. Mohd Al Amin Muhamad Nor, Maryam Mohd Ridzuan, Zainal Arifin Ahmad
    MyJurnal
    Ceramic materials play key role in several biomedical applications. One of them is bone graft which is use in treating bone defect which caused by injury or osteoporosis. Calcium phosphates based ceramic are preferred as bone grafts in hard tissue engineering because of their chemical compositions are similar to the composition of human bone, superior bioresorbable and bioactivity. In this study, β-tricalcium phosphate (β-TCP) ceramic was synthesized by using sol-gel method. Phosphorous pentoxide (P2O5) and calcium nitrate tetrahydrate (Ca(NO3)2.4H2O) were used as calcium and phosphate precursors. The effects of calcination temperature on the synthesis powder were studied using the XRD, SEM-EDS and FTIR techniques. It was found that calcination temperature greatly influence the purity of the synthesized powders. The β-TCP was the dominant phase with the formation of α-TCP at calcination temperature from 600 to 800°C. Pure β-TCP was obtained at calcination of 900°C. As the temperature increased to 1000°C, the β-TCP was decomposed to for calcium phosphate oxide (CPO). The sol-gel method has some advantages over other methods, mainly its simplicity and ability to produce pure β-TCP at lower calcination temperature.
    Matched MeSH terms: Calcium Phosphates
  12. Yeong, Meng How, Shah Rizal Kasim, Hazizan Md Akil, Zainal Arifin Ahmad
    MyJurnal
    β-tricalcium phosphate (β-TCP) powders were synthesized by using various particles sizes (40 nm – 780 μm) calcium carbonate (CaCO3) and phosphoric acid (H3PO4) at room temperature (25 ˚C). The synthesized powders were characterized by using X-Ray Diffraction (XRD) method. The purity of β-TCP powders were determined from XRD pattern while the crystallite size of β-TCP powders were calculated by using Scherrer equation. Results shows that the purity of β-TCP powders were ranged from 20.33 % to 81.94 % while the crystallite size of β- TCP powders were ranged from 0.04391 μm to 0.06751 μm. From this work, particle size of CaCO3 will influenced the purity but not the mean crystallite size of synthesized β-TCP.
    Matched MeSH terms: Calcium Phosphates
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links