OBJECTIVES: To assess the impact of antimalarial MDA on population asexual parasitaemia prevalence, parasitaemia incidence, gametocytaemia prevalence, anaemia prevalence, mortality and MDA-associated adverse events.
SEARCH METHODS: We searched the Cochrane Infectious Disease Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE+, EMBASE, to February 2013. We also searched CABS Abstracts, LILACS, reference lists, and recent conference proceedings.
SELECTION CRITERIA: Cluster-randomized trials and non-randomized controlled studies comparing therapeutic MDA versus placebo or no MDA, and uncontrolled before-and-after studies comparing post-MDA to baseline data were selected. Studies administering intermittent preventive treatment (IPT) to sub-populations (for example, pregnant women, children or infants) were excluded.
DATA COLLECTION AND ANALYSIS: Two authors independently reviewed studies for inclusion, extracted data and assessed risk of bias. Studies were stratified by study design and then subgrouped by endemicity, by co-administration of 8-aminoquinoline plus schizonticide drugs and by plasmodium species. The quality of evidence was assessed using the GRADE approach.
MAIN RESULTS: Two cluster-randomized trials, eight non-randomized controlled studies and 22 uncontrolled before-and-after studies are included in this review. Twenty-two studies (29 comparisons) compared MDA to placebo or no intervention of which two comparisons were conducted in areas of low endemicity (≤5%), 12 in areas of moderate endemicity (6-39%) and 15 in areas of high endemicity (≥ 40%). Ten studies evaluated MDA plus other vector control measures. The studies used a wide variety of MDA regimens incorporating different drugs, dosages, timings and numbers of MDA rounds. Many of the studies are now more than 30 years old. Areas of low endemicity (≤5%)Within the first month post-MDA, a single uncontrolled before-and-after study conducted in 1955 on a small Taiwanese island reported a much lower prevalence of parasitaemia following a single course of chloroquine compared to baseline (1 study, very low quality evidence). This lower parasite prevalence was still present after more than 12 months (one study, very low quality evidence). In addition, one cluster-randomized trial evaluating MDA in a low endemic setting reported zero episodes of parasitaemia at baseline, and throughout five months of follow-up in both the control and intervention arms (one study, very low quality evidence). Areas of moderate endemicity (6-39%)Within the first month post-MDA, the prevalence of parasitaemia was much lower in three non-randomized controlled studies from Kenya and India in the 1950s (RR 0.03, 95% CI 0.01 to 0.08, three studies, moderate quality evidence), and in three uncontrolled before-and-after studies conducted between 1954 and 1961 (RR 0.29, 95% CI 0.17 to 0.48, three studies,low quality evidence).The longest follow-up in these settings was four to six months. At this time point, the prevalence of parasitaemia remained substantially lower than controls in the two non-randomized controlled studies (RR 0.18, 95% CI 0.10 to 0.33, two studies, low quality evidence). In contrast, the two uncontrolled before-and-after studies found mixed results: one found no difference and one found a substantially higher prevalence compared to baseline (not pooled, two studies, very low quality evidence). Areas of high endemicity (≥40%)Within the first month post-MDA, the single cluster-randomized trial from the Gambia in 1999 found no significant difference in parasite prevalence (one study, low quality evidence). However, prevalence was much lower during the MDA programmes in three non-randomized controlled studies conducted in the 1960s and 1970s (RR 0.17, 95% CI 0.11 to 0.27, three studies, moderate quality evidence), and within one month of MDA in four uncontrolled before-and-after studies (RR 0.37, 95% CI 0.28 to 0.49, four studies,low quality evidence).Four trials reported changes in prevalence beyond three months. In the Gambia, the single cluster-randomized trial found no difference at five months (one trial, moderate quality evidence). The three uncontrolled before-and-after studies had mixed findings with large studies from Palestine and Cambodia showing sustained reductions at four months and 12 months, respectively, and a small study from Malaysia showing no difference after four to six months of follow-up (three studies,low quality evidence). 8-aminoquinolines We found no studies directly comparing MDA regimens that included 8-aminoquinolines with regimens that did not. In a crude subgroup analysis with a limited number of studies, we were unable to detect any evidence of additional benefit of primaquine in moderate- and high-transmission settings. Plasmodium species In studies that reported species-specific outcomes, the same interventions resulted in a larger impact on Plasmodium falciparum compared to P. vivax.
AUTHORS' CONCLUSIONS: MDA appears to reduce substantially the initial risk of malaria parasitaemia. However, few studies showed sustained impact beyond six months post-MDA, and those that did were conducted on small islands or in highland settings.To assess whether there is an impact of MDA on malaria transmission in the longer term requires more quasi experimental studies with the intention of elimination, especially in low- and moderate-transmission settings. These studies need to address any long-term outcomes, any potential barriers for community uptake, and contribution to the development of drug resistance.
RESULTS: A total of 36 studies met the inclusion criteria for this review. Numerous stakeholders were identified as involved in the intersectoral actions to defeat malaria amongst MMPs. Almost all studies discussed the involvement of Ministry of Health/Public Health (MOH/MOPH). The most frequently assessed intervention among the studies that were included was the coverage and utilization of insecticide-treated nets as personal protective measures (40.5%), followed by the intervention of early diagnoses and treatment of malaria (33.3%), the surveillance and response activities (13.9%) and the behaviour change communication (8.3%). There is a dearth of information on how these stakeholders shared roles and responsibilities for implementation, and about the channels of communication between-and-within the partners and with the MOH/MOPH. Despite limited details in the studies, the intermediate outcomes showed some evidence that the intersectoral collaborations contributed to improvement in knowledge about malaria, initiation and promotion of bed nets utilization, increased access to diagnosis and treatment in a surveillance context and contributed towards a reduction in malaria transmission. Overall, a high proportion of the targeted MMPs was equipped with correct knowledge about malaria transmission (70%, 95% CI 57-83%). Interventions targeting the use of bed nets utilization were two times more likely to reduce malaria incidence amongst the targeted MMPs (summary OR 2.01, 95% CI 1.43-2.6) than the non-users. The various intersectoral actions were often more vertically organized and not fully integrated in a systemic way within a given country or sub-national administrative setting.
CONCLUSION: Findings suggest that interventions supported by the multiple stakeholders had a significant impact on the reduction of malaria transmission amongst the targeted MMPs. Well-designed studies from different countries are recommended to robustly assess the role of intersectoral interventions targeted to MMPs and their impact on the reduction of transmission.
METHODS: We did this open-label, randomised controlled trial at three district hospitals in Sabah, Malaysia. Patients aged 1 year or older with uncomplicated P knowlesi malaria were randomly assigned, via computer-generated block randomisation (block sizes of 20), to receive oral artesunate-mefloquine (target dose 12 mg/kg artesunate and 25 mg/kg mefloquine) or chloroquine (target dose 25 mg/kg). Research nursing staff were aware of group allocation, but allocation was concealed from the microscopists responsible for determination of the primary endpoint, and study participants were not aware of drug allocation. The primary endpoint was parasite clearance at 24 h. Analysis was by modified intention to treat. This study is registered with ClinicalTrials.gov, number NCT01708876.
FINDINGS: Between Oct 16, 2012, and Dec 13, 2014, we randomly assigned 252 patients to receive either artesunate-mefloquine (n=127) or chloroquine (n=125); 226 (90%) patients comprised the modified intention-to-treat population. 24 h after treatment, we recorded parasite clearance in 97 (84% [95% CI 76-91]) of 115 patients in the artesunate-mefloquine group versus 61 (55% [45-64]) of 111 patients in the chloroquine group (difference in proportion 29% [95% CI 18·0-40·8]; p<0·0001). Parasite clearance was faster in patients given artesunate-mefloquine than in those given chloroquine (18·0 h [range 6·0-48·0] vs 24·0 h [6·0-60·0]; p<0·0001), with faster clearance of ring stages in the artesunate-mefloquine group (mean time to 50% clearance of baseline parasites 8·6 h [95% CI 7·9-9·4] vs 13·8 h [12·1-15·4]; p<0·0001). Risk of anaemia within 28 days was lower in patients in the artesunate-mefloquine group (71 [62%; 95% CI 52·2-70·6]) than in those in the chloroquine group (83 [75%; 65·6-82·5]; p=0·035). Gametocytaemia as detected by PCR for pks25 was present in 44 (86%) of 51 patients in the artesunate-mefloquine group and 41 (84%) of 49 patients in the chloroquine group at baseline, and in three (6%) of 49 patients and two (4%) of 48 patients, respectively, at day 7. Fever clearance was faster in the artesunate-mefloquine group (mean 11·5 h [95% CI 8·3-14·6]) than in the chloroquine group (14·8 h [11·7-17·8]; p=0·034). Bed occupancy was 2426 days per 1000 patients in the artesunate-mefloquine group versus 2828 days per 1000 patients in the chloroquine group (incidence rate ratio 0·858 [95% CI 0·812-0·906]; p<0·0001). One (<1%) patient in the artesunate-mefloquine group had a serious neuropsychiatric event regarded as probably related to study drug.
INTERPRETATION: Artesunate-mefloquine is highly efficacious for treatment of uncomplicated P knowlesi malaria. The rapid therapeutic response of the drug offers significant advantages compared with chloroquine monotherapy and supports a unified treatment policy for artemisinin-based combination therapy for all Plasmodium species in co-endemic areas.
FUNDING: Malaysian Ministry of Health, Australian National Health and Medical Research Council, and Asia Pacific Malaria Elimination Network.