Displaying publications 41 - 53 of 53 in total

Abstract:
Sort:
  1. Lau SE, Schwarzacher T, Othman RY, Harikrishna JA
    BMC Plant Biol, 2015;15:194.
    PMID: 26260631 DOI: 10.1186/s12870-015-0577-3
    The R2R3-MYB genes regulate pigmentation and morphogenesis of flowers, including flower and cell shape, and therefore have importance in the development of new varieties of orchids. However, new variety development is limited by the long breeding time required in orchids. In this study, we identified a cDNA, DhMYB1, that is expressed during flower development in a hybrid orchid, Dendrobium hybrida (Dendrobium bobby messina X Dendrobium chao phraya) then used the direct application of dsRNA to observe the effect of gene silencing on flower phenotype and floral epidermal cell shape.
    Matched MeSH terms: Hybridization, Genetic
  2. Rosli MAF, Azizan KA, Baharum SN, Goh HH
    Data Brief, 2017 Oct;14:295-297.
    PMID: 28795107 DOI: 10.1016/j.dib.2017.07.068
    Hybridisation plays a significant role in the evolution and diversification of plants. Hybridisation among Nepenthes species is extensive, either naturally or man-made. To investigate the effects of hybridisation on the chemical compositions, we carried out metabolomics study on pitcher tissue of Nepenthes ampullaria, Nepenthes rafflesiana and their hybrid, Nepenthes × hookeriana. Pitcher samples were harvested and extracted in methanol:chloroform:water via sonication-assisted extraction before analysed using LC-TOF-MS. MS data were analysed using XCMS online version 2.2.5. This is the first MS data report towards the profiling, identification and comprehensive comparison of metabolites present in Nepenthes species.
    Matched MeSH terms: Hybridization, Genetic
  3. Gopalakrishnan S, Sinding MS, Ramos-Madrigal J, Niemann J, Samaniego Castruita JA, Vieira FG, et al.
    Curr Biol, 2018 11 05;28(21):3441-3449.e5.
    PMID: 30344120 DOI: 10.1016/j.cub.2018.08.041
    The evolutionary history of the wolf-like canids of the genus Canis has been heavily debated, especially regarding the number of distinct species and their relationships at the population and species level [1-6]. We assembled a dataset of 48 resequenced genomes spanning all members of the genus Canis except the black-backed and side-striped jackals, encompassing the global diversity of seven extant canid lineages. This includes eight new genomes, including the first resequenced Ethiopian wolf (Canis simensis), one dhole (Cuon alpinus), two East African hunting dogs (Lycaon pictus), two Eurasian golden jackals (Canis aureus), and two Middle Eastern gray wolves (Canis lupus). The relationships between the Ethiopian wolf, African golden wolf, and golden jackal were resolved. We highlight the role of interspecific hybridization in the evolution of this charismatic group. Specifically, we find gene flow between the ancestors of the dhole and African hunting dog and admixture between the gray wolf, coyote (Canis latrans), golden jackal, and African golden wolf. Additionally, we report gene flow from gray and Ethiopian wolves to the African golden wolf, suggesting that the African golden wolf originated through hybridization between these species. Finally, we hypothesize that coyotes and gray wolves carry genetic material derived from a "ghost" basal canid lineage.
    Matched MeSH terms: Hybridization, Genetic
  4. Barnett R, Westbury MV, Sandoval-Velasco M, Vieira FG, Jeon S, Zazula G, et al.
    Curr Biol, 2020 Dec 21;30(24):5018-5025.e5.
    PMID: 33065008 DOI: 10.1016/j.cub.2020.09.051
    Homotherium was a genus of large-bodied scimitar-toothed cats, morphologically distinct from any extant felid species, that went extinct at the end of the Pleistocene [1-4]. They possessed large, saber-form serrated canine teeth, powerful forelimbs, a sloping back, and an enlarged optic bulb, all of which were key characteristics for predation on Pleistocene megafauna [5]. Previous mitochondrial DNA phylogenies suggested that it was a highly divergent sister lineage to all extant cat species [6-8]. However, mitochondrial phylogenies can be misled by hybridization [9], incomplete lineage sorting (ILS), or sex-biased dispersal patterns [10], which might be especially relevant for Homotherium since widespread mito-nuclear discrepancies have been uncovered in modern cats [10]. To examine the evolutionary history of Homotherium, we generated a ∼7x nuclear genome and a ∼38x exome from H. latidens using shotgun and target-capture sequencing approaches. Phylogenetic analyses reveal Homotherium as highly divergent (∼22.5 Ma) from living cat species, with no detectable signs of gene flow. Comparative genomic analyses found signatures of positive selection in several genes, including those involved in vision, cognitive function, and energy consumption, putatively consistent with diurnal activity, well-developed social behavior, and cursorial hunting [5]. Finally, we uncover relatively high levels of genetic diversity, suggesting that Homotherium may have been more abundant than the limited fossil record suggests [3, 4, 11-14]. Our findings complement and extend previous inferences from both the fossil record and initial molecular studies, enhancing our understanding of the evolution and ecology of this remarkable lineage.
    Matched MeSH terms: Hybridization, Genetic
  5. Qiu J, Jia L, Wu D, Weng X, Chen L, Sun J, et al.
    Genome Biol, 2020 03 26;21(1):70.
    PMID: 32213201 DOI: 10.1186/s13059-020-01980-x
    BACKGROUND: Worldwide feralization of crop species into agricultural weeds threatens global food security. Weedy rice is a feral form of rice that infests paddies worldwide and aggressively outcompetes cultivated varieties. Despite increasing attention in recent years, a comprehensive understanding of the origins of weedy crop relatives and how a universal feralization process acts at the genomic and molecular level to allow the rapid adaptation to weediness are still yet to be explored.

    RESULTS: We use whole-genome sequencing to examine the origin and adaptation of 524 global weedy rice samples representing all major regions of rice cultivation. Weed populations have evolved multiple times from cultivated rice, and a strikingly high proportion of contemporary Asian weed strains can be traced to a few Green Revolution cultivars that were widely grown in the late twentieth century. Latin American weedy rice stands out in having originated through extensive hybridization. Selection scans indicate that most genomic regions underlying weedy adaptations do not overlap with domestication targets of selection, suggesting that feralization occurs largely through changes at loci unrelated to domestication.

    CONCLUSIONS: This is the first investigation to provide detailed genomic characterizations of weedy rice on a global scale, and the results reveal diverse genetic mechanisms underlying worldwide convergent rice feralization.

    Matched MeSH terms: Hybridization, Genetic
  6. Chang YHR
    Chem Commun (Camb), 2020 Sep 17;56(74):10962-10965.
    PMID: 32789397 DOI: 10.1039/d0cc04123h
    While lab-scale synthesis of trigonal-Zr2N2S, hexagonal-Zr2N2S and hexagonal-Zr2N2Se has been reported, meaningful data on the photophysical properties of IV-nitride chalcogenides in general are scarcely available. The first-principles calculations and genetic algorithm modeling in our work reveal the existence of remarkably stable, indirect gap trigonal-Zr2N2Se and trigonal-Hf2N2Se phases, which progress to direct gap, monoclinic materials in monolayer form. These structures display the desired optoelectronic properties, such as exceptionally high visible-UV absorption spectra (105-106 cm-1) and exciton binding energy below 0.02 eV. Strong hybridization between the Zr-d, N-p and Se-p orbitals is accounted for by the polysilicon comparable Vickers hardness (10.64-12.77 GPa), while retaining ductile nature.
    Matched MeSH terms: Hybridization, Genetic
  7. Bänfer G, Moog U, Fiala B, Mohamed M, Weising K, Blattner FR
    Mol Ecol, 2006 Dec;15(14):4409-24.
    PMID: 17107473
    Macaranga (Euphorbiaceae) includes about 280 species with a palaeotropic distribution. The genus not only comprises some of the most prominent pioneer tree species in Southeast Asian lowland dipterocarp forests, it also exhibits a substantial radiation of ant-plants (myrmecophytes). Obligate ant-plant mutualisms are formed by about 30 Macaranga species and 13 ant species of the genera Crematogaster or Camponotus. To improve our understanding of the co-evolution of the ants and their host plants, we aim at reconstructing comparative organellar phylogeographies of both partners across their distributional range. Preliminary evidence indicated that chloroplast DNA introgression among closely related Macaranga species might occur. We therefore constructed a comprehensive chloroplast genealogy based on DNA sequence data from the noncoding ccmp2, ccmp6, and atpB-rbcL regions for 144 individuals from 41 Macaranga species, covering all major evolutionary lineages within the three sections that contain myrmecophytes. A total of 88 chloroplast haplotypes were identified, and grouped into a statistical parsimony network that clearly distinguished sections and well-defined subsectional groups. Within these groups, the arrangement of haplotypes followed geographical rather than taxonomical criteria. Thus, up to six chloroplast haplotypes were found within single species, and up to seven species shared a single haplotype. The spatial distribution of the chloroplast types revealed several dispersals between the Malay Peninsula and Borneo, and a deep split between Sabah and the remainder of Borneo. Our large-scale chloroplast genealogy highlights the complex history of migration, hybridization, and speciation in the myrmecophytes of the genus Macaranga. It will serve as a guideline for adequate sampling and data interpretation in phylogeographic studies of individual Macaranga species and species groups.
    Matched MeSH terms: Hybridization, Genetic*
  8. Cross JH, Bhaibulaya M
    PMID: 4432097
    Matched MeSH terms: Hybridization, Genetic
  9. Bernstein IS
    Science, 1966 Dec 23;154(3756):1559-60.
    PMID: 4958933
    Two members of a troop of wild Macaca irus in Malaysia have been tentatively identified as hybrids of M. irus and M. nemestrina. Mechanisms prohibiting such hybridization in the natural habitat may have broken down under heavy predation pressure which finally resulted in the local extermination of M. nemestrinia.
    Matched MeSH terms: Hybridization, Genetic*
  10. Moretti B, Al-Sheikhly OF, Guerrini M, Theng M, Gupta BK, Haba MK, et al.
    Sci Rep, 2017 Jan 27;7:41611.
    PMID: 28128366 DOI: 10.1038/srep41611
    We investigated the phylogeography of the smooth-coated otter (Lutrogale perspicillata) to determine its spatial genetic structure for aiding an adaptive conservation management of the species. Fifty-eight modern and 11 archival (dated 1882-1970) otters sampled from Iraq to Malaysian Borneo were genotyped (mtDNA Cytochrome-b, 10 microsatellite DNA loci). Moreover, 16 Aonyx cinereus (Asian small-clawed otter) and seven Lutra lutra (Eurasian otter) were sequenced to increase information available for phylogenetic reconstructions. As reported in previous studies, we found that L. perspicillata, A. cinereus and A. capensis (African clawless otter) grouped in a clade sister to the genus Lutra, with L. perspicillata and A. cinereus being reciprocally monophyletic. Within L. perspicillata, we uncovered three Evolutionarily Significant Units and proved that L. p. maxwelli is not only endemic to Iraq but also the most recent subspecies. We suggest a revision of the distribution range limits of easternmost L. perspicillata subspecies. We show that smooth-coated otters in Singapore are L. perspicillata x A. cinereus hybrids with A. cinereus mtDNA, the first reported case of hybridization in the wild among otters. This result also provides evidence supporting the inclusion of L. perspicillata and A. cinereus in the genus Amblonyx, thus avoiding the paraphyly of the genus Aonyx.
    Matched MeSH terms: Hybridization, Genetic*
  11. Khan FA, Phillips CD, Baker RJ
    Syst Biol, 2014 Jan 1;63(1):96-110.
    PMID: 24149076 DOI: 10.1093/sysbio/syt062
    Phylogenetic comparisons of the different mammalian genetic transmission elements (mtDNA, X-, Y-, and autosomal DNA) is a powerful approach for understanding the process of speciation in nature. Through such comparisons the unique inheritance pathways of each genetic element and gender-biased processes can link genomic structure to the evolutionary process, especially among lineages which have recently diversified, in which genetic isolation may be incomplete. Bulldog bats of the genus Noctilio are an exemplar lineage, being a young clade, widely distributed, and exhibiting unique feeding ecologies. In addition, currently recognized species are paraphyletic with respect to the mtDNA gene tree and contain morphologically identifiable clades that exhibit mtDNA divergences as great as among many species. To test taxonomic hypotheses and understand the contribution of hybridization to the extant distribution of genetic diversity in Noctilio, we used phylogenetic, coalescent stochastic modeling, and divergence time estimates using sequence data from cytochrome-b, cytochrome c oxidase-I, zinc finger Y, and zinc finger X, as well as evolutionary reconstructions based on amplified fragment length polymorphisms (AFLPs) data. No evidence of ongoing hybridization between the two currently recognized species was identified. However, signatures of an ancient mtDNA capture were recovered in which an mtDNA lineage of one species was captured early in the noctilionid radiation. Among subspecific mtDNA clades, which were generally coincident with morphology and statistically definable as species, signatures of ongoing hybridization were observed in sex chromosome sequences and AFLP. Divergence dating of genetic elements corroborates the diversification of extant Noctilio beginning about 3 Ma, with ongoing hybridization between mitochondrial lineages separated by 2.5 myr. The timeframe of species' divergence within Noctilio supports the hypothesis that shifts in the dietary strategies of gleaning insects (N. albiventris) or fish (N. leporinus) are among the most rapid instances of dietary evolution observed in mammals. This study illustrates the complex evolutionary dynamics shaping gene pools in nature, how comparisons of genetic elements can serve for understanding species boundaries, and the complex considerations for accurate taxonomic assignment.
    Matched MeSH terms: Hybridization, Genetic*
  12. Momynaliev KT, Govorun VM, Gnedenko O, Ivanov YD, Archakov AI
    J. Mol. Recognit., 2003 Jan-Feb;16(1):1-8.
    PMID: 12557232
    The possibility of using the resonant mirror biosensor to detect point substitutions in oligonucleotides was demonstrated with a fragment of the Helicobacter pylori 23S rRNA gene, point mutations in which are responsible for clarythromycin resistance. Conditions were optimized for the interaction of a probe immobilized on the sensing surface with targets containing various nucleotide substitutions. A probe allowing reliable discrimination of mutant targets was selected. The mismatch position in the probe was shown to affect the kinetic parameters (response) of hybridization with mutant targets, reporting not only the position, but also the character (G or C) of a substitution.
    Matched MeSH terms: Hybridization, Genetic
  13. Nur Suhaili Abd Aziz, Muhammad Khairullah Nor Azmi, Abdul Manaf Hashim
    Sains Malaysiana, 2017;46:1083-1088.
    A one-pot green sonochemical process assisted by ascorbic acid as the reducing agent to produce highly reduced graphene oxide (rGO) decorated with silver nanoparticles (AgNPs) is demonstrated. A complete removal of oxygen-containing group in the GO sheets was confirmed by no observation of the peak corresponds to C-O, C=O and -OH bond. The unexpected decrease of peak intensity corresponds to sp2 hybridized C=C group is explained by a so-called bond polarity effect. The peak observed at ~400 nm seems to show the presence of AgNPs and the red shifting of C=C peak to ~270 nm after the introduction of ascorbic acid indicates the formation of highly reduced GO. The increase of AgNPs size and the crumpled silk-like morphology after the introduction of ascorbic acid also indicate the aggressive reduction of both AgNPs and GO. The increase of ID/IG ratio after the introduction of ascorbic acid seems to indicate the increase of the number of small sp2 domains, the presence of unrepaired defects and the restoration of the sp2 network. This work provides the promising green sonochemical approach by utilizing non-toxic and environmental-friendly reducing agent to produce highly reduced GO decorated with AgNPs for various applications.
    Matched MeSH terms: Hybridization, Genetic
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links