Displaying publications 41 - 60 of 939 in total

Abstract:
Sort:
  1. Chakraborty S, Deb B, Barbhuiya PA, Uddin A
    Virus Res, 2019 04 02;263:129-138.
    PMID: 30664908 DOI: 10.1016/j.virusres.2019.01.011
    Codon usage bias (CUB) is the unequal usage of synonymous codons of an amino acid in which some codons are used more often than others and is widely used in understanding molecular biology, genetics, and functional regulation of gene expression. Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes fatal disease in both humans and animals. NiV was first identified during an outbreak of a disease in Malaysia in 1998 and then occurred periodically since 2001 in India, Bangladesh, and the Philippines. We used bioinformatics tools to analyze the codon usage patterns in a genome-wide manner among 11 genomes of NiV as no work was reported yet. The compositional properties revealed that the overall GC and AT contents were 41.96 and 58.04%, respectively i.e. Nipah virus genes were AT-rich. Correlation analysis between overall nucleotide composition and its 3rd codon position suggested that both mutation pressure and natural selection might influence the CUB across Nipah genomes. Neutrality plot revealed natural selection might have played a major role while mutation pressure had a minor role in shaping the codon usage bias in NiV genomes.
    Matched MeSH terms: Genome, Viral*
  2. Zhu M, Shen J, Zeng Q, Tan JW, Kleepbua J, Chew I, et al.
    Front Public Health, 2021 07 30;9:685315.
    PMID: 34395364 DOI: 10.3389/fpubh.2021.685315
    Background: The ongoing coronavirus disease 2019 (COVID-19) pandemic has posed an unprecedented challenge to public health in Southeast Asia, a tropical region with limited resources. This study aimed to investigate the evolutionary dynamics and spatiotemporal patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the region. Materials and Methods: A total of 1491 complete SARS-CoV-2 genome sequences from 10 Southeast Asian countries were downloaded from the Global Initiative on Sharing Avian Influenza Data (GISAID) database on November 17, 2020. The evolutionary relationships were assessed using maximum likelihood (ML) and time-scaled Bayesian phylogenetic analyses, and the phylogenetic clustering was tested using principal component analysis (PCA). The spatial patterns of SARS-CoV-2 spread within Southeast Asia were inferred using the Bayesian stochastic search variable selection (BSSVS) model. The effective population size (Ne) trajectory was inferred using the Bayesian Skygrid model. Results: Four major clades (including one potentially endemic) were identified based on the maximum clade credibility (MCC) tree. Similar clustering was yielded by PCA; the first three PCs explained 46.9% of the total genomic variations among the samples. The time to the most recent common ancestor (tMRCA) and the evolutionary rate of SARS-CoV-2 circulating in Southeast Asia were estimated to be November 28, 2019 (September 7, 2019 to January 4, 2020) and 1.446 × 10-3 (1.292 × 10-3 to 1.613 × 10-3) substitutions per site per year, respectively. Singapore and Thailand were the two most probable root positions, with posterior probabilities of 0.549 and 0.413, respectively. There were high-support transmission links (Bayes factors exceeding 1,000) in Singapore, Malaysia, and Indonesia; Malaysia involved the highest number (7) of inferred transmission links within the region. A twice-accelerated viral population expansion, followed by a temporary setback, was inferred during the early stages of the pandemic in Southeast Asia. Conclusions: With available genomic data, we illustrate the phylogeography and phylodynamics of SARS-CoV-2 circulating in Southeast Asia. Continuous genomic surveillance and enhanced strategic collaboration should be listed as priorities to curb the pandemic, especially for regional communities dominated by developing countries.
    Matched MeSH terms: Genome, Viral/genetics
  3. Ten KE, Md Zoqratt MZH, Ayub Q, Tan HS
    BMC Res Notes, 2021 Mar 04;14(1):83.
    PMID: 33663564 DOI: 10.1186/s13104-021-05493-z
    OBJECTIVE: The nosocomial pathogen, Acinetobacter baumannii, has acquired clinical significance due to its ability to persist in hospital settings and survive antibiotic treatment, which eventually resulted in the rapid spread of this bacterium with antimicrobial resistance (AMR) phenotypes. This study used a multidrug-resistant A. baumannii (strain ATCC BAA1605) as a model to study the genomic features of this pathogen.

    RESULTS: One circular chromosome and one circular plasmid were discovered in the complete genome of A. baumannii ATCC BAA1605 using whole-genome sequencing. The chromosome is 4,039,171 bp long with a GC content of 39.24%. Many AMR genes, which confer resistance to major classes of antibiotics (beta-lactams, aminoglycosides, tetracycline, sulphonamides), were found on the chromosome. Two genomic islands were predicted on the chromosome, one of which (Genomic Island 1) contains a cluster of AMR genes and mobile elements, suggesting the possibility of horizontal gene transfer. A subtype I-F CRISPR-Cas system was also identified on the chromosome of A. baumannii ATCC BAA1605. This study provides valuable genome data that can be used as a reference for future studies on A. baumannii. The genome of A. baumannii ATCC BAA1605 has been deposited at GenBank under accession no. CP058625 and CP058626.

    Matched MeSH terms: Genome, Bacterial/genetics
  4. Lam SD, Babu MM, Lees J, Orengo CA
    PLoS Comput Biol, 2021 03;17(3):e1008708.
    PMID: 33651795 DOI: 10.1371/journal.pcbi.1008708
    Alternative splicing can expand the diversity of proteomes. Homologous mutually exclusive exons (MXEs) originate from the same ancestral exon and result in polypeptides with similar structural properties but altered sequence. Why would some genes switch homologous exons and what are their biological impact? Here, we analyse the extent of sequence, structural and functional variability in MXEs and report the first large scale, structure-based analysis of the biological impact of MXE events from different genomes. MXE-specific residues tend to map to single domains, are highly enriched in surface exposed residues and cluster at or near protein functional sites. Thus, MXE events are likely to maintain the protein fold, but alter specificity and selectivity of protein function. This comprehensive resource of MXE events and their annotations is available at: http://gene3d.biochem.ucl.ac.uk/mxemod/. These findings highlight how small, but significant changes at critical positions on a protein surface are exploited in evolution to alter function.
    Matched MeSH terms: Genome/genetics*
  5. Ang MY, Dutta A, Wee WY, Dymock D, Paterson IC, Choo SW
    Genome Biol Evol, 2016 10 05;8(9):2928-2938.
    PMID: 27540086
    Fusobacterium nucleatum is considered to be a key oral bacterium in recruiting periodontal pathogens into subgingival dental plaque. Currently F. nucleatum can be subdivided into five subspecies. Our previous genome analysis of F. nucleatum W1481 (referred to hereafter as W1481), isolated from an 8-mm periodontal pocket in a patient with chronic periodontitis, suggested the possibility of a new subspecies. To further investigate the biology and relationships of this possible subspecies with other known subspecies, we performed comparative analysis between W1481 and 35 genome sequences represented by the five known Fusobacterium subspecies. Our analyses suggest that W1481 is most likely a new F. nucleatum subspecies, supported by evidence from phylogenetic analyses and maximal unique match indices (MUMi). Interestingly, we found a horizontally transferred W1481-specific genomic island harboring the tripartite ATP-independent (TRAP)-like transporter genes, suggesting this bacterium might have a high-affinity transport system for the C4-dicarboxylates malate, succinate, and fumarate. Moreover, we found virulence genes in the W1481 genome that may provide a strong defense mechanism which might enable it to colonize and survive within the host by evading immune surveillance. This comparative study provides better understanding of F. nucleatum and the basis for future functional work on this important pathogen.
    Matched MeSH terms: Genome, Bacterial*
  6. Lau YL, Lee WC, Chen J, Zhong Z, Jian J, Amir A, et al.
    PLoS One, 2016;11(6):e0157893.
    PMID: 27347683 DOI: 10.1371/journal.pone.0157893
    Anopheles cracens has been incriminated as the vector of human knowlesi malaria in peninsular Malaysia. Besides, it is a good laboratory vector of Plasmodium falciparum and P. vivax. The distribution of An. cracens overlaps with that of An. maculatus, the human malaria vector in peninsular Malaysia that seems to be refractory to P. knowlesi infection in natural settings. Whole genome sequencing was performed on An. cracens and An. maculatus collected here. The draft genome of An. cracens was 395 Mb in size whereas the size of An. maculatus draft genome was 499 Mb. Comparison with the published Malaysian An. maculatus genome suggested the An. maculatus specimen used in this study as a different geographical race. Comparative analyses highlighted the similarities and differences between An. cracens and An. maculatus, providing new insights into their biological behavior and characteristics.
    Matched MeSH terms: Genome, Insect*
  7. Yu CY, Ang GY, Chong TM, Chin PS, Ngeow YF, Yin WF, et al.
    J Antimicrob Chemother, 2017 04 01;72(4):1253-1255.
    PMID: 28031273 DOI: 10.1093/jac/dkw541
    Matched MeSH terms: Genome, Bacterial/genetics*
  8. S, MARAN, LEE, Y. Y., ZILFALIL BA, NOORIZAN AM
    MyJurnal
    Genome Wide Association (GWA) Studies of complex diseases represents a new paradigm in the
    post-genomic era. Since then, the eld of human genetics has been revolutionized by the GWA Studies approach (Yang and Hibberd 2009). Adding to this, the completion of human genome sequence had enabled a systemic identi cation of genetic loci that determines
    the etiology of complex diseases.
    Matched MeSH terms: Genome, Human; Genome-Wide Association Study
  9. Sinding MS, Gopalakrishan S, Vieira FG, Samaniego Castruita JA, Raundrup K, Heide Jørgensen MP, et al.
    PLoS Genet, 2018 11;14(11):e1007745.
    PMID: 30419012 DOI: 10.1371/journal.pgen.1007745
    North America is currently home to a number of grey wolf (Canis lupus) and wolf-like canid populations, including the coyote (Canis latrans) and the taxonomically controversial red, Eastern timber and Great Lakes wolves. We explored their population structure and regional gene flow using a dataset of 40 full genome sequences that represent the extant diversity of North American wolves and wolf-like canid populations. This included 15 new genomes (13 North American grey wolves, 1 red wolf and 1 Eastern timber/Great Lakes wolf), ranging from 0.4 to 15x coverage. In addition to providing full genome support for the previously proposed coyote-wolf admixture origin for the taxonomically controversial red, Eastern timber and Great Lakes wolves, the discriminatory power offered by our dataset suggests all North American grey wolves, including the Mexican form, are monophyletic, and thus share a common ancestor to the exclusion of all other wolves. Furthermore, we identify three distinct populations in the high arctic, one being a previously unidentified "Polar wolf" population endemic to Ellesmere Island and Greenland. Genetic diversity analyses reveal particularly high inbreeding and low heterozygosity in these Polar wolves, consistent with long-term isolation from the other North American wolves.
    Matched MeSH terms: Genome*
  10. Navarro-Muñoz JC, de Jong AW, Gerrits van den Ende B, Haas PJ, Then ER, Mohd Tap R, et al.
    Mycopathologia, 2019 Dec;184(6):731-734.
    PMID: 31734799 DOI: 10.1007/s11046-019-00404-0
    Candida vulturna is a new member of the Candida haemulonii species complex that recently received much attention as it includes the emerging multidrug-resistant pathogen Candida auris. Here, we describe the high-quality genome sequence of C. vulturna type strain CBS 14366T to cover all genomes of pathogenic C. haemulonii species complex members.
    Matched MeSH terms: Genome, Fungal/genetics*
  11. Soon BH, Abu N, Abdul Murad NA, Then SM, Abu Bakar A, Fadzil F, et al.
    Per Med, 2022 01;19(1):25-39.
    PMID: 34873928 DOI: 10.2217/pme-2021-0033
    Aim: Mitochondrial DNA (mtDNA) alterations play an important role in the multistep processes of cancer development. Gliomas are among the most diagnosed brain cancer. The relationship between mtDNA alterations and different grades of gliomas are still elusive. This study aimed to elucidate the profile of somatic mtDNA mutations in different grades of gliomas and correlate it with clinical phenotype. Materials & methods: Forty histopathologically confirmed glioma tissue samples and their matched blood were collected and subjected for mtDNA sequencing. Results & conclusion: About 75% of the gliomas harbored at least one somatic mutation in the mtDNA gene, and 45% of these mutations were pathogenic. Mutations were scattered across the mtDNA genome, and the commonest nonsynonymous mutations were located at complex I and IV of the mitochondrial respiratory chain. These findings may have implication for future research to determine the mitochondrial energetics and its downstream metabolomics on gliomas.
    Matched MeSH terms: Genome, Mitochondrial*
  12. Cai L, Arnold BJ, Xi Z, Khost DE, Patel N, Hartmann CB, et al.
    Curr Biol, 2021 03 08;31(5):1002-1011.e9.
    PMID: 33485466 DOI: 10.1016/j.cub.2020.12.045
    Despite more than 2,000-fold variation in genome size, key features of genome architecture are largely conserved across angiosperms. Parasitic plants have elucidated the many ways in which genomes can be modified, yet we still lack comprehensive genome data for species that represent the most extreme form of parasitism. Here, we present the highly modified genome of the iconic endophytic parasite Sapria himalayana Griff. (Rafflesiaceae), which lacks a typical plant body. First, 44% of the genes conserved in eurosids are lost in Sapria, dwarfing previously reported levels of gene loss in vascular plants. These losses demonstrate remarkable functional convergence with other parasitic plants, suggesting a common genetic roadmap underlying the evolution of plant parasitism. Second, we identified extreme disparity in intron size among retained genes. This includes a category of genes with introns longer than any so far observed in angiosperms, nearing 100 kb in some cases, and a second category of genes with exceptionally short or absent introns. Finally, at least 1.2% of the Sapria genome, including both genic and intergenic content, is inferred to be derived from host-to-parasite horizontal gene transfers (HGTs) and includes genes potentially adaptive for parasitism. Focused phylogenomic reconstruction of HGTs reveals a hidden history of former host-parasite associations involving close relatives of Sapria's modern hosts in the grapevine family. Our findings offer a unique perspective into how deeply angiosperm genomes can be altered to fit an extreme form of plant parasitism and demonstrate the value of HGTs as DNA fossils to investigate extinct symbioses.
    Matched MeSH terms: Genome, Plant/genetics*
  13. Kaewdaungdee S, Sudmoon R, Tanee T, Lee SY, Chaveerach A
    Genes (Basel), 2022 Sep 22;13(10).
    PMID: 36292590 DOI: 10.3390/genes13101705
    In order to authenticate the genomic information of Barleriacristata L., B. lupulina Lindl., B. repens Nees, B. siamensis Craib, and B. strigosa Willd, cp genomes were investigated. They revealed a general structure with a total size of 151,997-152,324 bp. The genomes encoded a total of 131 genes, including 86 CDS, 37 tRNA, and 8 rRNA genes. Other details found were as follows: different numbers and types of SSRs; identical gene content, which is adjacent to the border regions, except for B. strigosa, that revealed a shorter ndhF gene sequence and lacked the ycf1 gene; slightly different genetic distance values, which can be used for species identification; three distinct gaps of nucleotide variations between the species located at the intergenic spacer regions of the LSC and CDS of the SSC; three effective molecular markers derived from divergent hotspot regions, including the ccsA-ndhD, ndhA-ndhH-rps15, and ycf1. The genetic relationships derived from the cp genome and the CDS phylogenetic trees of Barleria and the 13 genera in Acanthaceae and different families, Scrophulariaceae and Phrymaceae, showed similar results. The six Barleria species as monophyletic groups with inner and outer outgroups were found to have perfect discrimination. These results have helped to authenticate the five Barleria species and the six genera in Acanthaceae.
    Matched MeSH terms: Genome, Chloroplast*
  14. Mohd Sanusi NSN, Rosli R, Chan KL, Halim MAA, Ting NC, Singh R, et al.
    Comput Biol Chem, 2023 Feb;102:107801.
    PMID: 36528019 DOI: 10.1016/j.compbiolchem.2022.107801
    A high-quality reference genome is an important resource that can help decipher the genetic basis of traits in combination with linkage or association analyses. The publicly available oil palm draft genome sequence of AVROS pisifera (EG5) accounts for 1.535 Gb of the 1.8 Gb oil palm genome. However, the assemblies are fragmented, and the earlier assembly only had 43% of the sequences placed on pseudo-chromosomes. By integrating a number of SNP and SSR-based genetic maps, a consensus map (AM_EG5.1), comprising of 828.243 Mb genomic scaffolds anchored to 16 pseudo-chromosomes, was generated. This accounted for 54% of the genome assembly, which is a significant improvement to the original assembly. The total length of N50 scaffolds anchored to the pseudo-chromosomes increased by ∼18% compared to the previous assembly. A total of 139 quantitative trait loci for agronomically important quantitative traits, sourced from literature, were successfully mapped on the new pseudo-chromosomes. The improved assembly could also be used as a reference to identify potential errors in placement of specific markers in the linkage groups of the genetic maps used to assemble the consensus map. The 3422 unique markers from five genetic maps, anchored to the pseudo-chromosomes of AM_EG5.1, are an important resource that can be used preferentially to either construct new maps or fill gaps in existing genetic maps. Synteny analysis further revealed that the AM_EG5.1 had high collinearity with the date palm genome cultivar 'Barhee BC4' and shared most of its segmental duplications. This improved chromosomal-level genome is a valuable resource for genetic research in oil palm.
    Matched MeSH terms: Genome, Plant/genetics
  15. Wan JH, Ng LM, Neoh SZ, Kajitani R, Itoh T, Kajiwara S, et al.
    Arch Microbiol, 2023 Jan 16;205(2):66.
    PMID: 36645481 DOI: 10.1007/s00203-023-03406-1
    Polyhydroxyalkanoate (PHA) is a type of biopolymer produced by most bacteria and archaea, resembling thermoplastic with biodegradability and biocompatibility features. Here, we report the complete genome of a PHA producer, Aquitalea sp. USM4, isolated from Perak, Malaysia. This bacterium possessed a 4.2 Mb circular chromosome and a 54,370 bp plasmid. A total of 4067 predicted protein-coding sequences, 87 tRNA genes, and 25 rRNA operons were identified using PGAP. Based on ANI and dDDH analysis, the Aquitalea sp. USM4 is highly similar to Aquitalea pelogenes. We also identified genes, including acetyl-CoA (phaA), acetoacetyl-CoA (phaB), PHA synthase (phaC), enoyl-CoA hydratase (phaJ), and phasin (phaP), which play an important role in PHA production in Aquitalea sp. USM4. The heterologous expression of phaC1 from Aquitalea sp. USM4 in Cupriavidus necator PHB-4 was able to incorporate six different types of PHA monomers, which are 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV), 3-hydroxyhexanoate (3HHx) and isocaproic acid (3H4MV) with suitable precursor substrates. This is the first complete genome sequence of the genus Aquitalea among the 22 genome sequences from 4 Aquitalea species listed in the GOLD database, which provides an insight into its genome evolution and molecular machinery responsible for PHA biosynthesis.
    Matched MeSH terms: Genome, Bacterial*
  16. Ng KKS, Kobayashi MJ, Fawcett JA, Hatakeyama M, Paape T, Ng CH, et al.
    Commun Biol, 2021 Oct 07;4(1):1166.
    PMID: 34620991 DOI: 10.1038/s42003-021-02682-1
    Hyperdiverse tropical rainforests, such as the aseasonal forests in Southeast Asia, are supported by high annual rainfall. Its canopy is dominated by the species-rich tree family of Dipterocarpaceae (Asian dipterocarps), which has both ecological (e.g., supports flora and fauna) and economical (e.g., timber production) importance. Recent ecological studies suggested that rare irregular drought events may be an environmental stress and signal for the tropical trees. We assembled the genome of a widespread but near threatened dipterocarp, Shorea leprosula, and analyzed the transcriptome sequences of ten dipterocarp species representing seven genera. Comparative genomic and molecular dating analyses suggested a whole-genome duplication close to the Cretaceous-Paleogene extinction event followed by the diversification of major dipterocarp lineages (i.e. Dipterocarpoideae). Interestingly, the retained duplicated genes were enriched for genes upregulated by no-irrigation treatment. These findings provide molecular support for the relevance of drought for tropical trees despite the lack of an annual dry season.
    Matched MeSH terms: Genome, Plant*
  17. Gao Y, Hu Y, Xu S, Liang H, Lin H, Yin TH, et al.
    J Helminthol, 2024 Apr 15;98:e33.
    PMID: 38618902 DOI: 10.1017/S0022149X24000221
    We first sequenced and characterised the complete mitochondrial genome of Toxocara apodeme, then studied the evolutionary relationship of the species within Toxocaridae. The complete mitochondrial genome was amplified using PCR with 14 specific primers. The mitogenome length was 14303 bp in size, including 12 PCGs (encoding 3,423 amino acids), 22 tRNAs, 2 rRNAs, and 2 NCRs, with 68.38% A+T contents. The mt genomes of T. apodemi had relatively compact structures with 11 intergenic spacers and 5 overlaps. Comparative analyses of the nucleotide sequences of complete mt genomes showed that T. apodemi had higher identities with T. canis than other congeners. A sliding window analysis of 12 PCGs among 5 Toxocara species indicated that nad4 had the highest sequence divergence, and cox1 was the least variable gene. Relative synonymous codon usage showed that UUG, ACU, CCU, CGU, and UCU most frequently occurred in the complete genomes of T. apodemi. The Ka/Ks ratio showed that all Toxocara mt genes were subject to purification selection. The largest genetic distance between T. apodemi and the other 4 congeneric species was found in nad2, and the smallest was found in cox2. Phylogenetic analyses based on the concatenated amino acid sequences of 12 PCGs demonstrated that T. apodemi formed a distinct branch and was always a sister taxon to other congeneric species. The present study determined the complete mt genome sequences of T. apodemi, which provide novel genetic markers for further studies of the taxonomy, population genetics, and systematics of the Toxocaridae nematodes.
    Matched MeSH terms: Genome, Mitochondrial*
  18. Di W, Luyao Y, Chengwei Y, Valtonen AM, Juha-Pekka K, Ying G
    Environ Toxicol, 2024 Jun;39(6):3434-3447.
    PMID: 38450985 DOI: 10.1002/tox.24206
    BACKGROUND: Previous observational studies have linked circulating cytokines to sarcopenia, but their causal relationship remains unclear. This study employed Mendelian Randomization (MR) to investigate the causal links between circulating cytokines and sarcopenia-related traits using genetic data.

    METHODS: A two-sample bidirectional MR analysis was conducted using data from individuals of European ancestry, utilizing genome-wide association studies (GWAS) statistics. The study selected instrumental single nucleotide polymorphisms (SNPs) significantly associated with circulating cytokines and applied multiple MR methods, including inverse variance weighted (IVW), Weighted Median, MR-Egger, Weighted Mode, Simple Mode, and MR-PRESSO. The traits analyzed were appendicular lean mass (ALM) and grip strength. Heterogeneity, robustness, and consistency of results were assessed using Cochran's Q statistic, MR-Egger regression, and "leave-one-out" sensitivity analyses.

    RESULTS: The IVM-MR analysis showed a casual association between genetically predicted circulating levels of interleukin-16 and both ALM and grip strength (ALM: OR = 0.990, 95% CI: 0.980-1.000, p = .049; grip strength: OR = 0.971, 95% CI: 0.948-0.995, p = .020). Additionally, interferon-gamma-induced protein 10 (IP-10), interleukin-1-beta (IL-1β), and hepatocyte growth factor (HGF) were correlated with ALM and vascular endothelial growth factor (VEGF), interleukin-12 (IL-12), and interleukin-5 (IL-5) with grip strength. Comparable results were confirmed via the MR-Egger, Weighted Median, Weighted Mode, and Simple Mode methods. Sensitivity analysis showed no horizontal pleiotropy to bias the causal estimates.

    CONCLUSION: The results suggest a significant causal effect of inflammatory cytokines on sarcopenia, offering new avenues for therapeutic target development. However, the study's focus on a European ancestry cohort limits its generalizability to other populations. Future research should aim to include diverse ethnic groups to validate and broaden these findings, thereby enhancing our understanding of sarcopenia's mechanisms in a global context.

    Matched MeSH terms: Genome-Wide Association Study*
  19. Hong KW, Koh CL, Sam CK, Yin WF, Chan KG
    J Bacteriol, 2012 Nov;194(22):6317.
    PMID: 23105060 DOI: 10.1128/JB.01578-12
    Burkholderia sp. strain GG4, isolated from the ginger rhizosphere, possesses a unique N-acylhomoserine lactone (AHL)-modifying activity that reduces 3-oxo-AHLs to 3-hydroxy-AHLs. To the best of our knowledge, this is the first sequenced genome from a bacterium of the genus Burkholderia that shows both quorum-sensing and signaling confusion activities.
    Matched MeSH terms: Genome, Bacterial*
  20. Stroehlein AJ, Korhonen PK, Chong TM, Lim YL, Chan KG, Webster B, et al.
    Gigascience, 2019 Sep 01;8(9).
    PMID: 31494670 DOI: 10.1093/gigascience/giz108
    BACKGROUND: Schistosoma haematobium causes urogenital schistosomiasis, a neglected tropical disease affecting >100 million people worldwide. Chronic infection with this parasitic trematode can lead to urogenital conditions including female genital schistosomiasis and bladder cancer. At the molecular level, little is known about this blood fluke and the pathogenesis of the disease that it causes. To support molecular studies of this carcinogenic worm, we reported a draft genome for S. haematobium in 2012. Although a useful resource, its utility has been somewhat limited by its fragmentation.

    FINDINGS: Here, we systematically enhanced the draft genome of S. haematobium using a single-molecule and long-range DNA-sequencing approach. We achieved a major improvement in the accuracy and contiguity of the genome assembly, making it superior or comparable to assemblies for other schistosome species. We transferred curated gene models to this assembly and, using enhanced gene annotation pipelines, inferred a gene set with as many or more complete gene models as those of other well-studied schistosomes. Using conserved, single-copy orthologs, we assessed the phylogenetic position of S. haematobium in relation to other parasitic flatworms for which draft genomes were available.

    CONCLUSIONS: We report a substantially enhanced genomic resource that represents a solid foundation for molecular research on S. haematobium and is poised to better underpin population and functional genomic investigations and to accelerate the search for new disease interventions.

    Matched MeSH terms: Genome, Helminth*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links