Displaying publications 41 - 60 of 565 in total

Abstract:
Sort:
  1. Mahmud Z, Abrahhim SA, Sulong S
    Curr Diabetes Rev, 2021;17(7):e011221190236.
    PMID: 33438543 DOI: 10.2174/1573399817999210112191330
    BACKGROUND: It is important to assess how well patients respond to their medical treatments by observing the results that appear during the clinical treatments. As such, the clinical treatments and results must obtain information on how effective recommended treatments were for patients with diabetes.

    OBJECTIVE: This study examines how patients with diabetes mellitus responded towards their clinical treatments, where the probability distribution of patients and the types of treatment received were derived from the Rasch probabilistic model.

    METHODS: This is a retrospective study wherein data were collected from patients' medical records at a local public hospital in Selangor, Malaysia. Clinical and demographic information such as fasting blood glucose, hemoglobin A1c (HbA1c), family history, type of diabetes (type 1 or type 2), types of medication (oral or insulin), compliance with treatments, gender, race and age were chosen as the agents of measurement.

    RESULTS: The use of Rasch analysis in the present study helped to compare the patients' responses towards the DM treatments and identify the types of treatment they received. Results from the Wright map show that a majority of the diabetes mellitus patients who were diagnosed with type 2 diabetes have no controlled readings of HbA1c during their first and second visits to the medical center. However, patients with a family history of diabetes mellitus who took oral medication have controlled readings of fasting blood glucose based on the probabilistic outcomes of the treatment received by the patients.

    CONCLUSION: Controlled readings were found only in the readings of fasting blood glucose during the first and second visits, followed by family history, types of medication received, and compliance with the treatment. This study has recommended that type 2 patients with diabetes without a family history of diabetes mellitus need to exercise more control over the readings of HbA1c.

    Matched MeSH terms: Hypoglycemic Agents/therapeutic use
  2. Thevathasan OI
    Med J Malaya, 1972 Mar;26(3):217-9.
    PMID: 5031020
    Matched MeSH terms: Hypoglycemic Agents*
  3. Sheikh Ghadzi SM, Karlsson MO, Kjellsson MC
    CPT Pharmacometrics Syst Pharmacol, 2017 10;6(10):686-694.
    PMID: 28575547 DOI: 10.1002/psp4.12214
    In antihyperglycemic drug development, drug effects are usually characterized using glucose provocations. Analyzing provocation data using pharmacometrics has shown powerful, enabling small studies. In preclinical drug development, high power is attractive due to the experiment sizes; however, insulin is not always available, which potentially impacts power and predictive performance. This simulation study was performed to investigate the implications of performing model-based drug characterization without insulin. The integrated glucose-insulin model was used to simulate and re-estimated oral glucose tolerance tests using a crossover design of placebo and study compound. Drug effects were implemented on seven different mechanisms of action (MOA); one by one or in two-drug combinations. This study showed that exclusion of insulin may severely reduce the power to distinguish the correct from competing drug effect, and to detect a primary or secondary drug effect, however, it did not affect the predictive performance of the model.
    Matched MeSH terms: Hypoglycemic Agents/pharmacology*
  4. Chigurupati S, Vijayabalan S, Selvarajan KK, Alhowail A, Kauser F
    J Complement Integr Med, 2020 Dec 22;18(2):319-325.
    PMID: 34187119 DOI: 10.1515/jcim-2020-0203
    OBJECTIVES: Research on endosymbionts is emerging globally and is considered as a potential source of bioactive phytochemicals. The present study examines the antioxidant and antidiabetic of the endophytic crude extract isolated from Leucaena leucocephala leaves.

    METHODS: Endophytic bacteria were isolated from the leaves of L. leucocephala and 16S rRNA gene sequencing was used to establish their identity. The in vitro antioxidant effect of endophytic crude extract (LL) was evaluated using 2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) free radical scavenging methods. The in vitro antidiabetic properties of LL were evaluated using α-amylase and α-glucosidase enzyme inhibition assay.

    RESULTS: The isolated endophytic bacteria were identified as Cronobacter sakazakii. LL displayed potent free radical scavenging effect against ABTS and DPPH radicals with an inhibitory concentration 50% (IC50) value of 17.49 ± 0.06 and 11.3 ± 0.1 μg/mL respectively. LL exhibited α-amylase and α-glucosidase inhibition with an IC50 value of 23.3 ± 0.08 and 23.4 ± 0.1 μg/mL respectively compared to the standard drug (acarbose). Both glucose loaded normoglycemic rats and STZ induced diabetic rats treated with LL (200 mg/kg) exhibited a considerable reduction in blood glucose levels p<0.01 after 8 h of treatment when compared to normal and diabetic control rats respectively.

    CONCLUSIONS: Thus, the study shows that LL has a wellspring of natural source of antioxidants, and antidiabetic agents and phytoconstituents present in endophytes could be the rich source for bioactive compounds.

    Matched MeSH terms: Hypoglycemic Agents/pharmacology
  5. Jadhav PB, Jadhav SB, Zehravi M, Mubarak MS, Islam F, Jeandet P, et al.
    Molecules, 2022 Dec 24;28(1).
    PMID: 36615348 DOI: 10.3390/molecules28010149
    Dipeptidyl peptidase-4 (DPP-IV) inhibitors are known as safe and well-tolerated antidiabetic medicine. Therefore, the aim of the present work was to synthesize some carbohydrazide derivatives (1a-5d) as DPP-IV inhibitors. In addition, this work involves simulations using molecular docking, ADMET analysis, and Lipinski and Veber's guidelines. Wet-lab synthesis was used to make derivatives that met all requirements, and then FTIR, NMR, and mass spectrometry were used to confirm the structures and perform biological assays. In this context, in vitro enzymatic and in vivo antidiabetic activity evaluations were carried out. None of the molecules had broken the majority of the drug-likeness rules. Furthermore, these molecules were put through additional screening using molecular docking. In molecular docking experiments (PDB ID: 2P8S), many molecules displayed more potent interactions than native ligands, exhibiting more hydrogen bonds, especially those with chloro- or fluoro substitutions. Our findings indicated that compounds 5b and 4c have IC50 values of 28.13 and 34.94 µM, respectively, under in vitro enzymatic assays. On the 21st day of administration to animals, compound 5b exhibited a significant reduction in serum blood glucose level (157.33 ± 5.75 mg/dL) compared with the diabetic control (Sitagliptin), which showed 280.00 ± 13.29 mg/dL. The antihyperglycemic activity showed that the synthesized compounds have good hypoglycemic potential in fasting blood glucose in the type 2 diabetes animal model (T2DM). Taken all together, our findings indicate that the synthesized compounds exhibit excellent hypoglycemic potential and could be used as leads in developing novel antidiabetic agents.
    Matched MeSH terms: Hypoglycemic Agents/chemistry
  6. Chellian J, Mak KK, Chellappan DK, Krishnappa P, Pichika MR
    Sci Rep, 2022 Dec 10;12(1):21393.
    PMID: 36496468 DOI: 10.1038/s41598-022-25739-5
    The antidiabetic effects of quercetin and metformin are well known. However, their synergistic effect in reversing the symptoms of diabetes-induced endothelial dysfunction remains unknown. In this study, we have investigated their synergistic effect in streptozotocin (STZ)-nicotinamide induced diabetic rats. Seventy-five rats were divided into five groups; normal control, diabetic control, treatment groups (10 mg/kg quercetin, 180 mg/kg metformin, and combined). The plasma glucose and lipid levels, liver enzymes, ex-vivo studies on aortic rings, histology of liver, kidney, pancreas, abdominal aorta and thoracic aorta, and immunohistochemical studies were carried out. The findings revealed that the combination of quercetin and metformin showed a greater antidiabetic effect than either drug, and rendered protection to the endothelium. The combination effectively reversed the hyperglycemia-induced endothelial dysfunction in diabetic rats. Furthermore, it also reversed the dysregulated expression of eNOS, 3-nitrotyrosine, VCAM-1, CD31 and SIRT-1. Overall, the present study's findings demonstrate that quercetin potentiates the activity of metformin to control the complications associated with diabetes.
    Matched MeSH terms: Hypoglycemic Agents/therapeutic use
  7. Nagaraja S, Ahmed SS, D R B, Goudanavar P, M RK, Fattepur S, et al.
    Molecules, 2022 Jul 06;27(14).
    PMID: 35889209 DOI: 10.3390/molecules27144336
    Diabetes mellitus (DM) and its complications are a severe public health concern due to the high incidence, morbidity, and mortality rates. The present study aims to synthesize and characterize silver nanoparticles (AgNPs) using the aqueous leaf extract of Psidium guajava (PGE) for investigating its antidiabetic activity. Psidium guajava silver nanoparticles (PGAg NPs) were prepared and characterized by various parameters. The in vivo study was conducted using PGE and PGAg NPs in Streptozotocin (STZ)-induced diabetic rats to assess their antidiabetic properties. STZ of 55 mg/kg was injected to induce diabetes. The PGE, PGAg NPs at a dose of 200 and 400 mg/kg and standard drug Metformin (100 mg/kg) were administered daily to diabetic rats for 21 days through the oral route. Blood glucose level, body weight changes, lipid profiles, and histopathology of the rats' liver and pancreas were examined. In the diabetic rats, PGE and PGAg NPs produced a drastic decrease in the blood glucose level, preventing subsequent weight loss and ameliorating lipid profile parameters. The histopathological findings revealed the improvements in pancreas and liver cells due to the repercussion of PGE and PGAg NPs. A compelling effect was observed in all doses of PGE and PGAg NPs; however, PGAg NPs exhibited a more promising result. Thus, from the results, it is concluded that the synthesized PGAg NPs has potent antidiabetic activity due to its enhanced surface area and smaller particle size of nanoparticles.
    Matched MeSH terms: Hypoglycemic Agents/pharmacology
  8. Sapkota B, Bokati P, Dangal S, Aryal P, Shrestha S
    Medicine (Baltimore), 2022 Apr 22;101(16):e29192.
    PMID: 35482989 DOI: 10.1097/MD.0000000000029192
    The medication therapy management (MTM) pharmacists follow the philosophy of pharmaceutical care to address individualistic medication therapy requirements in their practice settings.The present study aimed to introduce the pharmacist-delivered MTM services among type 2 diabetes mellitus patients at a tertiary care hospital in Nepal.Cross-sectional study was conducted at Patan Hospital, Lalitpur, Nepal, among 200 patients with type 2 diabetes mellitus from July to December 2019. The intervention included maintenance of medication profile for individual patients, and then MTM service was proposed based on 5 core elements of MTM services proposed by the American Pharmacists Association. Both antidiabetic and non-antidiabetic medicines were coded as per the anatomic, therapeutic, and chemical classification and defined daily dose assignment 2020 for documentation. The Charlson Comorbidity Index was used to index comorbidities. The drug interaction profile was checked with the Medscape Drug Interaction Checker.Both fasting and postprandial blood sugar levels were significantly associated with age (P-values
    Matched MeSH terms: Hypoglycemic Agents/therapeutic use
  9. Goh KG, Zakaria MH, Raja Azwan RN, Bhajan Singh KK, Badrul Hisham MH, Hussein Z
    Diabetes Metab Syndr, 2023 Jan;17(1):102680.
    PMID: 36473336 DOI: 10.1016/j.dsx.2022.102680
    BACKGROUND AND AIMS: Patients with type 2 diabetes (T2D) carry higher risk of glycaemic variability during Ramadan. Glucose-lowering medications such as SGLT2 inhibitors are also associated with genitourinary infection, acute kidney injury, and euglycaemic diabetic ketoacidosis. Limited data is available on the effects of SGLT2 inhibitors on T2D patients during Ramadan. We investigated effects of empagliflozin use in fasting T2D patients.

    METHODS: This was a prospective cohort study in a single diabetes centre in Malaysia. Empagliflozin group were on study drug for at least three months. For control group, subjects not receiving SGLT2 inhibitors were recruited. Follow-up were performed before and during Ramadan fasting. Anthropometric measurements, blood pressure, renal profile, and blood ketone were recorded during visits. Hypoglycaemia symptoms were assessed via hypoglycaemia symptom rating questionnaire (HypoSRQ).

    RESULTS: We recruited a total of 98 subjects. Baseline anthropometry, blood pressure, and renal parameters were similar in two groups. No significant changes in blood pressure, weight, urea, creatinine, eGFR, or haemoglobin levels during Ramadan was found in either group. Likewise, no difference was detected in blood ketone levels (empagliflozin vs control, 0.17 ± 0.247 mmol/L vs 0.13 ± 0.082 mmol/L, p = 0.304) or hypoglycaemia indices (empagliflozin vs control, 19.1% vs 16%, p = 0.684).

    CONCLUSIONS: Ramadan fasting resulted in weight loss and reduction in eGFR levels in patients with T2D. Empagliflozin use during Ramadan is safe and not associated with increased risk of dehydration, ketosis, or hypoglycaemia. Therefore, empagliflozin is a viable glucose-lowering drug for patients with T2D planning for Ramadan fasting.

    Matched MeSH terms: Hypoglycemic Agents/therapeutic use
  10. Lim LL, Chow E, Chan JCN
    Nat Rev Endocrinol, 2023 Mar;19(3):151-163.
    PMID: 36446898 DOI: 10.1038/s41574-022-00776-2
    Patients with type 2 diabetes mellitus (T2DM) can have multiple comorbidities and premature mortality due to atherosclerotic cardiovascular disease, hospitalization with heart failure and/or chronic kidney disease. Traditional drugs that lower glucose, such as metformin, or that treat high blood pressure and blood levels of lipids, such as renin-angiotensin-system inhibitors and statins, have organ-protective effects in patients with T2DM. Amongst patients with T2DM treated with these traditional drugs, randomized clinical trials have confirmed the additional cardiorenal benefits of sodium-glucose co-transporter 2 inhibitors (SGLT2i), glucagon-like peptide 1 receptor agonists (GLP1RA) and nonsteroidal mineralocorticoid receptor antagonists. The cardiorenal benefits of SGLT2i extended to patients with heart failure and/or chronic kidney disease without T2DM, whereas incretin-based therapy (such as GLP1RA) reduced cardiovascular events in patients with obesity and T2DM. However, considerable care gaps exist owing to insufficient detection, therapeutic inertia and poor adherence to these life-saving medications. In this Review, we discuss the complex interconnections of cardiorenal-metabolic diseases and strategies to implement evidence-based practice. Furthermore, we consider the need to conduct clinical trials combined with registers in specific patient segments to evaluate existing and emerging therapies to address unmet needs in T2DM.
    Matched MeSH terms: Hypoglycemic Agents/pharmacology
  11. Masnoon J, Ishaque A, Khan I, Salim A, Kabir N
    Cell Biochem Funct, 2023 Oct;41(7):833-844.
    PMID: 37814478 DOI: 10.1002/cbf.3833
    Diabetes is one of the major health issues globally. Type 1 diabetes mellitus develops due to the destruction of pancreatic β cells. Mesenchymal stem cells (MSCs) having remarkable self-renewal and differentiation potential, can regenerate β cells. MSCs preconditioned with bioactive small molecules possess enhanced biological features and therapeutic potential under in vivo environment. Interestingly, compounds of naphthoquinone class possess antidiabetic and anti-inflammatory properties, and can be explored as potential candidates for preconditioning MSCs. This study analyzed the effect of lawsone-preconditioned human umbilical cord MSCs (hUMSCs) on the regeneration of β cells in the streptozotocin (STZ)-induced Type 1 diabetes (T1D) rats. hUMSCs were isolated and characterized for the presence of surface markers. MSCs were preconditioned with optimized concentration of lawsone. T1D rat model was established by injecting 50 mg/kg of STZ intraperitoneally. Untreated and lawsone-preconditioned hUMSCs were transplanted into the diabetic rats via tail vein. Fasting blood sugar and body weight were monitored regularly for 4 weeks. Pancreas was harvested and β cell regeneration was evaluated by hematoxylin and eosin staining, and gene expression analysis. Immunohistochemistry was also done to assess the insulin expression. Lawsone-preconditioned hUMSCs showed better anti-hyperglycemic effect in comparison with untreated hUMSCs. Histological analysis presented the regeneration of islets of Langerhans with upregulated expression of βcell genes and reduced expression of inflammatory markers. Immunohistochemistry revealed strong insulin expression in the preconditioned hUMSCs compared with the untreated hUMSCs. It is concluded from the present study that lawsone-preconditioned hMSCs were able to exhibit pronounced anti-hyperglycemic effect in vivo compared with hUMSCs alone.
    Matched MeSH terms: Hypoglycemic Agents/pharmacology
  12. Zulcafli AS, Lim C, Ling AP, Chye S, Koh R
    Yale J Biol Med, 2020 Jun;93(2):307-325.
    PMID: 32607091
    Diabetes, characterized by hyperglycemia, is one of the most significant metabolic diseases, reaching alarming pandemic proportions. It can be due to the defects in insulin action, or secretion, or both. The global prevalence of diabetes is estimated at 425 million people in 2017, and expected to rise to 629 million by 2045 due to an increasing trend of unhealthy lifestyles, physical inactivity, and obesity. Several treatment options are available to diabetics, however, some of the antidiabetic drugs result in adverse side effects such as hypoglycemia. Hence, there has been a proliferation of studies on natural products with antidiabetic effects, including plants from the Myrtaceae family, such as Psidium guajava, Eucalyptus globulus,Campomanesia xanthocarpa, and more significantly, Syzygium sp. Previous studies have shown that a number of Syzygium species had potent antidiabetic effects and were safe for consumption. This review aims to discuss the antidiabetic potential of Syzygium sp., based on in vitro and in vivo evidence.
    Matched MeSH terms: Hypoglycemic Agents/pharmacology*
  13. Ben-Hander GM, Makahleh A, Saad B, Saleh MI
    PMID: 24200841 DOI: 10.1016/j.jchromb.2013.10.007
    A three phase hollow fiber liquid-phase microextraction with in situ derivatization (in situ HF-LPME) followed by high-performance liquid chromatography-ultraviolet detection (HPLC-UV) method was developed for the trace determination of metformin hydrochloride (MH) in biological fluids. A new derivatization agent pentafluorobenzoyl chloride (PFBC) was used. Several parameters that affect the derivatization and extraction efficiency were studied and optimized (i.e., type of organic solvent, volume of NaOH (4M) and derivatization agent in the donor phase, acceptor phase (HCl) concentration, stirring speed, temperature, time and salt addition). Under the optimum conditions (organic solvent, dihexyl ether; volume of NaOH (4M) and derivatization agent (10mg PFBC in 1mL acetonitrile) in the donor phase, 600 and100μL, respectively; acceptor phase, 100mM HCl (10μL); stirring speed, 300rpm; extraction time, 30min; derivatization temperature, 70°C; without addition of salt) an enrichment factor of 210-fold was achieved. Good linearity was observed over the range of 1-1000ngmL(-1) (r(2)=0.9998). The limits of detection and quantitation were 0.56 and 1.68ngmL(-1), respectively. The proposed method has been applied for the determination of MH in biological fluids (plasma and urine) and water samples. Prior to the microextraction treatment of plasma samples, deproteinization step using acetonitrile was conducted. The proposed method is simple, rapid, sensitive and suitable for the determination of MH in a variety of samples.
    Matched MeSH terms: Hypoglycemic Agents/analysis*
  14. El Hachlafi N, Benkhaira N, Al-Mijalli SH, Mrabti HN, Abdnim R, Abdallah EM, et al.
    Biomed Pharmacother, 2023 Aug;164:114937.
    PMID: 37267633 DOI: 10.1016/j.biopha.2023.114937
    Mentha suaveolens, Lavandula stoechas, and Ammi visnaga are widely used in Moroccan folk medicine against several pathological disorders, including diabetes and infectious diseases. This work was designed to determine the chemical profile of M. suaveolens (MSEO), L. stoechas (LSEO), and A. visnaga (AVEO) essential oils and assess their antimicrobial, antioxidant, and antidiabetic effects. The volatile components of LSEO, AVEO, and MSEO were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). The in vitro antidiabetic activity was assessed using α-amylase and α-glucosidase enzymes, while DPPH, FRAP, and β-carotene/linoleic acid methods were used to determine the antioxidant capacity. The antimicrobial activities were investigated using disc diffusion and broth-microdilution assays. GC-MS investigation revealed that the main components were fenchone (29.77 %) and camphor (24.9 %) for LSEO, and linalool (38.29 %) for AVEO, while MSEO was mainly represented by piperitenone oxide (74.55 %). The results of the antimicrobial evaluation showed that all examined essential oils (EOs) had noticeable antimicrobial activity against both bacteria and yeast, especially Micrococcus luteus and Bacillus subtilis. The MIC, MBC, and MFC values were ranged from 0.015 % to 0.5 %. The MBC/MIC and MFC/MIC ratios were less than or equal to 4.0 % (v/v), indicating their noticeable bactericidal and candidacidal efficacy. Moreover, the three EOs showed significant inhibitory effects on α-amylase and α-glucosidase (p 
    Matched MeSH terms: Hypoglycemic Agents/pharmacology
  15. Davidson JA, Sukor N, Hew FL, Mohamed M, Hussein Z
    J Diabetes Investig, 2023 Feb;14(2):167-182.
    PMID: 36260389 DOI: 10.1111/jdi.13915
    The prevalence of type 2 diabetes mellitus continues to increase in many Asian countries, with possible contributing factors, such as younger-onset disease, diabetes development at lower body mass index, higher visceral fat accumulation and poorer β-cell function, among Asian populations. Sodium-glucose cotransporter 2 inhibitors have been shown to confer favorable effects in type 2 diabetes mellitus patients, such as improved glycemic control, weight and blood pressure reduction, and importantly, cardiorenal benefits. Sodium-glucose cotransporter 2 inhibitors are generally well-tolerated, and have a well-defined safety profile based on evidence from numerous clinical trials and post-marketing pharmacovigilance reporting. To our knowledge, this review is the first to provide a comprehensive coverage of the adverse events of sodium-glucose cotransporter 2 inhibitors, as well as their management and counseling aspects for Asian type 2 diabetes mellitus populations.
    Matched MeSH terms: Hypoglycemic Agents/adverse effects
  16. Ahmad Z, Zamhuri KF, Yaacob A, Siong CH, Selvarajah M, Ismail A, et al.
    Molecules, 2012 Aug 10;17(8):9631-40.
    PMID: 22885359 DOI: 10.3390/molecules17089631
    The amino acid and fatty acid composition of polypeptide k and oil isolated from the seeds of Momordica charantia was analysed. The analysis revealed polypeptide k contained 9 out of 11 essential amino acids, among a total of 18 types of amino acids. Glutamic acid, aspartic acid, arginine and glycine were the most abundant (17.08%, 9.71%, 9.50% and 8.90% of total amino acids, respectively). Fatty acid analysis showed unusually high amounts of C18-0 (stearic acid, 62.31% of total fatty acid). C18-1 (oleic acid) and C18-2 (linoleic acid) were the other major fatty acid detected (12.53% and 10.40%, respectively). The oil was devoid of the short fatty acids (C4-0 to C8-0). Polypeptide k and oil were also subjected to in vitro α-glucosidase and α-amylase inhibition assays. Both polypeptide k and seed oil showed potent inhibition of α-glucosidase enzyme (79.18% and 53.55% inhibition, respectively). α-Amylase was inhibited by 35.58% and 38.02%, respectively. Collectively, the in vitro assay strongly suggests that both polypeptide k and seed oil from Momordica charantia are potent potential hypoglycemic agents.
    Matched MeSH terms: Hypoglycemic Agents/isolation & purification; Hypoglycemic Agents/pharmacology*; Hypoglycemic Agents/chemistry
  17. Al Azzam KM, Makahleah A, Saad B, Mansor SM
    J Chromatogr A, 2010 Jun 4;1217(23):3654-9.
    PMID: 20409552 DOI: 10.1016/j.chroma.2010.03.055
    A three-phase hollow fiber liquid-phase microextraction (HF-LPME) coupled either with capillary electrophoresis (CE) or high performance liquid chromatography (HPLC) with UV detection methods was successfully developed for the determination of trace levels of the anti-diabetic drug, rosiglitazone (ROSI) in biological fluids. The analyte was extracted into dihexyl ether that was immobilized in the wall pores of a porous hollow fiber from 10 mL of aqueous sample, pH 9.5 (donor phase), and was back extracted into the acceptor phase that contained 0.1M HCl located in the lumen of the hollow fiber. Parameters affecting the extraction process such as type of extraction solvent, HCl concentration, donor phase pH, extraction time, stirring speed, and salt addition were studied and optimized. Under the optimized conditions (extraction solvent, dihexyl ether; donor phase pH, 9.5; acceptor phase, 0.1M HCl; stirring speed, 600 rpm; extraction time, 30 min; without addition of salt), enrichment factor of 280 was obtained. Good linearity and correlation coefficients of the analyte was obtained over the concentration ranges of 1.0-500 and 5.0-500 ng mL(-1) for the HPLC (r(2)=0.9988) and CE (r(2)=0.9967) methods, respectively. The limits of detection (LOD) and limits of quantitation (LOQ) for the HPLC and CE methods were (0.18, 2.83) and (0.56, 5.00) ng mL(-1), respectively. The percent relative standard deviation (n=6) for the extraction and determination of three concentration levels (10, 250, 500 ng mL(-1)) of ROSI using the HPLC and CE methods were less than 10.9% and 13.2%, respectively. The developed methods are simple, rapid, sensitive and are suitable for the determination of trace amounts of ROSI in biological fluids.
    Matched MeSH terms: Hypoglycemic Agents/analysis*; Hypoglycemic Agents/blood; Hypoglycemic Agents/urine
  18. Wong TW
    Recent Pat Drug Deliv Formul, 2009 Jan;3(1):8-25.
    PMID: 19149726 DOI: 10.2174/187221109787158346
    The global burden of diabetes is estimated to escalate from about 171 million in 2000 to 366 million people in 2030. The routine of diabetes treatment by injection of insulin incurs pain and has been one major factor negating the quality of life of diabetic patients. The possibility of administering insulin via alternative routes such as oral and nasal pathways has been investigated over the years, but with insulin experiencing risks of enzymatic degradation and poor transmucosal absorption. This leads to the rising needs to develop new formulation strategies emphasizing on the assembly of insulin and excipients into a physical structure to maintain the stability and increase the bioavailability of insulin. Chitosan and its derivatives or salts have been widely investigated as functional excipients of delivering insulin via oral, nasal and transdermal routes. The overview of various recent patented strategies on non-injection insulin delivery denotes the significance of chitosan for its mucoadhesive and able to protect the insulin from enzymatic degradation, prolong the retention time of insulin, as well as, open the inter-epithelial tight junction to facilitate systemic insulin transport. The chitosan can be employed to strengthen the physicochemical stability of insulin and multi-particulate matrix. The introduction of chitosan coat or co-formulation of chitosan with cationic gelatin or electrolytes which provide solidified or partially crosslinked structures retain and/or enhance the positive charges of dosage form necessary to induce mucoadhesiveness. The chitosan is modifiable chemically to produce water-soluble low molecular weight polymer which renders insulin able to be processed under mild conditions, and sulphated chitosan which markedly opens the paracellular channels for insulin transport. Combination of chitosan and fatty acid as hydrophobic nanoparticles promotes the insulin absorption via lymphoid tissue. Attainment of optimized formulations with higher levels of pharmacological bioavailability is deemed possible in future through targeted delivery of insulin using chitosan with specific adhesiveness to the intended absorption mucosa.
    Matched MeSH terms: Hypoglycemic Agents/administration & dosage*; Hypoglycemic Agents/adverse effects; Hypoglycemic Agents/pharmacokinetics
  19. Ruzilawati AB, Wahab MS, Imran A, Ismail Z, Gan SH
    J Pharm Biomed Anal, 2007 Apr 11;43(5):1831-5.
    PMID: 17240100
    In this study, the development and validation of a high-performance liquid chromatography (HPLC) assay for determination of repaglinide concentration in human plasma for pharmacokinetic studies is described. Plasma samples containing repaglinide and an internal standard, indomethacin were extracted with ethylacetate at pH 7.4. The recovery of repaglinide was 92%+/-55.31. Chromatographic separations were performed on Purospher STAR C-18 analytical column (4.8 mm x 150 mm; 5 microm particle size). The mobile phase composed of acetonitrile-ammonium formate (pH 2.7; 0.01 M) (60:40, v/v). The flow rate was 1 ml/min. The retention time for repaglinide and indomethacin were approximately 6.2 and 5.3 min, respectively. Calibration curves of repaglinide were linear in the concentration range of 20-200 ng/ml in plasma. The limits of detection and quantification were 10 ng/ml and 20 ng/ml, respectively. The inter-day precision was from 5.21 to 11.84% and the intra-day precision ranged from 3.90 to 6.67%. The inter-day accuracy ranged 89.95 to 105.75% and intra-day accuracy ranged from 92.37 to 104.66%. This method was applied to determine repaglinide concentration in human plasma samples for a pharmacokinetic study.
    Matched MeSH terms: Hypoglycemic Agents/blood*; Hypoglycemic Agents/pharmacokinetics*; Hypoglycemic Agents/chemistry
  20. Zhu J, Zhang B, Tan C, Huang Q
    Food Funct, 2019 Sep 13.
    PMID: 31517355 DOI: 10.1039/c9fo01333d
    The present study aims to investigate the relationship between in silico experimental data and in vitro inhibitory data of polyphenols against α-glucosidase. The CDOCKER protocol in Discovery Studio was used to dock various polyphenols to the Saccharomyces cerevisiae α-glucosidase crystal structure. -CDOCKER energy values and the energy gap between the highest occupied molecular orbital energy and the lowest unoccupied molecular orbital energy were used to study its consistency with in vitro inhibitory data. The results showed that the correlation trend was trustworthy regardless of the data deviation and low correlation coefficient. Despite slight disagreements with some specific polyphenols, the docking data generally explained the effect of the groups (-OH, glycosyl, galloyl, and caffeoyl). The docking results showed that compound 7, a quercetin derivative, can be recommended as a lead antidiabetic compound, with additional anti-obesity effects. Galloyl and caffeoyl moieties are favorable to develop novel αG inhibitors.
    Matched MeSH terms: Hypoglycemic Agents
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links