Displaying publications 41 - 60 of 411 in total

Abstract:
Sort:
  1. Nasir J, Jamaluddin MH, Ahmad Khan A, Kamarudin MR, Yen BL, Owais O
    Sensors (Basel), 2017 Jan 13;17(1).
    PMID: 28098807 DOI: 10.3390/s17010148
    An L-shaped dual-band multiple-input multiple-output (MIMO) rectangular dielectric resonator antenna (RDRA) for long term evolution (LTE) applications is proposed. The presented antenna can transmit and receive information independently using fundamental TE111 and higher order TE121 modes of the DRA. TE111 degenerate mode covers LTE band 2 (1.85-1.99 GHz), 3 (1.71-1.88 GHz), and 9 (1.7499-1.7849 GHz) at fr = 1.8 GHz whereas TE121 covers LTE band 7 (2.5-2.69 GHz) at fr = 2.6 GHz, respectively. An efficient design method has been used to reduce mutual coupling between ports by changing the effective permittivity values of DRA by introducing a cylindrical air-gap at an optimal position in the dielectric resonator. This air-gap along with matching strips at the corners of the dielectric resonator keeps the isolation at a value more than 17 dB at both the bands. The diversity performance has also been evaluated by calculating the envelope correlation coefficient, diversity gain, and mean effective gain of the proposed design. MIMO performance has been evaluated by measuring the throughput of the proposed MIMO antenna. Experimental results successfully validate the presented design methodology in this work.
    Matched MeSH terms: Equipment Design
  2. Nolida Yussup, Nur Aira Abd. Rahman, Ismail Mustapha, Jaafar Abdullah, Mohd. Ashhar Khalid, Hearie Hassan, et al.
    MyJurnal
    Data transmission in field works especially that is related to industry, gas and chemical is paramount importance to ensure data accuracy and delivery time. A development of wireless detector system for remote data acquisition to be applied in conducting fieldwork in industry is described in this paper. A wireless communication which is applied in the project development is a viable and cost-effective method of transmitting data from the detector to the laptop on the site to facilitate data storage and analysis automatically, which can be used in various applications such as column scanning. The project involves hardware design for the detector and electronics parts besides programming for control board and user interface. A prototype of a wireless gamma scintillation detector is developed with capabilities of transmitting data to computer via radio frequency (RF) and recording the data within the 433MHz band at baud rate of 19200.
    Matched MeSH terms: Equipment Design
  3. Abdalla AN, Ali K, Paw JKS, Rifai D, Faraj MA
    Sensors (Basel), 2018 Jun 30;18(7).
    PMID: 29966367 DOI: 10.3390/s18072108
    Eddy current testing (ECT) is an accurate, widely used and well-understood inspection technique, particularly in the aircraft and nuclear industries. The coating thickness or lift-off will influence the measurement of defect depth on pipes or plates. It will be an uncertain decision condition whether the defects on a workpiece are cracks or scratches. This problem can lead to the occurrence of pipe leakages, besides causing the degradation of a company’s productivity and most importantly risking the safety of workers. In this paper, a novel eddy current testing error compensation technique based on Mamdani-type fuzzy coupled differential and absolute probes was proposed. The general descriptions of the proposed ECT technique include details of the system design, intelligent fuzzy logic design and Simulink block development design. The detailed description of the proposed probe selection, design and instrumentation of the error compensation of eddy current testing (ECECT) along with the absolute probe and differential probe relevant to the present research work are presented. The ECECT simulation and hardware design are proposed, using the fuzzy logic technique for the development of the new methodology. The depths of the defect coefficients of the probe’s lift-off caused by the coating thickness were measured by using a designed setup. In this result, the ECECT gives an optimum correction for the lift-off, in which the reduction of error is only within 0.1% of its all-out value. Finally, the ECECT is used to measure lift-off in a range of approximately 1 mm to 5 mm, and the performance of the proposed method in non-linear cracks is assessed.
    Matched MeSH terms: Equipment Design
  4. Yang T, Xiao Y, Zhang Z, Liang Y, Li G, Zhang M, et al.
    Sci Rep, 2018 09 28;8(1):14518.
    PMID: 30266999 DOI: 10.1038/s41598-018-32757-9
    Soft robots driven by stimuli-responsive materials have their own unique advantages over traditional rigid robots such as large actuation, light weight, good flexibility and biocompatibility. However, the large actuation of soft robots inherently co-exists with difficulty in control with high precision. This article presents a soft artificial muscle driven robot mimicking cuttlefish with a fully integrated on-board system including power supply and wireless communication system. Without any motors, the movements of the cuttlefish robot are solely actuated by dielectric elastomer which exhibits muscle-like properties including large deformation and high energy density. Reinforcement learning is used to optimize the control strategy of the cuttlefish robot instead of manual adjustment. From scratch, the swimming speed of the robot is enhanced by 91% with reinforcement learning, reaching to 21 mm/s (0.38 body length per second). The design principle behind the structure and the control of the robot can be potentially useful in guiding device designs for demanding applications such as flexible devices and soft robots.
    Matched MeSH terms: Equipment Design
  5. Hasan MM, Faruque MRI, Islam MT
    Sci Rep, 2018 01 19;8(1):1240.
    PMID: 29352228 DOI: 10.1038/s41598-018-19705-3
    A compact metamaterial inspired antenna operate at LTE, Bluetooth and WiMAX frequency band is introduced in this paper. For the lower band, the design utilizes an outer square metallic strip forcing the patch to radiate as an equivalent magnetic-current loop. For the upper band, another magnetic current loop is created by adding metamaterial structure near the feed line on the patch. The metamaterial inspired antenna dimension of 42 × 32 mm2 compatible to wireless devices. Finite integration technique based CST Microwave Studio simulator has been used to design and numerical investigation as well as lumped circuit model of the metamaterial antenna is explained with proper mathematical derivation. The achieved measured dual band operation of the conventional antenna are sequentially, 0.561~0.578 GHz, 2.346~2.906 GHz, and 2.91~3.49 GHz, whereas the metamaterial inspired antenna shows dual-band operation from 0.60~0.64 GHz, 2.67~3.40 GHz and 3.61~3.67 GHz, respectively. Therefore, the metamaterial antenna is applicable for LTE and WiMAX applications. Besides, the measured metamaterial antenna gains of 0.15~3.81 dBi and 3.47~3.75 dBi, respectively for the frequency band of 2.67~3.40 GHz and 3.61~3.67 GHz.
    Matched MeSH terms: Equipment Design
  6. Hasan MM, Islam MT, Samsuzzaman M, Baharuddin MH, Soliman MS, Alzamil A, et al.
    Sci Rep, 2022 Jun 08;12(1):9433.
    PMID: 35676407 DOI: 10.1038/s41598-022-13522-5
    This work proposes a compact metasurface (MS)-integrated wideband multiple-input multiple-output (MIMO) antenna for fifth generation (5G) sub-6 GHz wireless communication systems. The perceptible novelty of the proposed MIMO system is its wide operating bandwidth, high gain, lower interelement gap, and excellent isolation within the MIMO components. The radiating patch of the antenna is truncated diagonally with a partially ground plane, and a metasurface has been employed for enhancing the antenna performance. The suggested MS integrated single antenna prototype has a miniature dimension of 0.58λ × 0.58λ × 0.02λ. The simulated and measured findings demonstrate a wideband characteristic starting from 3.11 to 7.67 GHz including a high realized gain of 8 dBi. The four-element MIMO system has been designed by rendering each single antenna orthogonally to one another while retaining compact size and wideband properties between 3.2 and 7.6 GHz. The suggested MIMO prototype has been designed and fabricated on a low loss Rogers RT5880 substrate with a miniature dimension of 1.05λ × 1.05λ × 0.02λ and its performance is evaluated using a suggested 10 × 10 array of a square enclosed circular split ring resonators within the same substrate material. The inclusion of the proposed metasurface with a backplane significantly reduces antenna backward radiation and manipulates the electromagnetic field, thus improving the bandwidth, gain and isolation of MIMO components. The suggested 4-port MIMO antenna offers a high realized gain of 8.3 dBi compared to existing MIMO antennas with an excellent average total efficiency of 82% in the 5G sub-6 GHz spectrum and is in good accordance with measured results. Furthermore, the developed MIMO antenna exhibits outstanding diversity characteristics in respect of envelope correlation coefficient (ECC) less than 0.004, diversity gain (DG) close to 10 dB (> 9.98 dB) and high isolation between MIMO components (> 15.5 dB). Therefore, the proposed MS-inspired MIMO antenna substantiates its applicability for 5G sub-6 GHz communication networks.
    Matched MeSH terms: Equipment Design
  7. Jeroish ZE, Bhuvaneshwari KS, Samsuri F, Narayanamurthy V
    Biomed Microdevices, 2021 Dec 03;24(1):3.
    PMID: 34860299 DOI: 10.1007/s10544-021-00595-8
    Heating plays a vital role in science, engineering, mining, and space, where heating can be achieved via electrical, induction, infrared, or microwave radiation. For fast switching and continuous applications, hotplate or Peltier elements can be employed. However, due to bulkiness, they are ineffective for portable applications or operation at remote locations. Miniaturization of heaters reduces power consumption and bulkiness, enhances the thermal response, and integrates with several sensors or microfluidic chips. The microheater has a thickness of ~ 100 nm to ~ 100 μm and offers a temperature range up to 1900℃ with precise control. In recent years, due to the escalating demand for flexible electronics, thin-film microheaters have emerged as an imperative research area. This review provides an overview of recent advancements in microheater as well as analyses different microheater designs, materials, fabrication, and temperature control. In addition, the applications of microheaters in gas sensing, biological, and electrical and mechanical sectors are emphasized. Moreover, the maximum temperature, voltage, power consumption, response time, and heating rate of each microheater are tabulated. Finally, we addressed the specific key considerations for designing and fabricating a microheater as well as the importance of microheater integration in COVID-19 diagnostic kits. This review thereby provides general guidelines to researchers to integrate microheater in micro-electromechanical systems (MEMS), which may pave the way for developing rapid and large-scale SARS-CoV-2 diagnostic kits in resource-constrained clinical or home-based environments.
    Matched MeSH terms: Equipment Design
  8. Chang XL, Chee PS, Lim EH
    Sci Rep, 2023 Jun 15;13(1):9678.
    PMID: 37322083 DOI: 10.1038/s41598-023-36335-6
    This paper presents a 35.0 × 35.0 × 2.7 mm3 compact, low-profile, and lightweight wearable antenna for on-body wireless power transfer. The proposed antenna can be easily printed on a piece of flexible tattoo paper and transformed onto a PDMS substrate, making the entire antenna structure conform to the human body for achieving a better user experience. Here, a layer of frequency selective surface (FSS) is inserted in between the antenna and human tissue, which has successfully reduced the loading effects of the tissue, with 13.8 dB improvement on the antenna gain. Also, the operating frequency of the rectenna is not affected much by deformation. To maximize the RF-DC conversion efficiency, a matching loop, a matching stub, and two coupled lines are integrated with the antenna for tuning the rectenna so that a wide bandwidth (~ 24%) can be achieved without the use of any external matching networks. Measurement results show that the proposed rectenna can achieve a maximum conversion efficiency of 59.0% with an input power of 5.75 μW/cm2 and can even exceed 40% for a low input power of 1.0 μW/cm2 with a 20 kΩ resistive load, while many other reported rectennas can only achieve a high PCE at a high power density level, which is not always practical for a wearable antenna.
    Matched MeSH terms: Equipment Design
  9. Rai NA, Abdul Aziz MJ, Sahid MR, Husain AR, Anjum W, Low WY
    PLoS One, 2023;18(10):e0291873.
    PMID: 37847692 DOI: 10.1371/journal.pone.0291873
    This paper proposes an average current mode controller (ACMC) for a single-phase bridgeless power factor correction (PFC) circuit using a single ended primary inductor converter (SEPIC) via second-order model reduction. The superiority of the proposed controller is PFC accomplished at power up to 350 W with high efficiency via the second-order model reduction. The design and implementation of ACMC on the converter operated with continuous conduction mode (CCM) is explained in detail. ACMC forces input current to follow sinusoidal current reference at different power levels and sustain high power factor (PF). The proposed controller is designed based on the theoretical analysis operation of the circuit. For verification, MATLAB/Simulink simulations are carried out and validation through an experiment test rig for 110-220 Vrms input, 100 Vdc/ 350 W output prototype at 20 kHz switching frequency. It is proven that the proposed controller strategy accomplishes high PF, high efficiency and conformity with the simulation.
    Matched MeSH terms: Equipment Design
  10. Hanif M, Jeoti V, Ahmad MR, Aslam MZ, Qureshi S, Stojanovic G
    Sensors (Basel), 2021 Nov 26;21(23).
    PMID: 34883867 DOI: 10.3390/s21237863
    Lately, wearable applications featuring photonic on-chip sensors are on the rise. Among many ways of controlling and/or modulating, the acousto-optic technique is seen to be a popular technique. This paper undertakes the study of different multilayer structures that can be fabricated for realizing an acousto-optic device, the objective being to obtain a high acousto-optic figure of merit (AOFM). By varying the thicknesses of the layers of these materials, several properties are discussed. The study shows that the multilayer thin film structure-based devices can give a high value of electromechanical coupling coefficient (k2) and a high AOFM as compared to the bulk piezoelectric/optical materials. The study is conducted to find the optimal normalised thickness of the multilayer structures with a material possessing the best optical and piezoelectric properties for fabricating acousto-optic devices. Based on simulations and studies of SAW propagation characteristics such as the electromechanical coupling coefficient (k2) and phase velocity (v), the acousto-optic figure of merit is calculated. The maximum value of the acousto-optic figure of merit achieved is higher than the AOFM of all the individual materials used in these layer structures. The suggested SAW device has potential application in wearable and small footprint acousto-optic devices and gives better results than those made with bulk piezoelectric materials.
    Matched MeSH terms: Equipment Design
  11. Sadeque MG, Yusoff Z, Roslee M, Hashim SJ, Mohd Marzuki AS, Lees J, et al.
    PLoS One, 2024;19(8):e0306738.
    PMID: 39141686 DOI: 10.1371/journal.pone.0306738
    In order to implement the fifth generation (5G) communication system for a large number of users, the governments of many countries nominated the low 5G frequency band between 3.3 and 4.3 GHz. This paper proposes a wideband RFPA by designing the input matching network (MN) and output MN of the device using the simplified real frequency technique (SRFT) and the harmonic tuning network. The load-pull and source-pull is applied at multiple points for 100 MHz intervals over the bandwidth to obtain the optimum impedances at the output and input of the 10W Gallium Nitride (GaN) Cree CGH40010F device. To verify the design, the RFPA is simulated, and the performance is measured between 3.3 and 4.3 GHz. According to experimental findings, the measured drain efficiency (DE) throughout the whole bandwidth ranged from 57.5 to 67.5% at the output power of 40 dBm. Moreover, at the 1 dB compression point between 39.2 and 42.2 dBm output power, the drain efficiency (DE) achieves a high value of 81.2% with an output power of 42.2 dBm at a frequency of 3.3 GHz. The RFPA can obtain a maximum gain of 12.4 dB at 3.5 GHz. The linearity of the RFPA with a two-tone signal is measured and the value is less than -22 dBc all over the band.
    Matched MeSH terms: Equipment Design
  12. Hossain MZ, Selvaraj JA, Rahim NA
    PLoS One, 2024;19(8):e0306906.
    PMID: 39146264 DOI: 10.1371/journal.pone.0306906
    High conversion ratio dc-dc converters have received significant attention in renewable energy systems, primarily due to their necessary high-gain characteristics. This research proposes a high step-up ratio full-bridge resonant cascaded (FBRC) dc-dc converter designed for use in photovoltaics (PV), fuel cells (FC), electric vehicles (EV), and other low-voltage output energy sectors to achieve high voltage gain. This converter contains a full-bridge cell with a boost input inductor, a diode-capacitor cascaded stage that replaces the transformer as a voltage multiplier and an inductor-capacitor (LC) parallel-series resonant network across the FB terminal. One of the strategic features of the converter is its high voltage step-up characteristic combined with lower duty cycle operation that limits the maximum current through the active devices, making it particularly suitable for systems that generate low output voltage. In addition, zero-voltage switching (ZVS) is achieved during the turn-off and turn-on operation of the FB switches from 25% to full load, thereby lessening the switching losses. Moreover, the diminished necessity for passive components and the decreased voltage stress on both active and passive devices lead to the use of smaller and more cost-effective components. The theoretical analysis of the proposed converter is validated using a 500 W laboratory-scale prototype wherein high-performance SiC-based MOSFETs have been utilized as switching devices. It offers reduced ripples, with input current ripple at 5% and output voltage ripple at 0.76%. When the load is 400 W and 60 V as the input voltage, the maximum efficiency is found 95.8% at 400 V output voltage. The proposed dc-dc converter, with its high voltage gain and reduced component stress, shows significant promise for application in renewable energy systems.
    Matched MeSH terms: Equipment Design
  13. Akeiber HJ, Wahid MA, Hussen HM, Mohammad AT
    ScientificWorldJournal, 2014;2014:391690.
    PMID: 25313367 DOI: 10.1155/2014/391690
    The application of phase change materials (PCMs) in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.
    Matched MeSH terms: Equipment Design/instrumentation
  14. Megat Hasnan MM, Mohd Sabri MF, Mohd Said S, Nik Ghazali NN
    ScientificWorldJournal, 2014;2014:912683.
    PMID: 25165751 DOI: 10.1155/2014/912683
    This paper presents the design and evaluation of a high force density fishbone shaped electrostatic comb drive actuator. This comb drive actuator has a branched structure similar to a fishbone, which is intended to increase the capacitance of the electrodes and hence increase the electrostatic actuation force. Two-dimensional finite element analysis was used to simulate the motion of the fishbone shaped electrostatic comb drive actuator and compared against the performance of a straight sided electrostatic comb drive actuator. Performances of both designs are evaluated by comparison of displacement and electrostatic force. For both cases, the active area and the minimum gap distance between the two electrodes were constant. An active area of 800 × 300 μm, which contained 16 fingers of fishbone shaped actuators and 40 fingers of straight sided actuators, respectively, was used. Through simulation, improvement of drive force of the fishbone shaped electrostatic comb driver is approximately 485% higher than conventional electrostatic comb driver. These results indicate that the fishbone actuator design provides good potential for applications as high force density electrostatic microactuator in MEMS systems.
    Matched MeSH terms: Equipment Design*
  15. Ali MS, AbuZaiter A, Schlosser C, Bycraft B, Takahata K
    Sensors (Basel), 2014 Jul 10;14(7):12399-409.
    PMID: 25014100 DOI: 10.3390/s140712399
    This paper reports a method that enables real-time displacement monitoring and control of micromachined resonant-type actuators using wireless radiofrequency (RF). The method is applied to an out-of-plane, spiral-coil microactuator based on shape-memory-alloy (SMA). The SMA spiral coil forms an inductor-capacitor resonant circuit that is excited using external RF magnetic fields to thermally actuate the coil. The actuation causes a shift in the circuit's resonance as the coil is displaced vertically, which is wirelessly monitored through an external antenna to track the displacements. Controlled actuation and displacement monitoring using the developed method is demonstrated with the microfabricated device. The device exhibits a frequency sensitivity to displacement of 10 kHz/µm or more for a full out-of-plane travel range of 466 µm and an average actuation velocity of up to 155 µm/s. The method described permits the actuator to have a self-sensing function that is passively operated, thereby eliminating the need for separate sensors and batteries on the device, thus realizing precise control while attaining a high level of miniaturization in the device.
    Matched MeSH terms: Equipment Design/instrumentation
  16. Tan GH, Sidek RM, Ramiah H, Chong WK, Lioe de X
    ScientificWorldJournal, 2014;2014:163414.
    PMID: 25197694 DOI: 10.1155/2014/163414
    This journal presents an ultra-low-voltage current bleeding mixer with high LO-RF port-to-port isolation, implemented on 0.13 μm standard CMOS technology for ZigBee application. The architecture compliments a modified current bleeding topology, consisting of NMOS-based current bleeding transistor, PMOS-based switching stage, and integrated inductors achieving low-voltage operation and high LO-RF isolation. The mixer exhibits a conversion gain of 7.5 dB at the radio frequency (RF) of 2.4 GHz, an input third-order intercept point (IIP3) of 1 dBm, and a LO-RF isolation measured to 60 dB. The DC power consumption is 572 µW at supply voltage of 0.45 V, while consuming a chip area of 0.97 × 0.88 mm(2).
    Matched MeSH terms: Equipment Design/methods*
  17. Rahman LF, Reaz MB, Yin CC, Ali MA, Marufuzzaman M
    PLoS One, 2014;9(10):e108634.
    PMID: 25299266 DOI: 10.1371/journal.pone.0108634
    The cross-coupled circuit mechanism based dynamic latch comparator is presented in this research. The comparator is designed using differential input stages with regenerative S-R latch to achieve lower offset, lower power, higher speed and higher resolution. In order to decrease circuit complexity, a comparator should maintain power, speed, resolution and offset-voltage properly. Simulations show that this novel dynamic latch comparator designed in 0.18 µm CMOS technology achieves 3.44 mV resolution with 8 bit precision at a frequency of 50 MHz while dissipating 158.5 µW from 1.8 V supply and 88.05 µA average current. Moreover, the proposed design propagates as fast as 4.2 nS with energy efficiency of 0.7 fJ/conversion-step. Additionally, the core circuit layout only occupies 0.008 mm2.
    Matched MeSH terms: Equipment Design/instrumentation*
  18. Soltani M, Moghaddam TB, Karim MR, Sulong NH
    Accid Anal Prev, 2013 Oct;59:240-52.
    PMID: 23820073 DOI: 10.1016/j.aap.2013.05.029
    Road safety barriers protect vehicles from roadside hazards by redirecting errant vehicles in a safe manner as well as providing high levels of safety during and after impact. This paper focused on transition safety barrier systems which were located at the point of attachment between a bridge and roadside barriers. The aim of this study was to provide an overview of the behavior of transition systems located at upstream bridge rail with different designs and performance levels. Design factors such as occupant risk and vehicle trajectory for different systems were collected and compared. To achieve this aim a comprehensive database was developed using previous studies. The comparison showed that Test 3-21, which is conducted by impacting a pickup truck with speed of 100 km/h and angle of 25° to transition system, was the most severe test. Occupant impact velocity and ridedown acceleration for heavy vehicles were lower than the amounts for passenger cars and pickup trucks, and in most cases higher occupant lateral impact ridedown acceleration was observed on vehicles subjected to higher levels of damage. The best transition system was selected to give optimum performance which reduced occupant risk factors using the similar crashes in accordance with Test 3-21.
    Matched MeSH terms: Equipment Design/standards*
  19. Fadzil FM, Choon D, Arumugam K
    Aust Fam Physician, 2010 Apr;39(4):237-9.
    PMID: 20372685
    This study assessed the concordance of the temperatures of the digital, liquid crystal forehead and digital infrared tympanic thermometers with the mercury in glass thermometer.
    Matched MeSH terms: Equipment Design*
  20. Kadirgama K, Noor MM, Abd Alla AN
    Sensors (Basel), 2010;10(3):2054-63.
    PMID: 22294914 DOI: 10.3390/s100302054
    Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Response Ant Colony Optimization (RACO). The approach is based on Response Surface Method (RSM) and Ant Colony Optimization (ACO). The main objectives to find the optimized parameters and the most dominant variables (cutting speed, feedrate, axial depth and radial depth). The first order model indicates that the feedrate is the most significant factor affecting surface roughness.
    Matched MeSH terms: Equipment Design/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links