Displaying all 10 publications

Abstract:
Sort:
  1. Ahmad A, Sattar MA, Azam M, Khan SA, Bhatt O, Johns EJ
    PLoS One, 2018;13(2):e0189386.
    PMID: 29447158 DOI: 10.1371/journal.pone.0189386
    Left ventricular hypertrophy (LVH) is associated with decreased responsiveness of renal α1-adrenoreceptors subtypes to adrenergic agonists. Nitric oxide donors are known to have antihypertrophic effects however their impact on responsiveness of renal α1-adrenoreceptors subtypes is unknown. This study investigated the impact of nitric oxide (NO) and its potential interaction with the responsiveness of renal α1-adrenoreceptors subtypes to adrenergic stimulation in rats with left ventricular hypertrophy (LVH). This study also explored the impact of NO donor on CSE expression in normal and LVH kidney. LVH was induced using isoprenaline and caffeine in drinking water for 2 weeks while NO donor (L-arginine, 1.25g/Lin drinking water) was given for 5 weeks. Intrarenal noradrenaline, phenylephrine and methoxamine responses were determined in the absence and presence of selective α1-adrenoceptor antagonists, 5- methylurapidil (5-MeU), chloroethylclonidine (CeC) and BMY 7378. Renal cortical endothelial nitric oxide synthase mRNA was upregulated 7 fold while that of cystathione γ lyase was unaltered in the NO treated LVH rats (LVH-NO) group compared to LVH group. The responsiveness of renal α1A, α1B and α1D-adrenoceptors in the low dose and high dose phases of 5-MeU, CEC and BMY7378 to adrenergic agonists was increased along with cGMP in the kidney of LVH-NO group. These findings suggest that exogenous NO precursor up-regulated the renal eNOS/NO/cGMP pathway in LVH rats and resulted in augmented α1A, α1B and α1D adrenoreceptors responsiveness to the adrenergic agonists. There is a positive interaction between H2S and NO production in normal animals but this interaction appears absent in LVH animals.
    Matched MeSH terms: Nitric Oxide/physiology*
  2. Lau YS, Kwan CY, Ku TC, Hsieh WT, Wang HD, Nishibe S, et al.
    J Ethnopharmacol, 2012 Sep 28;143(2):565-71.
    PMID: 22835814 DOI: 10.1016/j.jep.2012.07.012
    The leaves extract of Apocynum venetum (AVLE), also known as "luobuma", have long been used in traditional Chinese medicine to treat hypertension and depression in parts of China and it has been shown to possess anti-oxidant and anti-lipid peroxidation effects. AVLE (10 μg/ml) has been reported to have a long-lasting endothelium-dependent relaxant effect and this effect has been proposed to be due to its nitric oxide(NO)-releasing and superoxide anion(SOA)-scavenging properties.
    Matched MeSH terms: Nitric Oxide/physiology
  3. Achike FI, Kwan CY
    Clin Exp Pharmacol Physiol, 2003 Sep;30(9):605-15.
    PMID: 12940876
    1. Nitric oxide (NO) is formed enzymatically from l-arginine in the presence of nitric oxide synthase (NOS). Nitric oxide is generated constitutively in endothelial cells via sheer stress and blood-borne substances. Nitric oxide is also generated constitutively in neuronal cells and serves as a neurotransmitter and neuromodulator in non-adrenergic, non-cholinergic nerve endings. Furthermore, NO can also be formed via enzyme induction in many tissues in the presence of cytokines. 2. The ubiquitous presence of NO in the living body suggests that NO plays an important role in the maintenance of health. Being a free radical with vasodilatory properties, NO exerts dual effects on tissues and cells in various biological systems. At low concentrations, NO can dilate the blood vessels and improve the circulation, but at high concentrations it can cause circulatory shock and induce cell death. Thus, diseases can arise in the presence of the extreme ends of the physiological concentrations of NO. 3. The NO signalling pathway has, in recent years, become a target for new drug development. The high level of flavonoids, catechins, tannins and other polyphenolic compounds present in vegetables, fruits, soy, tea and even red wine (from grapes) is believed to contribute to their beneficial health effects. Some of these compounds induce NO formation from the endothelial cells to improve circulation and some suppress the induction of inducible NOS in inflammation and infection. 4. Many botanical medicinal herbs and drugs derived from these herbs have been shown to have effects on the NO signalling pathway. For example, the saponins from ginseng, ginsenosides, have been shown to relax blood vessels (probably contributing to the antifatigue and blood pressure-lowering effects of ginseng) and corpus cavernosum (thus, for the treatment of men suffering from erectile dysfunction; however, the legendary aphrodisiac effect of ginseng may be an overstatement). Many plant extracts or purified drugs derived from Chinese medicinal herbs with proposed actions on NO pathways are also reviewed.
    Matched MeSH terms: Nitric Oxide/physiology*
  4. Tan CS, Yam MF
    Naunyn Schmiedebergs Arch Pharmacol, 2018 06;391(6):561-569.
    PMID: 29552696 DOI: 10.1007/s00210-018-1481-9
    Previous studies have demonstrated that 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (TMF) content in Orthosiphon stamineus fractions correlate with its vasorelaxation activity. Even with the availability of previous studies, there is still very little information on the vasorelaxation effect of TMF, and few scientific studies have been carried out. Therefore, the present study was designed to investigate the vasorelaxation activity and mechanism of action of the TMF. The vasorelaxation activity and the underlying mechanisms of TMF were evaluated on thoracic aortic rings isolated from Sprague Dawley rats. TMF caused the relaxation of aortic rings with endothelium pre-contracted with phenylephrine. However, the vasorelaxant effect of TMF was significantly decreased in PE-primed endothelium-denuded and potassium chloride-primed endothelium-intact aortic rings. In the presence of Nω-nitro-L-arginine methyl ester, methylene blue, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, indomethacin, tetraethylammonium, 4-aminopyridine, barium chloride, atropine and propranolol, the relaxation stimulated by TMF was significantly reduced. TMF was also found to reduce Ca2+ release from sarcoplasmic reticulum (via IP3R) and block calcium channels (VOCC). The present study demonstrates the vasorelaxant effect of TMF involves NO/sGC/cGMP and prostacyclin pathways, calcium and potassium channels and muscarinic and beta-adrenergic receptors.
    Matched MeSH terms: Nitric Oxide/physiology
  5. Devi RC, Sim SM, Ismail R
    J Smooth Muscle Res, 2011;47(5):143-56.
    PMID: 22104376
    Cymbopogon citratus, commonly known as lemongrass, has been shown to have antioxidant, antimicrobial and chemo-protective properties. Citral, a monoterpenoid, is the major constituent of C. citratus that gives off a lemony scent and is postulated to be responsible for most of its actions. In addition, C. citratus has been traditionally used to treat gastrointestinal discomforts, however, the scientific evidence for this is still lacking. Thus, the aim of the present study was to investigate the effect of the extracts of various parts of C. citratus (leaves, stems and roots) and citral on the visceral smooth muscle activity of rabbit ileum. The effect of the test substances were tested on the spontaneous contraction, acetylcholine (ACh)- and KCl-induced contractions. Citral at doses between 0.061 mM to 15.6 mM and the extract of leaves at doses between 0.001 mg/mL to 1 mg/mL significantly reduced the spontaneous, ACh- and KCl-induced ileal contractions. When the ileum was incubated in K(+)-rich-Ca(2+)-free Tyrode's solution, it showed only minute contractions. However, the strength of contraction was increased with the addition of increasing concentrations of CaCl(2). The presence of citral almost abolished the effect of adding CaCl(2), while the leaf extract shifted the calcium concentration-response curve to the right, suggesting a calcium antagonistic effect. These results were similar to that elicited by verapamil, a known calcium channel blocker. In addition, the spasmolytic effect of citral was observed to be reduced by the nitric oxide synthase inhibitor, L-NAME. In conclusion, citral and the leaf extract of C. citratus exhibited spasmolytic activity and it appeared that they may act as calcium antagonists. Furthermore, the relaxant effect of citral, but not that of the leaf extract may be mediated by nitric oxide suggesting the presence of other chemical components in the leaf extract other than citral.
    Matched MeSH terms: Nitric Oxide/physiology
  6. Zakaria ZA, Sulaiman MR, Somchit MN, Jais AM, Ali DI
    J Pharm Pharm Sci, 2005;8(2):199-206.
    PMID: 16124931
    To determine the involvement of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway in aqueous supernatant of haruan (Channa striatus) fillet (ASH) antinociception using the acetic acid-induced abdominal constriction test.
    Matched MeSH terms: Nitric Oxide/physiology
  7. Tew WY, Tan CS, Asmawi MZ, Yam MF
    Eur J Pharmacol, 2020 Aug 05;880:173123.
    PMID: 32335091 DOI: 10.1016/j.ejphar.2020.173123
    Morin (3,5,7,2',4'-pentahydroxyflavone) is a yellow coloured natural flavonoid found in plants of the Moraceae family. This favonoid is easily sources from readily available fruits, vegetables and eve certain beverages. Among the sources that was identified, it is clear that morin is most abundantly found in almond, old fustic, Indian guava, and Osage orange. Multiple studies have suggested that morin has multiple therapeutic actions and possess potential to be a functional potent drug. Previous studies demonstrated that morin is capable of resolving deoxycorticosterone acetate-salt-induced hypertension and possess strong vasorelaxant properties. However, the exact mechanisms remains unknown. Therefore, this study is designed to investigate the in vitro mechanism of morin-induced vasorelaxant effects. The underlying mechanisms of morin's vasorelaxant activities were evaluated on thoracic aortic rings isolated from Sprague-Dawley rats. Results from the study demonstrated morin causing vasodilatory reaction in phenylephrine and potassium chloride pre-contracted endothelium-intact aortic rings with the effect being significantly affected in endothelium-denuded aortic rings. Pre-incubation of the aortic rings with ODQ (selective cGMP-independent sGC inhibitor), indomethacin (nonselective COX inhibitor), L-NAME (endothelial nitric oxide inhibitor), propranolol (β2-adrenegic receptors blocker), and atropine (muscarinic receptors blocker) significantly reduced the vasorelaxant effect of morin. It was also found to be able to reduce the intracellular calcium level by blocking VOCC and calcium intake from the extracellular environment and the intracellular release of calcium from the sarcoplasmic reticulum. The present study showed that the vasorelaxant effect of morin potentially involves the NO/sGC, muscarinic receptors, β2-adrenegic receptors, and calcium channels.
    Matched MeSH terms: Nitric Oxide/physiology
  8. Chaisakul J, Rusmili MR, Hodgson WC, Hatthachote P, Suwan K, Inchan A, et al.
    Toxins (Basel), 2017 03 29;9(4).
    PMID: 28353659 DOI: 10.3390/toxins9040122
    Cardiovascular effects (e.g., tachycardia, hypo- and/or hypertension) are often clinical outcomes of snake envenoming. Malayan krait (Bungarus candidus) envenoming has been reported to cause cardiovascular effects that may be related to abnormalities in parasympathetic activity. However, the exact mechanism for this effect has yet to be determined. In the present study, we investigated thein vivoandin vitrocardiovascular effects ofB. candidusvenoms from Southern (BC-S) and Northeastern (BC-NE) Thailand. SDS-PAGE analysis of venoms showed some differences in the protein profile of the venoms.B. candidusvenoms (50 µg/kg-100 µg/kg, i.v.) caused dose-dependent hypotension in anaesthetised rats. The highest dose caused sudden hypotension (phase I) followed by a return of mean arterial pressure to baseline levels and a decrease in heart rate with transient hypertension (phase II) prior to a small decrease in blood pressure (phase III). Prior administration of monovalent antivenom significantly attenuated the hypotension induced by venoms (100 µg/kg, i.v.). The sudden hypotensive effect of BC-NE venom was abolished by prior administration of hexamethonium (10 mg/kg, i.v.) or atropine (5 mg/kg, i.v.). BC-S and BC-NE venoms (0.1 µg/kg-100 µg/ml) induced concentration-dependent relaxation (EC50= 8 ± 1 and 13 ± 3 µg/mL, respectively) in endothelium-intact aorta. The concentration-response curves were markedly shifted to the right by pre-incubation with L-NAME (0.2 mM), or removal of the endothelium, suggesting that endothelium-derived nitric oxide (NO) is likely to be responsible for venom-induced aortic relaxation. Our data indicate that the cardiovascular effects caused byB. candidusvenoms may be due to a combination of vascular mediators (i.e., NO) and autonomic adaptation via nicotinic and muscarinic acetylcholine receptors.
    Matched MeSH terms: Nitric Oxide/physiology
  9. Mohamad AS, Akhtar MN, Khalivulla SI, Perimal EK, Khalid MH, Ong HM, et al.
    Basic Clin Pharmacol Toxicol, 2011 Jun;108(6):400-5.
    PMID: 21214864 DOI: 10.1111/j.1742-7843.2010.00670.x
    The possible mechanisms of action in the antinociceptive activity induced by systemic administration (intraperitoneal, i.p.) of flavokawin B (FKB) were analysed using chemical models of nociception in mice. It was demonstrated that i.p. administration of FKB to the mice at 0.3, 1.0, 3.0 and 10 mg/kg produced significant dose-related reduction in the number of abdominal constrictions. The antinociception induced by FKB in the acetic acid test was significantly attenuated by i.p. pre-treatment of mice with L-arginine, the substrate for nitric oxide synthase or glibenclamide, the ATP-sensitive K(+) channel inhibitor, but was enhanced by methylene blue, the non-specific guanylyl cyclase inhibitor. FKB also produced dose-dependent inhibition of licking response caused by intraplantar injection of phorbol 12-myristate 13-acetate, a protein kinase C activator (PKC). Together, these data indicate that the NO/cyclic guanosine monophosphate/PKC/ATP-sensitive K(+) channel pathway possibly participated in the antinociceptive action induced by FKB.
    Matched MeSH terms: Nitric Oxide/physiology*
  10. Bello I, Usman NS, Dewa A, Abubakar K, Aminu N, Asmawi MZ, et al.
    J Ethnopharmacol, 2020 Mar 25;250:112461.
    PMID: 31830549 DOI: 10.1016/j.jep.2019.112461
    ETHNOPHARMACOLOGICAL RELEVANCE: Phyllanthus niruri have a long history of use in the traditional treatment of various ailments including hypertension. Literature reports have indicated that it is a potent antihypertensive herbal medication used traditionally.

    AIM OF THE STUDY: This study was carried out to investigate the antihypertensive and vasodilatory activity of four solvents extracts of P. niruri namely; petroleum ether (PEPN), chloroform (CLPN), methanol (MEPN) and water (WEPN), with the aim of elucidating the mechanism of action and identifying the phytochemical constituents.

    MATERIALS AND METHODS: Male Spontaneous Hypertensive Rats (SHRs) were given oral gavage of P. niruri extract daily for two weeks and the blood pressure was recorded in vivo. We also determine the vasodilation effect of the extracts on rings of isolated thoracic aorta pre-contracted with phenylephrine (PE, 1 μM). Endothelium-intact or endothelium-denuded aorta rings were pre-incubated with various antagonists like 1H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ, 10 μM) and Methylene blue (MB 10 μM), sGC inhibitors; Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME, 10 μM) a nitric oxide synthase (NOS) inhibitor; atropine (10 μM), a cholinergic receptor blocker; indomethacin (10 μM), a cyclooxygenase inhibitor and various K+ channel blockers such as glibenclamide (10 μM) and tetraethyl ammonium (TEA 10 μM) for mechanism study.

    RESULTS: SHRs receiving P. niruri extracts showed a significant decrease in their blood pressure (BP) when compared to the baseline value, with PEPN being more potent. The extracts (0.125-4 mg/mL) also induced vasorelaxation on endothelium-intact aorta rings. PEPN elicited the most potent maximum relaxation effect (Rmax). Mechanism assessment of PEPN showed that its relaxation effect is significantly suppressed in endothelium-denuded aorta rings. Pre-incubation of aorta rings with atropine, L-NAME, ODQ, indomethacin, and propranolol also significantly attenuated its relaxation effect. Conversely, incubation with TEA and glibenclamide did not show a significant effect on PEPN-induced relaxation.

    CONCLUSION: This study indicates that the antihypertensive activity of P. niruri extract is mediated by vasoactive phytoconstituents that dilate the arterial wall via endothelium-dependent pathways and β-adrenoceptor activity which, in turn, cause vasorelaxation and reduce blood pressure.

    Matched MeSH terms: Nitric Oxide/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links