Displaying publications 41 - 60 of 64 in total

Abstract:
Sort:
  1. Liew PS, Tan TH, Wong YC, Sim EUH, Lee CW, Narayanan K
    ACS Synth Biol, 2020 04 17;9(4):804-813.
    PMID: 32196315 DOI: 10.1021/acssynbio.9b00478
    TelN and tos are a unique DNA linearization unit isolated from bacteriophage N15. While being transferable, the TelN cleaving-rejoining activities remained stable to function on tos in both bacterial and mammalian environments. However, TelN contribution in linear plasmid replication in mammalian cells remains unknown. Herein, we investigated the association of TelN in linear tos-containing DNA (tos-DNA) replication in mammalian cells. Additionally, the mammalian origin of replication (ori) that is well-known to initiate the replication event of plasmid vectors was also studied. In doing so, we identified that both TelN and mammalian initiation sites were essential for the replication of linear tos-DNA, determined by using methylation sensitive DpnI/MboI digestion and polymerase chain reaction (PCR) amplification approaches. Furthermore, we engineered the linear tos-DNA to be able to retain in mammalian cells using S/MAR technology. The resulting S/MAR containing tos-DNA was robust for at least 15 days, with (1) continuous tos-DNA replication, (2) correct splicing of gene transcripts, and (3) stable exogenous gene expression that was statistically comparable to the endogenous gene expression level. Understanding the activities of TelN and tos in mammalian cells can potentially provide insights for adapting this simple DNA linearization unit in developing novel genetic engineering tools, especially to the eukaryotic telomere/telomerase study.
    Matched MeSH terms: DNA, Viral/genetics
  2. Lal TM, Sano M, Ransangan J
    J Basic Microbiol, 2016 Aug;56(8):872-88.
    PMID: 26960780 DOI: 10.1002/jobm.201500611
    Vibrio parahaemolyticus has long been known pathogenic to shrimp but only recently it is also reported pathogenic to tropical cultured marine finfish. Traditionally, bacterial diseases in aquaculture are often treated using synthetic antibiotics but concern due to side effects of these chemicals is elevating hence, new control strategies which are both environmental and consumer friendly, are urgently needed. One promising control strategy is the bacteriophage therapy. In this study, we report the isolation and characterization of a novel vibriophage (VpKK5), belonging to the family Siphoviridae that was specific and capable of complete lysing the fish pathogenic strain of V. parahaemolyticus. The VpKK5 exhibited short eclipse and latent periods of 24 and 36 min, respectively, but with a large burst size of 180 pfu/cell. The genome analysis revealed that the VpKK5 is a novel bacteriophage with the estimated genome size of 56,637 bp and has 53.1% G + C content. The vibriophage has about 80 predicted open reading frames consisted of 37 complete coding sequences which did not match to any protein databases. The analysis also found no lysogeny and virulence genes in the genome of VpKK5. With such genome features, we suspected the vibriophage is novel and could be explored for phage therapy against fish pathogenic strains of V. parahaemolyticus in the near future.
    Matched MeSH terms: DNA, Viral/genetics
  3. Sahbandar IN, Takahashi K, Djoerban Z, Firmansyah I, Naganawa S, Motomura K, et al.
    AIDS Res Hum Retroviruses, 2009 Jul;25(7):637-46.
    PMID: 19621986 DOI: 10.1089/aid.2008.0266
    HIV infection is a major problem in Indonesia. The number of people living with HIV has been increasing from year to year, especially among injecting drug users (IDUs). Since there were only limited data about molecular epidemiology profiles of HIV/AIDS in Indonesia, a cross-sectional study involving 208 HIV-1-seropositive individuals was conducted in 2007 in Jakarta. The majority of participants were 16-30 years of age (64.9%) and 74.5% were male. The most frequent risk factor was injecting drug use (IDU) (45.7%) followed by heterosexual transmission (34.1%). Phylogenetic analysis of gag (p17 and p6) and env C2V3 regions showed 200 (96.2%) of 208 DNA samples were CRF01_AE and only 3 (1.4%) were subtype B. Five samples (2.4%) indicated discordant subtypes between the three aforementioned regions: three of them showed unique CRF01_AE/B recombination patterns in 2.3-kbp nucleotide sequences (from p17 to part of RT), including one sample showing similarity to CRF33_01B, reported previously in Malaysia. This study shows the current predominant subtype is CRF01_AE in every risk group, with a decreasing number of pure subtype B, and the first identification of CRF01_AE/B recombinant forms among HIV-1-seropositive Indonesians.
    Matched MeSH terms: DNA, Viral/genetics
  4. Ngo DB, Chaibun T, Yin LS, Lertanantawong B, Surareungchai W
    Anal Bioanal Chem, 2021 Feb;413(4):1027-1037.
    PMID: 33236225 DOI: 10.1007/s00216-020-03061-1
    The aim of this study was to develop a highly specific electrochemical DNA sensor using functionalized lead sulphide (PbS) quantum dots for hepatitis E virus genotype 3 (HEV3) DNA target detection. Functionalized-PbS quantum dots (QDs) were used as an electrochemical label for the detection of HEV3-DNA target by the technique of square wave anodic stripping voltammetry (SWASV). The functionalized-PbS quantum dots were characterized by UV-vis, FTIR, XRD, TEM and zeta potential techniques. As-prepared, functionalized-PbS quantum dots have an average size of 4.15 ± 1.35 nm. The detection platform exhibited LOD and LOQ values of 1.23 fM and 2.11 fM, respectively. HEV3-DNA target spiked serum is also reported.Graphical abstract.
    Matched MeSH terms: DNA, Viral/genetics
  5. Lv Q, Wang Y, Su C, Lakshmipriya T, Gopinath SCB, Pandian K, et al.
    Int J Biol Macromol, 2019 Aug 01;134:354-360.
    PMID: 31078598 DOI: 10.1016/j.ijbiomac.2019.05.044
    Human papillomavirus (HPV) is a double-standard DNA virus, as well as the source of infection to the mucous membrane. It is a sexually transmitted disease that brings the changes in the cervix cells. Oncogenes, E6 and E7 play a pivotal role in the HPV infection. Identifying these genes to detect HPV strains, especially a prevalent HPV16 strain, will bring a great impact. Among different sensing strategies for pathogens, the dielectric electrochemical biosensor shows the potential due to its higher sensitivity. In this research, HPV16-E7 DNA sequence was detected on the carbodiimidazole-modified interdigitated electrode (IDE) surface with the detection limit of 1 fM. To enhance the sensitivity, the target sequence was conjugated on gold nanoparticle (GNP) and attained detection to the level of 10 aM. This produced ~100 folds improvement in detecting HPV16-E7 gene and 4 folds increment in the current flow. The stability of HPV16-E7 DNA sequences on GNP was verified by the salt-induced GNP aggregation. The current system has shown the higher specificity by comparing against non-complementary and triple-mismatched DNA sequences of HPV16-E7. This demonstration in detecting HPV16-E7 using dielectric IDE sensing system with a higher sensitivity can be recommended for detecting a wide range of disease-causing DNA-markers.
    Matched MeSH terms: DNA, Viral/genetics
  6. Tan CY, Opaskornkul K, Thanawongnuwech R, Arshad SS, Hassan L, Ooi PT
    PLoS One, 2020;15(7):e0235832.
    PMID: 32706778 DOI: 10.1371/journal.pone.0235832
    Porcine circovirus type 3 (PCV3) is a newly emerging virus in the swine industry, first reported recently in 2016. PCV3 assembles into a 2000 bp circular genome; slightly larger than PCV1 (1758-1760 bp), PCV2 (1766-1769 bp) and PCV4 (1770 bp). Apart from being associated with porcine dermatitis and nephropathy syndrome (PDNS), PCV3 has been isolated from pigs with clinical signs of reproductive failures, myocarditis, porcine respiratory disease complex (PRDC) and neurologic disease. Given that PCV3 is increasingly reported in countries including Thailand and U.S. with whom Malaysia shares trade and geographical relationship; and that PCV3 is associated with several clinical presentations that affect productivity, there is a need to study the presence and molecular characteristics of PCV3 in Malaysian swine farms. Twenty-four commercial swine farms, three abattoirs and retail shops in Peninsular Malaysia were sampled using convenience sampling method. A total of 281 samples from 141 pigs, including 49 lung archive samples were tested for PCV3 by conventional PCR. Twenty-eight lung samples from wild boar population in Peninsular Malaysia were also included. Nucleotide sequences were analyzed for maximum likelihood phylogeny relationship and pairwise distances. Results revealed that PCV3 is present in Peninsular Malaysia at a molecular prevalence of 17.02%, with inguinal lymph nodes and lungs showing the highest molecular detection rates of 81.82% and 71.43% respectively. Despite wide reports of PCV3 in healthy animals and wild boars, no positive samples were detected in clinically healthy finishers and wild boar population of this study. PCV3 strain A1 and A2 were present in Malaysia, and Malaysian PCV3 strains were found to be phylogenetically related to Spanish, U.S. and Mexico strains.
    Matched MeSH terms: DNA, Viral/genetics
  7. Tang KH, Yusoff K, Tan WS
    J Virol Methods, 2009 Aug;159(2):194-9.
    PMID: 19490973 DOI: 10.1016/j.jviromet.2009.03.015
    Hepatitis B is a major public health problem worldwide which may lead to chronic liver diseases, cirrhosis and hepatocellular carcinoma. An interaction between hepatitis B virus (HBV) envelope protein, particularly the PreS1 region, and a specific cell surface receptor is believed to be the initial step of HBV infection through attachment to hepatocytes. In order to develop a gene delivery system, bacteriophage T7 was modified genetically to display polypeptides of the PreS1 region. A recombinant T7 phage displaying amino acids 60-108 of the PreS1 region (PreS1(60-108)) was demonstrated to be most effective in transfecting HepG2 cells in a dose- and time-dependant manner. The phage genome was recovered from the cell lysate and confirmed by PCR whereas the infectious form of the internalized phage was measured by a plaque-forming assay. The internalized phage exhibited the appearance of green fluorescent dots when examined by immunofluorescence microscopy. Surface modification, particularly by displaying the PreS1(60-108) enhanced phage uptake, resulting in more efficient in vitro gene transfer. The ability of the recombinant phage to transfect HepG2 cells demonstrates the potential of the phage display system as a gene therapy for liver cancer.
    Matched MeSH terms: DNA, Viral/genetics
  8. Mellor J, Walsh EA, Prescott LE, Jarvis LM, Davidson F, Yap PL, et al.
    J Clin Microbiol, 1996 Feb;34(2):417-23.
    PMID: 8789027
    Previous surveys of the prevalences of genotypes of hepatitis C virus (HCV) in different populations have often used genotyping assays based upon analysis of amplified sequences from the 5' noncoding region (5'NCR), such as restriction fragment length polymorphism (RFLP) or hybridization with type-specific probes (e.g., InnoLipa). Although highly conserved, this region contains several type-specific nucleotide polymorphisms that allow major genotypes 1 to 6 to be reliably identified. Recently, however, novel HCV variants found in Vietnam and Thailand that are distantly related to the type 6a genotype (type 6 group) by phylogenetic analysis of coding regions of the genome often have sequences in the 5'NCR that are similar or identical to those of type 1 and could therefore not be identified by an assay of sequences in this region. We developed a new genotyping assay based upon RFLP of sequences amplified from the more variable core region to investigate their distribution elsewhere in southeast (SE) Asia. Among 108 samples from blood donors in seven areas that were identified as type 1 by RFLP in the 5'NCR, type 6 group variants were found in Thailand (7 from 28 samples originally identified as type 1) and Burma (Myanmar) (1 of 3) but were not found in Hong Kong (n = 43), Macau (n = 8), Taiwan (n = 6), Singapore (n = 2), or Malaysia (n = 18). Although this small survey suggests a relatively limited distribution for type 6 group variants in SE Asia, larger studies will be required to explore their distribution in other geographical regions and the extent to which their presence would limit the practical usefulness of 5'NCR-based genotyping assays for clinical or epidemiological purposes.
    Matched MeSH terms: DNA, Viral/genetics
  9. Yap SF, Wong PW, Chen YC, Rosmawati M
    PMID: 12118437
    A retrospective study was carried out to determine the frequency of the pre-core stop codon mutant virus in a group of chronic hepatitis B carriers: 81 cases were considered [33 hepatits B e antigen (HBe) positive and 48 HBe negative]. All of the HBe positive cases had detectable viral DNA by hybridization analysis; in the case of the HBe negative cases, one third had detectable viral DNA by hybridization analysis and two thirds had HBV DNA detectable by polymerase chain reaction (PCR) amplification. Pre-core stop codon mutant detection was carried out on all specimens using allele-specific oligonucleotide hybridization following PCR amplification of the target sequence. The pre-core mutant was detected in 13/33 (39.4%) of HBe positive cases and in 32/48 (66.7%) of HBe negative cases. Sequence analysis was carried out on 8 of the 16 HBe negative specimens that did not carry the pre-core mutant virus to determine the molecular basis for the HBe minus phenotype in these cases: the 1762/1764 TA paired mutation in the second AT rich region of the core promoter was detected in five cases; a start codon mutation was detected in one case. The predominant mutation resulting in the HBe minus phenotype in our isolates was the 1896A pre-core ("pre-core stop codon") mutation; other mutations responsible for the phenotype included the core promoter paired mutation and pre-core start codon mutation. In view of the high frequency of the pre-core mutant virus, sequence analysis was performed to determine the virus genotype on the basis of the nucleotide sequence of codon 15. The sequences of 21 wild type virus (14 HBe positive and 7 HBe negative cases) were examined: 15 were found to be codon 15 CCT variants (71.4%); the frequency in the HBe positive group was 12/14 (85.7%), while that in the HBe negative group was 3/7 (42.9%). The high frequency of the codon 15 CCT variant in association with the frequent occurrence of the pre-core mutant in our isolates concurs with the results of other studies.
    Matched MeSH terms: DNA, Viral/genetics
  10. Tang KF, Lightner DV
    Dis Aquat Organ, 2011 Feb 22;93(3):191-8.
    PMID: 21516971 DOI: 10.3354/dao02293
    We describe a duplex real-time PCR assay using TaqMan probes for the simultaneous detection of monodon baculovirus (MBV) and hepatopancreatic parvovirus (HPV). Both MBV and HPV are shrimp enteric viruses that infect intestinal and hepatopancreatic epithelial cells. Both viruses can cause significant mortalities and depressed growth in infected larval, postlarval, and early juvenile stages of shrimp, and thus present a risk to commercial aquaculture. In this duplex assay, we combined 2 single real-time PCRs, amplifying MBV and HPV, in a one-tube PCR reaction. The 2 viruses were distinguished by specific fluorescent labels at the 5' end of TaqMan probes: the MBV probe was labeled with dichlorodimethoxyfluorescein (JOE), and the HPV probe was labeled with 6-carboxyfluorescein (FAM). The duplex real-time PCR assay was performed in a multi-channel real-time PCR detection system, and MBV and HPV amplification signals were separately detected by the JOE and FAM channels. This duplex assay was validated to be specific to the target viruses and found to have a detection limit of single copies for each virus. The dynamic range was found to be from 1 to 1 x 10(8) copies per reaction. This assay was further applied to quantify MBV and HPV in samples of infected Penaeus monodon collected from Malaysia, Indonesia, and Thailand. The specificity and sensitivity of this duplex real-time PCR assay offer a valuable tool for routine diagnosis and quantification of MBV and HPV from both wild and farmed shrimp stocks.
    Matched MeSH terms: DNA, Viral/genetics
  11. Cowley JA, Rao M, Coman GJ
    Dis Aquat Organ, 2018 Jul 04;129(2):145-158.
    PMID: 29972375 DOI: 10.3354/dao03243
    Infectious hypodermal and hematopoietic necrosis virus (IHHNV) can cause mass mortalities in western blue shrimp Penaeus stylirostris, runt deformity syndrome in Pacific white shrimp P. vannamei and scalloped abdominal shell deformities in black tiger shrimp P. monodon. In P. monodon, however, PCR-based diagnosis of IHHNV can be complicated by the presence of a chromosome-integrated, non-replicating endogenous viral element (EVE). To facilitate high-throughput screening of P. monodon for IHHNV infection and/or EVE sequences, here we report real-time PCR tests designed to specifically detect IHHNV Lineage I, II and III but not EVE Type A sequences and vice versa. Using 108 dsDNA copies of plasmid (p)DNA controls containing either IHHNV or EVE-Type A sequences, both tests displayed absolute specificity. The IHHNV-q309 PCR reliably detected down to ≤10 copies of pDNA, at which levels a 309F/R PCR amplicon was just detectable, and the presence of an IHHNV-EVE sequence did not significantly impact its sensitivity. The IHHNV-qEVE PCR was similarly sensitive. Testing of batches of P. monodon clinical samples from Vietnam/Malaysia and Australia identified good diagnostic concordance between the IHHNV-q309 and 309F/R PCR tests. As expected for a sequence integrated into host chromosomal DNA, IHHNV-qEVE PCR Ct values were highly uniform among samples from shrimp in which an EVE was present. The highly specific and sensitive IHHNV-q309 and IHHNV-qEVE real-time PCR tests described here should prove useful for selecting broodstock free of IHHNV infection and in maintaining breeding populations of P. monodon specific pathogen free for IHHNV, and if desired, also free of IHHNV-EVE sequences.
    Matched MeSH terms: DNA, Viral/genetics*
  12. Tan CW, Tee HK, Lee MH, Sam IC, Chan YF
    PLoS One, 2016;11(9):e0162771.
    PMID: 27617744 DOI: 10.1371/journal.pone.0162771
    Enterovirus A71 (EV-A71) causes major outbreaks of hand, foot and mouth disease, and is occasionally associated with neurological complications and death in children. Reverse genetics is widely used in the field of virology for functional study of viral genes. For EV-A71, such tools are limited to clones that are transcriptionally controlled by T7/SP6 bacteriophage promoter. This is often time-consuming and expensive. Here, we describe the development of infectious plasmid DNA-based EV-A71 clones, for which EV-A71 genome expression is under transcriptional control by the CMV-intermediate early promoter and SV40 transcriptional-termination signal. Transfection of this EV-A71 infectious DNA produces good virus yield similar to in vitro-transcribed EV-A71 infectious RNA, 6.4 and 5.8 log10PFU/ml, respectively. Infectious plasmid with enhanced green fluorescence protein and Nano luciferase reporter genes also produced good virus titers, with 4.3 and 5.0 log10 PFU/ml, respectively. Another infectious plasmid with both CMV and T7 promoters was also developed for easy manipulation of in vitro transcription or direct plasmid transfection. Transfection with either dual-promoter infectious plasmid DNA or infectious RNA derived from this dual-promoter clone produced infectious viral particles. Incorporation of hepatitis delta virus ribozyme, which yields precise 3' ends of the DNA-launched EV-A71 genomic transcripts, increased infectious viral production. In contrast, the incorporation of hammerhead ribozyme in the DNA-launched EV-A71 resulted in lower virus yield, but improved the virus titers for T7 promoter-derived infectious RNA. This study describes rapid and robust reverse genetic tools for EV-A71.
    Matched MeSH terms: DNA, Viral/genetics*
  13. Balakrishnan KN, Abdullah AA, Bala J, Abba Y, Sarah SA, Jesse FFA, et al.
    Infect Genet Evol, 2017 10;54:81-90.
    PMID: 28642159 DOI: 10.1016/j.meegid.2017.06.020
    BACKGROUND: Rat cytomegalovirus ALL-03 (Malaysian strain) which was isolated from a placenta and uterus of a house rat, Rattus rattus diardii has the ability to cross the placenta and infecting the fetus. To further elucidate the pathogenesis of the Malaysian strain of Rat Cytomegalovirus ALL-03 (RCMV ALL-03), detailed analysis on the viral genome sequence is crucial.

    METHODS: Genome sequencing of RCMV ALL-03 was carried out in order to identify the open reading frame (ORF), homology comparison of ORF with other strains of CMV, phylogenetic analysis, classifying ORF with its corresponding conserved genes, and determination of functional proteins and grouping of gene families in order to obtain fundamental knowledge of the genome.

    RESULTS: The present study revealed a total of 123 Coding DNA sequences (CDS) from RCMV ALL-03 with 37 conserved ORF domains as with all herpesvirus genomes. All the CDS possess similar function with RCMV-England followed by RCMV-Berlin, RCMV-Maastricht, and Human CMV. The phylogenetic analysis of RCMV ALL-03 based on conserving genes of herpes virus showed that the Malaysian RCMV isolate is closest to RCMV-English and RCMV-Berlin strains, with 99% and 97% homology, respectively. Similarly, it also demonstrated an evolutionary relationship between RCMV ALL-03 and other strains of herpesviruses from all the three subfamilies. Interestingly, betaherpesvirus subfamily, which has been shown to be more closely related with gammaherpesviruses as compared to alphaherpesviruses, shares some of the functional ORFs. In addition, the arrangement of gene blocks for RCMV ALL-03, which was conserved among herpesvirus family members was also observed in the RCMV ALL-03 genome.

    CONCLUSION: Genomic analysis of RCMV ALL-03 provided an overall picture of the whole genome organization and it served as a good platform for further understanding on the divergence in the family of Herpesviridae.

    Matched MeSH terms: DNA, Viral/genetics
  14. Duff-Farrier CRA, Mbanzibwa DR, Nanyiti S, Bunawan H, Pablo-Rodriguez JL, Tomlinson KR, et al.
    Mol Biotechnol, 2019 Feb;61(2):93-101.
    PMID: 30484144 DOI: 10.1007/s12033-018-0139-7
    Cassava brown streak disease (CBSD) has major impacts on yield and quality of the tuberous roots of cassava in Eastern and Central Arica. At least two Potyviridae species cause the disease: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). Cloned viral genome sequences known as infectious clones (ICs) have been important in the study of other viruses, both as a means of standardising infectious material and characterising viral gene function. IC construction is often technically challenging for Potyviridae due to sequence instability in E. coli. Here, we evaluate three methods for the construction of infectious clones for CBSD. Whilst a simple IC for in vitro transcription was made for UCBSV isolate 'Kikombe', such an approach failed to deliver full-length clones for CBSV isolates 'Nampula' or 'Tanza', necessitating more complex approaches for their construction. The ICs successfully generated symptomatic infection in the model host N. benthamiana and in the natural host cassava. This shows that whilst generating ICs for CBSV is still a technical challenge, a structured approach, evaluating both in vitro and in planta transcription systems should successfully deliver ICs, allowing further study into the symptomology and virulence factors in this important disease complex.
    Matched MeSH terms: DNA, Viral/genetics
  15. Nakowong P, Chatchawal P, Chaibun T, Boonapatcharoen N, Promptmas C, Buajeeb W, et al.
    Talanta, 2024 Mar 01;269:125495.
    PMID: 38043336 DOI: 10.1016/j.talanta.2023.125495
    Cervical cancer emerges as the third most prevalent types of malignancy among women on a global scale. Cervical cancer is significantly associated with the persistent infection of human papillomavirus (HPV) type 16. The process of diagnosing is crucial in order to prevent the progression of a condition into a malignant state. The early detection of cervical cancer through initial stage screening is of the utmost significance in both the prevention and effective management of this disease. The present detection methodology is dependent on quantitative polymerase chain reaction (qPCR), which necessitates the use of a costly heat cycler instrument. In this study, we report the development of an electrochemical DNA biosensor integrated with an isothermal recombinase polymerase amplification (RPA) reaction for the detection and identification of the high-risk HPV-16 genotype. The electrochemical biosensor exhibited a high degree of specificity and sensitivity, as evidenced by its limit of detection (LOD) of 0.23 copies/μL of HPV-16 DNA. The validity of this electrochemical platform was confirmed through the analysis of 40 cervical tissues samples, and the findings were consistent with those obtained through polymerase chain reaction (PCR) testing. Our straightforward electrochemical detection technology and quick turnaround time at 75 min make the assay suitable for point-of-care testing in low-resource settings.
    Matched MeSH terms: DNA, Viral/genetics
  16. Atchison S, Shilling H, Balgovind P, Machalek DA, Hawkes D, Garland SM, et al.
    J Appl Microbiol, 2021 Nov;131(5):2592-2599.
    PMID: 33942451 DOI: 10.1111/jam.15126
    AIM: Validate the Roche, MagNAPure96 (MP96) nucleic acid extraction platform for Seegene Anyplex II HPV28 (Anyplex28) detection of Human Papillomavirus.

    METHODS AND RESULTS: Comparisons were made for Anyplex28 genotyping from 115 cervical samples extracted on the Hamilton, STARlet and the MP96. Two DNA concentrations were used for the MP96, one matched for sample input to the STARlet and another 5× concentration (laboratory standard). Agreement of HPV detection was 89·8% (κ = 0·798; P = 0·007), with HPV detected in 10 more samples for the MP96. There was a high concordance of detection for any oncogenic HPV genotype (κ = 0·77; P = 0·007) and for any low-risk HPV genotype (κ = 0·85; P = 0·008). DNA extracted at laboratory standard had a lower overall agreement 85·2% (κ = 0·708; P DNA with a higher analytical sensitivity on the Anyplex28.

    SIGNIFICANCE AND IMPACT OF THE STUDY: This analysis supports the use of samples extracted on the MP96 for HPV genotyping using the Anyplex28. Furthermore, an increase in DNA concentration increased analytical sensitivity of the Anyplex28, particularly appropriate for prevalence studies.

    Matched MeSH terms: DNA, Viral/genetics
  17. Low WF, Ngeow YF, Chook JB, Tee KK, Ong SK, Peh SC, et al.
    Expert Rev Mol Med, 2022 Nov 16;25:e11.
    PMID: 36380484 DOI: 10.1017/erm.2022.38
    Hepatitis B virus (HBV) infection led to 66% liver deaths world-wide in year 2015. Thirty-seven per cent of these deaths were the result of chronic hepatitis B (CHB)-associated hepatocellular carcinoma (HCC). Although early diagnosis of HCC improves survival, early detection is rare. Methylation of HBV DNA including covalently closed circular DNA (cccDNA) is more often encountered in HCC cases than those in CHB and cirrhosis. Three typical CpG islands within the HBV genome are the common sites for methylation. The HBV cccDNA methylation affects the viral replication and protein expression in the course of infection and may associate with the disease pathogenesis and HCC development. We review the current findings in HBV DNA methylation that provide insights into its role in HCC diagnosis.
    Matched MeSH terms: DNA, Viral/genetics
  18. Jaapar FN, Parmin NA, Halim NHA, Hashim U, Gopinath SCB, Halim FS, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 2):126745.
    PMID: 37689297 DOI: 10.1016/j.ijbiomac.2023.126745
    Genosensor-based electrodes mediated with nanoparticles (NPs) have tremendously developed in medical diagnosis. Herein, we report a facile, rapid, low cost and highly sensitive biosensing strategy for early detection of HPV 18 using gold-nanoparticles (AuNPs) deposited on micro-IDEs. This study represents surface charge transduction of micro-interdigitated electrodes (micro-IDE) alumina insulated with silica, independent and mini genosensor modified with colloidal gold NPs (AuNPs), and determination of gene hybridization for early detection of cervical cancer. The surface of AuNPs deposited micro-IDE functionalized with optimized 3-aminopropyl-triethoxysilane (APTES) followed by hybridization with deoxyribonucleic acid (DNA) virus to develop DNA genosensor. The results of ssDNA hybridization with the ssDNA target of human papillomavirus (HPV) 18 have affirmed that micro-IDE functionalized with colloidal AuNPs resulted in the lowest detection at 0.529 aM. Based on coefficient regression, micro-IDE functionalized with AuNPs produces better results in the sensitivity test (R2 = 0.99793) than unfunctionalized micro-IDE.
    Matched MeSH terms: DNA, Viral/genetics
  19. Haqshenas G, Molano M, Phillips S, Balgovind P, Garland SM, Hawkes D, et al.
    Arch Pathol Lab Med, 2024 Mar 01;148(3):353-358.
    PMID: 37226838 DOI: 10.5858/arpa.2022-0317-OA
    CONTEXT.—: Detection of human papillomavirus (HPV) in formalin-fixed, paraffin-embedded (FFPE) tissues may identify the cause of lesions and has value for the development of new diagnostic assays and epidemiologic studies. Seegene Anyplex II assays are widely used for HPV screening, but their performance using FFPE samples has not been fully explored.

    OBJECTIVE.—: To validate Anyplex II HPV HR Detection (Anyplex II, Seegene) using FFPE samples.

    DESIGN.—: We used 248 stored DNA extracts from cervical cancer FFPE samples collected during 2005-2015 that tested HPV positive using the RHA kit HPV SPF10-LiPA25, v1 (SPF10, Labo Biomedical Products) HPV genotyping assay, manufacturer-validated for FFPE samples.

    RESULTS.—: Of the selected 248 samples, 243 were used in our analysis. Consistent with SPF10 genotyping results, Anyplex II detected all 12 oncogenic types and had an overall HPV detection rate of 86.4% (210 of 243 samples). Anyplex II and SPF10 showed very high agreement for the detection of the 2 most important oncogenic genotypes: HPV 16 (219 of 226; 96.9%; 95% CI, 93.7-98.75) and HPV 18 (221 of 226; 97.8%; 95% CI, 94.9-99.3).

    CONCLUSIONS.—: Overall results showed that both platforms produced comparable HPV genotyping results, indicating the suitability of Anyplex II for FFPE samples. The Anyplex II assay has the added convenience of being an efficient, single-well semiquantitative polymerase chain reaction assay. Further optimization of Anyplex II may enhance its performance using FFPE samples by improving the detection limit.

    Matched MeSH terms: DNA, Viral/genetics
  20. Wang H, Ren L, Liang Y, Zheng K, Guo R, Liu Y, et al.
    Microbiol Spectr, 2023 Aug 17;11(4):e0533522.
    PMID: 37272818 DOI: 10.1128/spectrum.05335-22
    Psychrobacter is an important bacterial genus that is widespread in Antarctic and marine environments. However, to date, only two complete Psychrobacter phage sequences have been deposited in the NCBI database. Here, the novel Psychrobacter phage vB_PmaS_Y8A, infecting Psychrobacter HM08A, was isolated from sewage in the Qingdao area, China. The morphology of vB_PmaS_Y8A was characterized by transmission electron microscopy, revealing an icosahedral head and long tail. The genomic sequence of vB_PmaS_Y8A is linear, double-stranded DNA with a length of 40,226 bp and 44.1% G+C content, and encodes 69 putative open reading frames. Two auxiliary metabolic genes (AMGs) were identified, encoding phosphoadenosine phosphosulfate reductase and MarR protein. The first AMG uses thioredoxin as an electron donor for the reduction of phosphoadenosine phosphosulfate to phosphoadenosine phosphate. MarR regulates multiple antibiotic resistance mechanisms in Escherichia coli and is rarely found in viruses. No tRNA genes were identified and no lysogeny-related feature genes were detected. However, many similar open reading frames (ORFs) were found in the host genome, which may indicate that Y8A also has a lysogenic stage. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis indicate that vB_PmaS_Y8A contains a novel genomic architecture similar only to that of Psychrobacter phage pOW20-A, although at a low similarity. vB_PmaS_Y8A represents a new family-level virus cluster with 22 metagenomic assembled viral genomes, here named Minviridae. IMPORTANCE Although Psychrobacter is a well-known and important bacterial genus that is widespread in Antarctic and marine environments, genetic characterization of its phages is still rare. This study describes a novel Psychrobacter phage containing an uncharacterized antibiotic resistance gene and representing a new virus family, Minviridae. The characterization provided here will bolster current understanding of genomes, diversity, evolution, and phage-host interactions in Psychrobacter populations.
    Matched MeSH terms: DNA, Viral/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links