Displaying publications 41 - 60 of 897 in total

Abstract:
Sort:
  1. Tisa F, Raman AA, Daud WM
    ScientificWorldJournal, 2014;2014:348974.
    PMID: 25309949 DOI: 10.1155/2014/348974
    Simulation of fluidized bed reactor (FBR) was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP). The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure) in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe(3+) and Fe(2+) mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40-90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment.
    Matched MeSH terms: Kinetics
  2. Saifullah B, Arulselvan P, El Zowalaty ME, Fakurazi S, Webster TJ, Geilich B, et al.
    ScientificWorldJournal, 2014;2014:401460.
    PMID: 25050392 DOI: 10.1155/2014/401460
    Tuberculosis is a lethal epidemic, difficult to control disease, claiming thousands of lives every year. We have developed a nanodelivery formulation based on para-aminosalicylic acid (PAS) and zinc layered hydroxide using zinc nitrate salt as a precursor. The developed formulation has a fourfold higher efficacy of PAS against mycobacterium tuberculosis with a minimum inhibitory concentration (MIC) found to be at 1.40 μg/mL compared to the free drug PAS with a MIC of 5.0 μg/mL. The newly developed formulation was also found active against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans. The formulation was also found to be biocompatible with human normal lung cells MRC-5 and mouse fibroblast cells-3T3. The in vitro release of PAS from the formulation was found to be sustained in a human body simulated phosphate buffer saline (PBS) solution at pH values of 7.4 and 4.8. Most importantly the nanocomposite prepared using zinc nitrate salt was advantageous in terms of yield and free from toxic zinc oxide contamination and had higher biocompatibility compared to one prepared using a zinc oxide precursor. In summary, these promising in vitro results are highly encouraging for the continued investigation of para-aminosalicylic acid and zinc layered hydroxide nanocomposites in vivo and eventual preclinical studies.
    Matched MeSH terms: Kinetics
  3. Ali A, Sharma RK, Ganesan P, Akib S
    ScientificWorldJournal, 2014;2014:412136.
    PMID: 25136666 DOI: 10.1155/2014/412136
    A numerical investigation of incompressible and transient flow around circular pipe has been carried out at different five gap phases. Flow equations such as Navier-Stokes and continuity equations have been solved using finite volume method. Unsteady horizontal velocity and kinetic energy square root profiles are plotted using different turbulence models and their sensitivity is checked against published experimental results. Flow parameters such as horizontal velocity under pipe, pressure coefficient, wall shear stress, drag coefficient, and lift coefficient are studied and presented graphically to investigate the flow behavior around an immovable pipe and scoured bed.
    Matched MeSH terms: Kinetics
  4. Mohammadi M, Mohamed AR, Najafpour GD, Younesi H, Uzir MH
    ScientificWorldJournal, 2014;2014:910590.
    PMID: 24672390 DOI: 10.1155/2014/910590
    The intrinsic growth, substrate uptake, and product formation biokinetic parameters were obtained for the anaerobic bacterium, Clostridium ljungdahlii, grown on synthesis gas in various pressurized batch bioreactors. A dual-substrate growth kinetic model using Luong for CO and Monod for H2 was used to describe the growth kinetics of the bacterium on these substrates. The maximum specific growth rate (μ(max) = 0.195 h(-1)) and Monod constants for CO (K s,CO = 0.855 atm) and H2 (K(s,H2) = 0.412 atm) were obtained. This model also accommodated the CO inhibitory effects on cell growth at high CO partial pressures, where no growth was apparent at high dissolved CO tensions (P(CO)(∗) > 0.743 atm). The Volterra model, Andrews, and modified Gompertz were, respectively, adopted to describe the cell growth, substrate uptake rate, and product formation. The maximum specific CO uptake rate (q(max) = 34.364 mmol/g cell/h), CO inhibition constant (K(I) = 0.601 atm), and maximum rate of ethanol (R(max) = 0.172 mmol/L/h at P(CO) = 0.598 atm) and acetate (R(max) = 0.096 mmol/L/h at P(CO) = 0.539 atm) production were determined from the applied models.
    Matched MeSH terms: Kinetics
  5. Hasan DB, Abdul Raman AA, Daud WM
    ScientificWorldJournal, 2014;2014:252491.
    PMID: 24592152 DOI: 10.1155/2014/252491
    The mineralisation kinetics of petroleum refinery effluent (PRE) by Fenton oxidation were evaluated. Within the ambit of the experimental data generated, first-order kinetic model (FKM), generalised lumped kinetic model (GLKM), and generalized kinetic model (GKM) were tested. The obtained apparent kinetic rate constants for the initial oxidation step (k'2), their final oxidation step (k'1), and the direct conversion to endproducts step (k3') were 10.12, 3.78, and 0.24 min(-1) for GKM; 0.98, 0.98, and nil min(-1) for GLKM; and nil, nil, and >0.005 min(-1) for FKM. The findings showed that GKM is superior in estimating the mineralization kinetics.
    Matched MeSH terms: Kinetics
  6. Kura AU, Hussein-Al-Ali SH, Hussein MZ, Fakurazi S
    ScientificWorldJournal, 2014;2014:104246.
    PMID: 24782658 DOI: 10.1155/2014/104246
    We incorporated anti-Parkinsonian drug, levodopa (dopa), in Zn/Al-LDH by coprecipitation method to form dopa-LDH nanocomposite. Further coating of Tween-80 on the external surfaces of dopa-LDH nanocomposite was achieved through the oxygen of C=O group of Tween-80 with the layer of dopa-LDH nanocomposite. The final product is called Tween-dopa-LDH nanocomposite. The X-ray diffraction indicates that the Tween-dopa-LDH nanocomposite was formed by aggregation structure. From the TGA data, the Tween-80 loading on the surface of LDH and dopa-LDH was 8.6 and 7.4%, respectively. The effect of coating process on the dopa release from Tween-dopa-LDH nanocomposite was also studied. The release from Tween-dopa-LDH nanocomposite shows slower release compared to the release of the drug from dopa-LDH nanocomposite as done previously in our study, presumably due to the retarding shielding effect. The cell viability study using PC12 showed improved viability with Tween-80 coating on dopa-LDH nanocomposite as studied by mitochondrial dehydrogenase activity (MTT assay).
    Matched MeSH terms: Kinetics
  7. Khan MN, Sim YL, Ariffin A
    ScientificWorldJournal, 2014;2014:592691.
    PMID: 24574900 DOI: 10.1155/2014/592691
    The values of pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of 1, obtained at 1.0 mM NaOH and within [C(m)E(n)]T (total concentration of C(m)E(n)) range of 3.0-5.0 mM for C(12)E(23) and 10-20 mM for C(18)E(20), fail to obey pseudophase micellar (PM) model. The values of the fraction of near irreversible C m E n micellar trapped 1 molecules (F(IT1)) vary in the range ~0-0.75 for C(12)E(23) and ~0-0.83 for C(18)E(20) under such conditions. The values of F(IT1) become 1.0 at ≥ 10 mM C(12)E(23) and 50 mM C(18)E(20). Kinetic analysis of the observed data at ≥ 10 mM C(12)E(23) shows near irreversible micellar entrapment of 1 molecules under such conditions.
    Matched MeSH terms: Kinetics
  8. KoohiKamali S, Tan CP, Ling TC
    ScientificWorldJournal, 2012;2012:475027.
    PMID: 22593688 DOI: 10.1100/2012/475027
    In this study, the methanolysis process of sunflower oil was investigated to get high methyl esters (biodiesel) content using sodium methoxide. To reach to the best process conditions, central composite design (CCD) through response surface methodology (RSM) was employed. The optimal conditions predicted were the reaction time of 60 min, an excess stoichiometric amount of alcohol to oil ratio of 25%w/w and the catalyst content of 0.5%w/w, which lead to the highest methyl ester content (100%w/w). The methyl ester content of the mixture from gas chromatography analysis (GC) was compared to that of optimum point. Results, confirmed that there was no significant difference between the fatty acid methyl ester content of sunflower oil produced under the optimized condition and the experimental value (P ≥ 0.05). Furthermore, some fuel specifications of the resultant biodiesel were tested according to American standards for testing of materials (ASTM) methods. The outcome showed that the methyl ester mixture produced from the optimized condition met nearly most of the important biodiesel specifications recommended in ASTM D 6751 requirements. Thus, the sunflower oil methyl esters resulted from this study could be a suitable alternative for petrol diesels.
    Matched MeSH terms: Kinetics
  9. Fazil FN, Azzimi NS, Yahaya BH, Kamalaldin NA, Zubairi SI
    ScientificWorldJournal, 2016;2016:7370536.
    PMID: 28105464 DOI: 10.1155/2016/7370536
    Clinacanthus nutans is widely grown in tropical Asia and locally known "belalai gajah" or Sabah snake grass. It has been used as a natural product to treat skin rashes, snake bites, lesion caused by herpes, diabetes, fever, and cancer. Therefore, the objectives of this research are to determine the maximum yield and time of exhaustive flavonoids extraction using Peleg's model and to evaluate potential of antiproliferative activity on human lung cancer cell (A549). The extraction process was carried out on fresh and dried leaves at 28 to 30°C with liquid-to-solid ratio of 10 mL/g for 72 hrs. The extracts were collected intermittently analysed using mathematical Peleg's model and RP-HPLC. The highest amount of flavonoids was used to evaluate the inhibitory concentration (IC50) via 2D cell culture of A549. Based on the results obtained, the predicted maximum extract density was observed at 29.20 ± 14.54 hrs of extraction (texhaustive). However, the exhaustive time of extraction to acquire maximum flavonoids content exhibited approximately 10 hrs earlier. Therefore, 18 hrs of extraction time was chosen to acquire high content of flavonoids. The best antiproliferative effect (IC50) on A549 cell line was observed at 138.82 ± 0.60 µg/mL. In conclusion, the flavonoids content in Clinacanthus nutans water extract possesses potential antiproliferative properties against A549, suggesting an alternative approach for cancer treatment.
    Matched MeSH terms: Kinetics
  10. Razak NA, Khan MN
    ScientificWorldJournal, 2014;2014:604139.
    PMID: 25478597 DOI: 10.1155/2014/604139
    The values of the relative counterion (X) binding constant R(X)(Br) (=K(X)/K(Br), where K(X) and K(Br) represent cetyltrimethylammonium bromide, CTABr, micellar binding constants of X(v-) (in non-spherical micelles), v = 1,2, and Br(-) (in spherical micelles)) are 58, 68, 127, and 125 for X(v-) = 1(-), 1(2-), 2(-), and 2(2-), respectively. The values of 15 mM CTABr/[Na(v)X] nanoparticles-catalyzed apparent second-order rate constants for piperidinolysis of ionized phenyl salicylate at 35 °C are 0.417, 0.488, 0.926, and 0.891 M(-1) s(-1) for Na(v)X = Na1, Na2 1, Na2, and Na2 2, respectively. Almost entire catalytic effect of nanoparticles catalyst is due to the ability of nonreactive counterions, X(v-), to expel reactive counterions, 3(-), from nanoparticles to the bulk water phase.
    Matched MeSH terms: Kinetics
  11. Shehu D, Alias Z
    Protein J, 2018 06;37(3):261-269.
    PMID: 29779193 DOI: 10.1007/s10930-018-9774-x
    Glutathione S-transferases (GSTs) are a family of enzymes that function in the detoxification of variety of electrophilic substrates. In the present work, we report a novel zeta-like GST (designated as KKSG9) from the biphenyl/polychlorobiphenyl degrading organism Acidovorax sp. KKS102. KKSG9 possessed low sequence similarity but similar biochemical properties to zeta class GSTs. Functional analysis showed that the enzyme exhibits wider substrate specificity compared to most zeta class GSTs by reacting with 1-chloro-2,4-dinitrobenzene (CDNB), p-nitrobenzyl chloride (NBC), ethacrynic acid (EA), hydrogen peroxide, and cumene hydroperoxide. The enzyme also displayed dehalogenation function against dichloroacetate, permethrin, and dieldrin. The functional role of Tyr12 was also investigated by site-directed mutagenesis. The mutant (Y12C) displayed low catalytic activity and dehalogenation function against all the substrates when compared with the wild type. Kinetic analysis using NBC and GSH as substrates showed that the mutant (Y12C) displayed a higher affinity for NBC when compared with the wild type, however, no significant change in GSH affinity was observed. These findings suggest that the presence of tyrosine residue in the motif might represent an evolutionary trend toward improving the catalytic activity of the enzyme. The enzyme as well could be useful in the bioremediation of various types of organochlorine pollutants.
    Matched MeSH terms: Kinetics
  12. Pan Y, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, Ong CE
    Protein J, 2011 Dec;30(8):581-91.
    PMID: 22001938 DOI: 10.1007/s10930-011-9365-6
    This study aimed to express two major drug-metabolizing human hepatic cytochromes P450 (CYPs), CYP2D6 and CYP3A4, together with NADPH-cytochrome P450 oxidoreductase (OxR) in Escherichia coli and to evaluate their catalytic activities. Full length cDNA clones of both isoforms in which the N-terminus was modified to incorporate bovine CYP17α sequence were inserted into a pCWori(+) vector. The modified CYP cDNAs were subsequently expressed individually, each together with OxR by means of separate, compatible plasmids with different antibiotic selection markers. The expressed proteins were evaluated by immunoblotting and reduced CO difference spectral scanning. Enzyme activities were examined using high performance liquid chromatography (HPLC) assays with probe substrates dextromethorphan and testosterone for CYP2D6 and CYP3A4, respectively. Results from immunoblotting demonstrated the presence of both CYP proteins in bacterial membranes and reduced CO difference spectra of the cell preparations exhibited the characteristic absorbance peak at 450 nm. Co-expressed OxR also demonstrated an activity level comparable to literature values. Kinetic parameters, K(m) and V(max) values determined from the HPLC assays also agreed well with literature values. As a conclusion, the procedures described in this study provide a relatively convenient and reliable means of producing catalytically active CYP isoforms suitable for drug metabolism and interaction studies.
    Matched MeSH terms: Kinetics
  13. Cheong MY, Ariffin A, Khan MN
    J Phys Chem B, 2007 Oct 25;111(42):12185-94.
    PMID: 17914797
    Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of N-benzylphthalimide (1) show a nonlinear decrease with the increase in [C(m)E(n)]T (total concentration of Brij 58, m = 16, n = 20 and Brij 56, m = 16, n = 10) at constant [CH(3)CN] and [NaOH]. These nonionic micellar effects, within the certain typical reaction conditions, have been explained in terms of the pseudophase micellar (PM) model. The values of micellar binding constants (KS) of 1 are 1.04 x 10(3) M(-1) (at 1.0 x 10(-3) M NaOH) and 1.08 x 10(3) M(-1) (at 2.0 x 10(-3) M NaOH) for C(16)E(20) as well as 600 M(-1) (at 7.6 x 10(-4) M NaOH) and 670 M(-1) (at 1.0 x 10(-3) M NaOH) for C(16)E(10) micelles. The pseudo-first-order rate constants (kM) for hydrolysis of 1 in C(16)E(20) micellar pseudophase are approximately 90-fold smaller than those (kW) in water phase. The values of kM for hydrolysis of 1 in C(16)E(10) micelles are almost zero. Kinetic coupled with UV spectral data reveals significant irreversible nonionic micellar binding of 1 molecules in the micellar environment of nearly zero hydroxide ion concentration at >or=0.14 M C(16)E(20) and 1.0 x 10(-3) M NaOH while such observations could not be detected at or=3 x 10(-3) M C(16)E(10) and 7.6 x 10(-4) M NaOH, while the rate of hydrolysis of 1 is completely ceased at >or=0.05 M C(16)E(10) and 7.6 x 10(-4) M NaOH. The rate of hydrolysis of 1 at 5.0 x 10(-2) and 8.8 x 10(-2) M C(16)E(10) and 1.0 x 10(-3) M NaOH reveals the formation of presumably phthalic anhydride, whereas such observation was not observed in the C(16)E(20) micellar system under similar experimental conditions.
    Matched MeSH terms: Kinetics
  14. Lim PE, Lee CK, Din Z
    Sci Total Environ, 1998 May 14;216(1-2):147-57.
    PMID: 9618930
    A study on the kinetics of accumulation and depuration of Zn, Cu, Pb and Cd by the oysters (Crassostrea iredalei and Crassostrea belcheri) cultured at two locations in the Merbok Estuary, Malaysia was conducted. A first-order kinetic model was employed to fit the experimental data in order to estimate the rate constants for uptake and elimination processes and to predict the bioconcentration factors (BCF). Among the four metals studied, only the Zn accumulation process could not be modelled using first-order kinetics. The elimination rate constants estimated from depuration data for C. iredalei are found to be much greater than those from accumulation data. The results suggest that the values of kinetic parameters and BCFs derived under conditions of both aqueous and dietary exposure are probably more site- than species-specific.
    Matched MeSH terms: Cadmium/pharmacokinetics; Copper/pharmacokinetics; Kinetics; Lead/pharmacokinetics; Water Pollutants, Chemical/pharmacokinetics*; Zinc/pharmacokinetics; Metals, Heavy/pharmacokinetics*
  15. Samah NA, Sánchez-Martín MJ, Sebastián RM, Valiente M, López-Mesas M
    Sci Total Environ, 2018 Aug 01;631-632:1534-1543.
    PMID: 29727977 DOI: 10.1016/j.scitotenv.2018.03.087
    Contaminants of Emerging Concerns (CECs) have been introduced as one type of recalcitrant pollutant sources in water. In this study, the non-steroidal anti-inflammatory drug diclofenac (DCF) has been removed from water solutions using Molecularly Imprinted Polymer (MIP), synthetized via bulk polymerization with allylthiourea (AT) as the functional monomer and using DCF as template (MIP-DCF). DCF detection has been performed by UV spectrophotometer. From the kinetic study in batch mode, approximately 100% of removal is observed by using 10mg of MIP-DCF, with an initial concentration of 5mg/L of DCF at pH7, within 3min and agitated at 25°C. In continuous flow mode study, using a cartridge pre-packed with 10mg of MIP-DCF, a high adsorption capacity of 160mgDCF/g MIP was obtained. To study the porosity of MIPs, scanning electron microscopy (SEM) has been used. In order to characterize the chemical interaction between monomer and template, the pre-polymerization mixture for MIP and DCF has also been studied by 1H NMR. One of the chemical shift observed has been related to the formation of a complex between amine protons of thiourea group of AT with carboxylic acid on DCF. In conclusion, the developed MIP works as a good adsorbent for DCF removal, and is selective to DCF in the presence of indomethacin and ibuprofen.
    Matched MeSH terms: Kinetics
  16. Abd Manan TSB, Khan T, Sivapalan S, Jusoh H, Sapari N, Sarwono A, et al.
    Sci Total Environ, 2019 May 15;665:196-212.
    PMID: 30772550 DOI: 10.1016/j.scitotenv.2019.02.060
    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds, composed of benzene rings. The objective of this research was to identify the optimum condition for the degradation of PAHs contaminated water using photo-Fenton oxidation process via response surface methodology (RSM). Aqueous solution was prepared and potable water samples were collected from water treatment plants in Perak Tengah, Perak, Malaysia in September 2016. The reaction time, pH, molarity of H2O2 and FeSO4 were analyzed followed by RSM using aqueous solution. A five level central composite design with quadratic model was used to evaluate the effects and interactions of these parameters. The response variable was the percentage of total organic carbon (TOC) removal. PAHs quantification was done using gas chromatography mass spectrometry analysis. The regression line fitted well with the data with R2 value of 0.9757. The lack of fit test gives the highest value of Sum of Squares (15,666.64) with probability F value 0.0001 showing significant quadratic model. The optimum conditions were established corresponding to the percentage of TOC removal. The PAHs removal efficiency for potable water samples ranged from 76.4% to 91% following the first order of kinetic rates with R2 values of >0.95. Conventional water treatment techniques are not effective for PAHs removal. Thus, advanced oxidation processes may be considered as an alternative to conventional water treatment techniques in Malaysia and other developing countries.
    Matched MeSH terms: Kinetics
  17. Lo FF, Kow KW, Kung F, Ahamed F, Kiew PL, Yeap SP, et al.
    Sci Total Environ, 2021 Aug 01;780:146337.
    PMID: 33770606 DOI: 10.1016/j.scitotenv.2021.146337
    Nano-magnetites are widely researched for its potential as an excellent adsorbent in many applications. However, the efficiency of the nano-magnetites are hindered by their tendency to agglomerate. In this work, we dispersed and embedded the nano-magnetites in a porous silica gel matrix to form a nanocomposite to reduce the extent of agglomeration and to enhance the adsorption performance. Our experimental results showed that the removal efficiency of Cu2+ ion has improved by 46% (22.4 ± 2.2%) on the nano-magnetite-silica-gel (NMSG) nanocomposite as compared to pure nano-magnetites (15.3 ± 0.6%). The adsorption capacity is further enhanced by 39% (from 11.2 ± 1.1 to 15.6 ± 1.6 mg/g) by subjecting the NMSG to a magnetic field prior to adsorption. We infer that the magnetic field aligned the magnetic domains within the nano-magnetites, resulting in an increased Lorentz force during adsorption. Similar alignment of magnetic domains is near to impossible in pure nano-magnetites due to severe agglomeration. We further found that the adsorption capacity of the NMSG can be manipulated with an external magnetic field by varying the strength and the configurations of the field. Equipped with proper process design, our finding has great potentials in processes that involve ion-adsorptions, for example, NMSG can: (i) replace/reduce chemical dosing in controlling adsorption kinetics, (ii) replace/reduce complex chemicals required in ion-chromatography columns, and (iii) reduce wastage of nano-adsorbents by immobilizing it in a porous matrix.
    Matched MeSH terms: Kinetics
  18. Suparmaniam U, Lam MK, Uemura Y, Shuit SH, Lim JW, Show PL, et al.
    Sci Total Environ, 2020 Feb 01;702:134995.
    PMID: 31710849 DOI: 10.1016/j.scitotenv.2019.134995
    Flocculants are foreign particles that aggregate suspended microalgae cells and due to cost factor and toxicity, harvesting of microalgae biomass has shifted towards the use of bioflocculants. In this study, mild acid-extracted bioflocculants from waste chicken's eggshell and clam shell were used to harvest Chlorella vulgaris that was cultivated using chicken compost as nutrient source. It was found that a maximum of 99% flocculation efficiency can be attained at pH medium of 9.8 using 60 mg/L of hydrochloric acid-extracted chicken's eggshell bioflocculant at 50 °C of reaction temperature. On the other hand, 80 mg/L of hydrochloric acid-extracted clam shell bioflocculant was sufficient to recover C. vulgaris biomass at pH 9.8 and optimum temperature of 40 °C. The bioflocculants and bioflocs were characterized using microscopic, zeta potential, XRD, AAS and FT-IR analysis. The result revealed that calcium ions in the bioflocculants are the main contributor towards the flocculation of C. vulgaris, employing charge neutralization and sweeping as possible flocculation mechanisms. The kinetic parameters were best fitted pseudo-second order which resulted in R2 of 0.99 under optimal flocculation temperature. The results herein, disclosed the applicability of shell waste-derived bioflocculants for up-scaled microalgae harvesting for biodiesel production.
    Matched MeSH terms: Kinetics
  19. Zaied BK, Nasrullah M, Siddique MNI, Zularisam AW, Singh L, Krishnan S
    Sci Total Environ, 2020 Mar 01;706:136095.
    PMID: 31862587 DOI: 10.1016/j.scitotenv.2019.136095
    Lack of sufficient nitrogenous substrate and buffering potential have been acknowledged as impediments to the treatment of palm oil mill effluent through co-digestion processes. In this study, ammonium bicarbonate was used to provide the nitrogenous substrate and buffering potential. To regulate the impact of ammonium bicarbonate toxicity on the anaerobic co-digestion system, dosages from 0 to 40 mg/L were supplemented. The biogas yield was used to indicate the effects of NH4+ toxicity. In a solar-assisted bioreactor, solar radiation was first collected by a solar panel and converted into electricity, which was then used to heat a mixture of palm oil mill effluent and cattle manure to maintain the reactor in the mesophilic temperature range. This co-digestion operation was performed semi-continuously and was analyzed at a 50:50 mixing ratio of palm oil mill effluent and cattle manure. The results indicate that the additional dosing of ammonium bicarbonate can significantly enhance biogas production. Maximum cumulative biogas and methane productions of 2034.00 mL and 1430.51 mL, respectively, were obtained with the optimum addition of 10 mg/L ammonium bicarbonate; these values are 29.80% and 42.30% higher, respectively, than that obtained in the control co-digestion operation without addition of ammonium bicarbonate. Utilization of a mathematical equation (G = Gmk/t) to describe a kinetic analysis of the biogas yield also indicated that the optimum ammonium bicarbonate dose was 10 mg/L. The results of this study suggest that supplementation with ammonium bicarbonate doses of up to 40 mg/L can be used to provide nitrogenous substrates and buffering potential in anaerobic co-digestion processes. The determination of the optimal dose provides an alternative and efficient option for enhanced biogas production, which will have obvious economic advantages for feasible industrial applications.
    Matched MeSH terms: Kinetics
  20. Talebi A, Razali YS, Ismail N, Rafatullah M, Azan Tajarudin H
    Sci Total Environ, 2020 Mar 10;707:134533.
    PMID: 31865088 DOI: 10.1016/j.scitotenv.2019.134533
    An adsorption-desorption process was applied on fermented landfill leachate to adsorb and recover acetic and butyric acid, using activated carbon. In this study, the first, volatile fatty acids adsorption process from fermented leachate was optimized, by investigating various affecting factors such as pH, time, agitation speed, activated carbon dosage, and temperature. The optimum condition for maximum adsorption of 88.94% acetic acid and 98.53% butyric acid, was 19.79 %wt activated carbon dosage, 40.00 rpm of agitation speed, in 9.45 °C and contact time of 179.89 h, while the pH of the substrate was kept fixed at pH:3.0. Results of X-ray fluorescence (XRF) spectrometry, X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and zeta potential revealed that carbon is the dominant component in the adsorbent with a significant effect to remove organic impurities, and it was observed that the activated carbon after the adsorption process showed an amorphous structure peak with a large internal surface area and pore volume. The results exposed that the adsorption on the surface of activated carbon was due to the chemisorption, and the chemisorption mechanism was supported by covalent bonding. The kinetic study displayed excellent fit to Pseudo-second order kinetics model. The second phase of this study was to recover the adsorbed VFAs using multistage desorption unit, in which application of deionized water and ethanol (as desorption agents) resulted in 89.1% of acetic acid and 67.8% of the butyric acid recovery.
    Matched MeSH terms: Kinetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links