Displaying publications 41 - 60 of 259 in total

Abstract:
Sort:
  1. Chong YH, Beng CG
    Med J Malaya, 1965 Sep;20(1):49-50.
    PMID: 4221413
    Matched MeSH terms: In Vitro Techniques
  2. Saber SEDM, Ahmed MHM, Obeid M, Ahmed HMA
    Int Endod J, 2019 Mar;52(3):267-278.
    PMID: 30225932 DOI: 10.1111/iej.13016
    AIM: To investigate the number of roots and root canal configurations using two coding systems and the root canal diverging and merging levels in extracted maxillary premolars in an Egyptian subpopulation using cone beam computed tomography (CBCT).

    METHODOLOGY: A total of 700 maxillary premolars were examined using CBCT in an Egyptian subpopulation. The number of roots was identified, and root canal configurations were classified according to Vertucci's classification and a new system for classifying root and canal morphology. In addition, the position where roots bifurcated and the levels where canals merged or diverged were identified. Fisher's exact test and independent t-test were used for statistical analysis, and the level of significance was set at 0.05 (P = 0.05).

    RESULTS: More than half of maxillary first premolars were double-rooted, and the majority of maxillary second premolars were single-rooted (P 

    Matched MeSH terms: In Vitro Techniques
  3. Yuen KH, Desmukh AA, Newton JM
    Pharm Res, 1993 Apr;10(4):588-92.
    PMID: 8483843
    A novel multiparticulate sustained-release theophylline formulation, which consisted of spherical drug pellets coated with a rate-controlling membrane, was evaluated in vivo. Two preparations that differ solely in the coat thickness, and hence rate of in vitro drug release, were studied in comparison with a solution of the drug. Both preparations produced serum concentration profiles that are reflective of a slow and sustained rate of absorption. The in vivo release versus time profiles calculated using a deconvolution procedure showed that the two preparations differed in the rate but not the extent of drug release. Satisfactory correlation was also obtained between the in vivo and the in vitro results. When the two preparations were further compared using the parameters, time to reach peak concentration (Tp), peak concentration (Cp), and total area under the serum concentration versus time curves (AUC), a statistically significant difference was observed in the Tp and Cp values but not the AUC values, suggesting that the preparations differed in the rate but not the extent of absorption. In addition, the extent of absorption from both preparations was comparable to that obtained with the drug solution.
    Matched MeSH terms: In Vitro Techniques
  4. Abdullah S, Mohtar F, Abdul Shukor N, Sapuan J
    J Hand Surg Asian Pac Vol, 2017 Dec;22(4):429-434.
    PMID: 29117830 DOI: 10.1142/S0218810417500459
    BACKGROUND: Synthetic scaffold has been used for tissue approximation and reconstructing damaged and torn ligaments. This study explores the ability of tendon ingrowth into a synthetic scaffold in vitro, evaluate growth characteristics, morphology and deposition of collagen matrix into a synthetic scaffold.

    METHODS: Upper limb tendons were harvested with consent from patients with crush injuries and non-replantable amputations. These tendons (both extensor and flexor) measuring 1 cm are sutured to either side of a 0.5 cm synthetic tendon strip and cultured in growth medium. At 2, 4, 6 and 8 weeks, samples were fixed into paraffin blocks, cut and stained with haematoxylin-eosin (H&E) and Masson's trichrome.

    RESULTS: Minimal tendon ingrowth were seen in the first 2 weeks of incubation. However at 4 weeks, the cell ingrowth were seen migrating towards the junction between the tendon and the synthetic scaffold. This ingrowth continued to expand at 6 weeks and up to 8 weeks. At this point, the demarcation between human tendon and synthetic scaffold was indistinct.

    CONCLUSIONS: We conclude that tendon ingrowth composed of collagen matrix were able to proliferate into a synthetic scaffold in vitro.

    Matched MeSH terms: In Vitro Techniques
  5. Kannaiyan K, Rathod A, Bhushan P, Mailankote S, Almuraikhi T, Daghriri A
    J Contemp Dent Pract, 2024 Mar 19;25(3):241-244.
    PMID: 38690697 DOI: 10.5005/jp-journals-10024-3612
    AIM: The current study was designed to assess the linear dimensional changes and adaptability of two heat-cured denture base resins using various cooling methods.

    MATERIALS AND METHODS: To prepare a total of 90 acrylic resin samples (45 acrylic resin samples for each material), four rectangular stainless-steel plates measuring 25 × 25 × 10 mm were fabricated. For both groups, the material was put into the mold at the dough stage. Group I - SR Triplex Hot Heat Cure acrylic; group II - DPI Heat Cure acrylic. Both groups used the same curing procedure. One of the following three techniques was used to cool the material (15 samples from each material) once the curing cycle was finished: (A) water bath, (b) quenching, and (C) air. A traveling microscope was used to measure the distance between the markings on the acrylic samples. The data was recorded and statistically analyzed.

    RESULTS: In SR Triplex Hot heat cure acrylic material, the maximum linear dimensional changes were found in the quenching technique (0.242 ± 0.05), followed by the air technique (0.168 ± 0.11) and the least was found in the water bath technique (0.146 ± 0.01). In DPI Heat Cure acrylic material, the maximum linear dimensional changes were found in the quenching technique (0.284 ± 0.09), followed by the air technique (0.172 ± 0.18) and the least was found in the water bath technique (0.158 ± 0.10). There was a statistically significant difference found between these three cooling techniques. On comparison of adaptability, the water bath technique, the marginal gap SR Triplex Hot was 0.012 ± 0.02 and DPI Heat Cure was 0.013 ± 0.02. In the quenching technique, the marginal gap SR Triplex Hot was 0.019 ± 0.04 and DPI Heat Cure was 0.016 ± 0.04. In the air technique, the marginal gap SR Triplex Hot was 0.017 ± 0.01 and DPI Heat Cure was 0.019 ± 0.01.

    CONCLUSION: The present study concluded that among the different cooling methods, the water bath technique had the least linear dimensional change, followed by the air and quenching techniques. When comparing the materials, DPI Heat Cure acrylic resin showed a greater linear dimensional change than SR Triplex Hot heat cure acrylic resin.

    CLINICAL SIGNIFICANCE: During polymerization, heat-cured acrylic resins experience dimensional changes. Shrinkage and expansion are dimensional changes that occur in heat-cured acrylic resins and have an impact on the occlusal relationship and denture fit. However, the denture base's material qualities and the different temperature variations it experiences during production may have an impact on this. How to cite this article: Kannaiyan K, Rathod A, Bhushan P, et al. Assessment of Adaptability and Linear Dimensional Changes of Two Heat Cure Denture Base Resin with Different Cooling Techniques: An In Vitro Study. J Contemp Dent Pract 2024;25(3):241-244.

    Matched MeSH terms: In Vitro Techniques
  6. Ng YM, Sockalingam SNM, Shafiei Z, Zakaria ASI, Mahyuddin A, Rahman MA
    J Contemp Dent Pract, 2024 Mar 19;25(3):260-266.
    PMID: 38690700 DOI: 10.5005/jp-journals-10024-3645
    AIM AND BACKGROUND: This study aimed to explore the potential synergistic interaction of virgin coconut oil (VCO) and virgin olive oil (VOO) mixture against Streptococcus sanguinis, Streptococcus mutans, and Lactobacillus casei in a single and mixture species through the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antiadherence, and antibiofilm activities.

    MATERIALS AND METHODS: The broth microdilution technique was used to individually determine the MIC of both oils and an oil mixture (in the ratio of 1:1) in a 96-well microtiter plate. As for the MBC, the subcultured method was used. The fractional inhibitory concentration index (ΣFIC) was determined to identify the interaction types between both oils. The oil mixture at its MIC was then tested on its antibiofilm and antiadherence effect.

    RESULTS: The MIC of the oil mixture against the tested microbiota was 50-100%. The oil mixture was bactericidal at 100% concentration for all the mentioned microbes except S. mutans. The ΣFIC value was 2 to 4, indicating that the VCO and VOO acted additively against the microbiota. Meanwhile, the oil mixture at MIC (50% for S. sanguinis and L. casei; 100% for S. mutans and mixture species) exhibited antiadherence and antibiofilm activity toward the microbiota in mixture species.

    CONCLUSION: The oil mixture possesses antibacterial, antibiofilm, and antiadherence properties toward the tested microbiota, mainly at 50-100% concentration of oil mixture. There was no synergistic interaction found between VCO and VOO.

    CLINICAL SIGNIFICANCE: Children and individuals with special care may benefit from using the oil mixture, primarily to regulate the biofilm formation and colonization of the bacteria. Furthermore, the oil mixture is natural and nontoxic compared to chemical-based oral healthcare products. How to cite this article: Ng YM, Sockalingam SNMP, Shafiei Z, et al. Biological Activities of Virgin Coconut and Virgin Olive Oil Mixture against Oral Primary Colonizers: An In Vitro Study. J Contemp Dent Pract 2024;25(3):260-266.

    Matched MeSH terms: In Vitro Techniques
  7. Abdelrehim A, Salleh NM, Sofian H, Sulaiman E
    J Oral Implantol, 2024 Apr 01;50(2):104-110.
    PMID: 38353347 DOI: 10.1563/aaid-joi-D-23-00063
    Accuracy is a necessity in implant impressions to fabricate accurately fitting implant-supported prostheses. This in vitro study aimed to explore the impact of the number of scan bodies on scanning quality by comparing scans of 2 vs 4 implants, and to determine if their accuracy and precision meets acceptable clinical threshold. Two mandibular edentulous models were used: one with 4-parallel implants (4-IM) and the other with 2-parallel implants (2-IM). Each model was scanned 10 times with an intraoral scanner, while reference scans were obtained with a high-precision laboratory scanner. The accuracy of test scans was evaluated by superimposing them onto reference scans and measuring 3D and angular deviations of the scan bodies. To assess the precision, the repeatability of the scans was analyzed by measuring the 3D SDs. Independent t test was used to compare angular deviations, the Mann-Whitney U test was used for 3D deviations and 3D SDs, and 1 sample t test was used for comparing means to the clinical threshold. Angular and 3D deviations were statistically not significant between the 2 groups (P = .054 and 0.143). 3D deviation values were higher than the 150-µm threshold for 2-IM (201 µm) and 4-IM (290 µm); angular deviation in 2-IM was 0.600 degrees and 0.885 degrees for 4-IM. There was no statistically significant difference in the precision of scans between the 2 groups. (P = .161). Although scanning quality improved when 2 scan bodies were used, the difference was not statistically significant. Moreover, full-arch implant scanning did not meet acceptable levels of accuracy and precision.
    Matched MeSH terms: In Vitro Techniques
  8. Niranjan NT, Dastidar PG, Penukonda R, Lin GSS, Babannavar R, Jaysheel A, et al.
    Odontology, 2024 Jul;112(3):711-717.
    PMID: 38087010 DOI: 10.1007/s10266-023-00874-1
    To evaluate and compare the effect of calcium hydroxide [Ca(OH)2] and 2-hydroxyisocaproic acid (HICA) on the microhardness of root dentine. Fifty-one matured maxillary central incisors with straight root and type I canal configuration were decoronated to a standardized length of 16 mm. The root canals were cleaned and shaped using rotary instruments up to size F5. The tooth samples were then randomly assigned into three groups (n = 17) based on the intracanal medicament placed. Group A: control group with no intracanal medicament, Group B: root canals placed with Ca(OH)2, and Group C: root canals placed with HICA. After 1 week, the intracanal medicaments placed within the root canals were removed and the canals were dried. Subsequently, the specimens were split longitudinally into two halves and subjected to the Vickers microhardness test with indentations made at the coronal, middle, and apical-third root regions. The data were analyzed using one-way ANOVA and Tukey's post hoc tests. The control group showed significantly highest microhardness value (P 
    Matched MeSH terms: In Vitro Techniques
  9. Tay ST, Rohani MY, Ho TM, Devi S
    PMID: 12971561
    Using cultured mouse fibroblast L929 cells, this study demonstrated the hemolytic and cytotoxic activities and induction of apoptosis in cells infected with Orientia tsutsugamushi. Low levels of hemolytic activity were detected using heavily infected cells. No hemolysin or cytotoxin were detected in the infected culture fluid regardless of the pathogenicity of the O. tsutsugamushi strains in mice. Using propidium iodide uptake assay, acridine orange/ethidium bromide staining and terminal deoxynucleotide transferase-mediated dUTP-digoxigenin nick-end labeling assay, apoptosis was observed in L929 cells infected with Karp and Gilliam strains.
    Matched MeSH terms: In Vitro Techniques
  10. Zahari NAH, Farid DAM, Alauddin MS, Said Z, Ghazali MIM, Lee HE, et al.
    J Prosthet Dent, 2024 Dec;132(6):1329.e1-1329.e6.
    PMID: 39147631 DOI: 10.1016/j.prosdent.2024.07.017
    STATEMENT OF PROBLEM: Current 3-dimensionally (3D) printed denture bases have inadequate strength and durability for long-term use, and milled denture bases generate excessive waste. Addressing these limitations is crucial to advancing prosthetic dentistry, ensuring improved patient outcomes and promoting environmental responsibility.

    PURPOSE: The purpose of this in vitro study was to incorporate microparticles into a commercially available 3D printed denture base resin and compare its mechanical and biological properties with the conventional polymethyl methacrylate (PMMA) denture base material.

    MATERIAL AND METHODS: Microparticles were collected from milled zirconia blanks and were blended with a 3D printing denture base resin (NextDent Denture 3D+). The optimal zirconia microparticle content (2%) for blending and printed was determined by using a liquid-crystal display (LCD) 3D printer. The printed specimens were then postrinsed and postpolymerized based on the manufacturer's instructions. Mechanical and biological characterization were carried out in terms of flexural strength, fracture toughness, and fungal adhesion. One-way ANOVA was carried out to analyze the results statistically.

    RESULTS: The incorporation of microparticles in the 3D printed denture demonstrated higher mechanical strength (104.77 ±7.60 MPa) compared with conventional heat-polymerized denture base resin (75.15 ±24.41 MPa) (P

    Matched MeSH terms: In Vitro Techniques
  11. Yunus MH, Siang KC, Hashim NI, Zhi NP, Zamani NF, Sabri PP, et al.
    Tissue Cell, 2014 Aug;46(4):233-40.
    PMID: 24973262 DOI: 10.1016/j.tice.2014.05.003
    The culture of human airway epithelial cells has played an important role in advancing our understanding of the metabolic and molecular mechanisms underlying normal function and disease pathology of airway epithelial cells. The present study focused on investigating the effects of human serum (HS) on the qualitative and quantitative properties of the human respiratory epithelium compared to the fetal bovine serum (FBS), as a supplement in culture. Respiratory epithelial (RE) cells derived from human nasal turbinate were co-cultured with fibroblasts, subsequently separated at 80-90% confluency by differential trypsinization. RE cells were then sub-cultured into 2 different plates containing 5% allogenic HS and FBS supplemented media respectively up to passage 1 (P1). Cell morphology, growth rate, cell viability and population doubling time were assessed under light microscope, and levels of gene expression were measured via real time reverse transcriptase-polymerase chain reaction (qRT-PCR). RE cells appeared as polygonal shape and expanded when cultured in HS whereas RE cells in FBS were observed to be easily matured thus limit the RE cells expansion. Proliferation rate of RE cells in HS supplemented media (7673.18 ± 1207.15) was 3 times higher compared to RE in FBS supplemented media (2357.68 ± 186.85). Furthermore, RE cells cultured in HS-supplemented media required fewer days (9.15 ± 1.10) to double in numbers compared to cells cultured in FBS-supplemented media (13.66 ± 0.81). Both the differences were significant (p<0.05). However, there were no significant differences in the viability of RE cells in both groups (p=0.105). qRT-PCR showed comparable expressions of gene Cytokeratin-14 (CK-14), Cytokeratin-18 (CK-18) and Mucin-5 subtype B (MUC5B) in RE cells cultured in both groups (p>0.05). In conclusion, HS is a comparatively better choice of media supplement in accelerating growth kinetics of RE cells in vitro thus producing a better quality of respiratory epithelium for future tracheal reconstruction.
    Matched MeSH terms: In Vitro Techniques*
  12. Vinoth KJ, Manikandan J, Sethu S, Balakrishnan L, Heng A, Lu K, et al.
    J Biotechnol, 2014 Aug 20;184:154-68.
    PMID: 24862194 DOI: 10.1016/j.jbiotec.2014.05.009
    This study evaluated human embryonic stem cells (hESC) and their differentiated fibroblastic progenies as cellular models for genotoxicity screening. The DNA damage response of hESCs and their differentiated fibroblastic progenies were compared to a fibroblastic cell line (HEPM, CRL1486) and primary cultures of peripheral blood lymphocytes (PBL), upon exposure to Mitomycin C, gamma irradiation and H2O2. It was demonstrated that hESC-derived fibroblastic progenies (H1F) displayed significantly higher chromosomal aberrations, micronuclei formation and double strand break (DSB) formation, as compared to undifferentiated hESC upon exposure to genotoxic stress. Nevertheless, H1F cell types displayed comparable sensitivities to genotoxic challenge as HEPM and PBL, both of which are representative of somatic cell types commonly used for genotoxicity screening. Subsequently, transcriptomic and pathways analysis identified differential expression of critical genes involved in cell death and DNA damage response upon exposure to gamma irradiation. The results thus demonstrate that hESC-derived fibroblastic progenies are as sensitive as commonly-used somatic cell types for genotoxicity screening. Moreover, hESCs have additional advantages, such as their genetic normality compared to immortalized cell lines, as well as their amenability to scale-up for producing large, standardized quantities of cells for genotoxicity screening on an industrial scale, something which can never be achieved with primary cell cultures.
    Matched MeSH terms: In Vitro Techniques*
  13. Cheng PH, Liang JB, Wu YB, Wang Y, Tufarelli V, Laudadio V, et al.
    Anim Sci J, 2017 Aug;88(8):1141-1148.
    PMID: 28026141 DOI: 10.1111/asj.12723
    Native Lantang and commercial Duroc pigs were used as animal models to evaluate the differences existing in dietary fiber utilization ability between breeds. Animals were fed the same diet from weaning (4 weeks) to 4 months of age. Neutral detergent fiber (NDF) from wheat bran (as substrate) and fecal samples from the two breeds (as inoculum) were used in an in vitro gas production trial. Results showed that cumulative and maximum gas productions were higher in inocula from Lantang than those from the Duroc breed (P 
    Matched MeSH terms: In Vitro Techniques*
  14. Jafari S, Goh YM, Rajion MA, Jahromi MF, Ahmad YH, Ebrahimi M
    Anim Sci J, 2017 Feb;88(2):267-276.
    PMID: 27345820 DOI: 10.1111/asj.12634
    Papaya leaf methanolic extract (PLE) at concentrations of 0 (CON), 5 (LLE), 10 (MLE) and 15 (HLE) mg/250 mg dry matter (DM) with 30 mL buffered rumen fluid were incubated for 24 h to identify its effect on in vitro ruminal methanogenesis and ruminal biohydrogenation (BH). Total gas production was not affected (P > 0.05) by addition of PLE compared to the CON at 24 h of incubation. Methane (CH4 ) production (mL/250 mg DM) decreased (P 
    Matched MeSH terms: In Vitro Techniques*
  15. Bell-Sakyi L, Darby A, Baylis M, Makepeace BL
    Ticks Tick Borne Dis, 2018 07;9(5):1364-1371.
    PMID: 29886187 DOI: 10.1016/j.ttbdis.2018.05.015
    Tick cell lines are increasingly used in many fields of tick and tick-borne disease research. The Tick Cell Biobank was established in 2009 to facilitate the development and uptake of these unique and valuable resources. As well as serving as a repository for existing and new ixodid and argasid tick cell lines, the Tick Cell Biobank supplies cell lines and training in their maintenance to scientists worldwide and generates novel cultures from tick species not already represented in the collection. Now part of the Institute of Infection and Global Health at the University of Liverpool, the Tick Cell Biobank has embarked on a new phase of activity particularly targeted at research on problems caused by ticks, other arthropods and the diseases they transmit in less-developed, lower- and middle-income countries. We are carrying out genotypic and phenotypic characterisation of selected cell lines derived from tropical tick species. We continue to expand the culture collection, currently comprising 63 cell lines derived from 18 ixodid and argasid tick species and one each from the sand fly Lutzomyia longipalpis and the biting midge Culicoides sonorensis, and are actively engaging with collaborators to obtain starting material for primary cell cultures from other midge species, mites, tsetse flies and bees. Outposts of the Tick Cell Biobank will be set up in Malaysia, Kenya and Brazil to facilitate uptake and exploitation of cell lines and associated training by scientists in these and neighbouring countries. Thus the Tick Cell Biobank will continue to underpin many areas of global research into biology and control of ticks, other arthropods and vector-borne viral, bacterial and protozoan pathogens.
    Matched MeSH terms: In Vitro Techniques*
  16. Tan JB, Lim YY
    Food Chem, 2015 Apr 1;172:814-22.
    PMID: 25442625 DOI: 10.1016/j.foodchem.2014.09.141
    Natural product research is an active branch of science, driven by the increased value placed on individual health and well-being. Many naturally-occurring phytochemicals in plants, fruits and vegetables have been reported to exhibit antioxidant and antibacterial activity; often touted as being beneficial for human health. In vitro screening is a common practice in many research laboratories as a means of rapidly assessing these properties. However, the methods used by many are not necessarily optimal; a result of poor standardization, redundant assays and/or outdated methodology. This review primarily aims to give a better understanding in the selection of in vitro assays, with emphasis placed on some common assays such as the total phenolic content assay, free radical scavenging activity, disc-diffusion and broth microdilution. This includes a discussion on the reasons for choosing a particular assay, its strengths and weaknesses, ways to improve the accuracy of results and alternative assays.
    Matched MeSH terms: In Vitro Techniques
  17. Yusof SR, Avdeef A, Abbott NJ
    Eur J Pharm Sci, 2014 Dec 18;65:98-111.
    PMID: 25239510 DOI: 10.1016/j.ejps.2014.09.009
    In vitro blood-brain barrier (BBB) models from primary brain endothelial cells can closely resemble the in vivo BBB, offering valuable models to assay BBB functions and to screen potential central nervous system drugs. We have recently developed an in vitro BBB model using primary porcine brain endothelial cells. The model shows expression of tight junction proteins and high transendothelial electrical resistance, evidence for a restrictive paracellular pathway. Validation studies using small drug-like compounds demonstrated functional uptake and efflux transporters, showing the suitability of the model to assay drug permeability. However, one limitation of in vitro model permeability measurement is the presence of the aqueous boundary layer (ABL) resulting from inefficient stirring during the permeability assay. The ABL can be a rate-limiting step in permeation, particularly for lipophilic compounds, causing underestimation of the permeability. If the ABL effect is ignored, the permeability measured in vitro will not reflect the permeability in vivo. To address the issue, we explored the combination of in vitro permeability measurement using our porcine model with the pKa(FLUX) method in pCEL-X software to correct for the ABL effect and allow a detailed analysis of in vitro (transendothelial) permeability data, Papp. Published Papp using porcine models generated by our group and other groups are also analyzed. From the Papp, intrinsic transcellular permeability (P0) is derived by simultaneous refinement using a weighted nonlinear regression, taking into account permeability through the ABL, paracellular permeability and filter restrictions on permeation. The in vitro P0 derived for 22 compounds (35 measurements) showed good correlation with P0 derived from in situ brain perfusion data (r(2)=0.61). The analysis also gave evidence for carrier-mediated uptake of naloxone, propranolol and vinblastine. The combination of the in vitro porcine model and the software analysis provides a useful tool to better predict BBB permeability in vivo and gain better mechanistic information about BBB permeation.
    Matched MeSH terms: In Vitro Techniques
  18. Babaei N, Abdullah NA, Saleh G, Abdullah TL
    ScientificWorldJournal, 2014;2014:275028.
    PMID: 24723799 DOI: 10.1155/2014/275028
    A procedure was developed for in vitro propagation of Curculigo latifolia through shoot tip culture. Direct regeneration and indirect scalp induction of Curculigo latifolia were obtained from shoot tip grown on MS medium supplemented with different concentrations and combinations of thidiazuron and indole-3-butyric acid. Maximum response for direct regeneration in terms of percentage of explants producing shoot, shoot number, and shoot length was obtained on MS medium supplemented with combination of thidiazuron (0.5 mg L(-1)) and indole-3-butyric acid (0.25 mg L(-1)) after both 10 and 14 weeks of cultures. Indole-3-butyric acid in combination with thidiazuron exhibited a synergistic effect on shoot regeneration. The shoot tips were able to induce maximum scalp from basal end of explants on the medium with 2 mg L(-1) thidiazuron. Cultures showed that shoot number, shoot length, and scalp size increased significantly after 14 weeks of culture. Transferring of the shoots onto the MS medium devoid of growth regulators resulted in the highest percentage of root induction and longer roots, while medium supplemented with 0.25 mg L(-1) IBA produced more numbers of roots.
    Matched MeSH terms: In Vitro Techniques
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links