Displaying publications 41 - 60 of 799 in total

Abstract:
Sort:
  1. Winie T, Arof AK
    Spectrochim Acta A Mol Biomol Spectrosc, 2006 Mar 1;63(3):677-84.
    PMID: 16157506
    Fourier transform infrared (FT-IR) spectroscopic studies have been undertaken to investigate the interactions among components in a system of hexanoyl chitosan-lithium trifluoromethanesulfonate (LiCF(3)SO(3))-diethyl carbonate (DEC)/ethylene carbonate (EC). LiCF(3)SO(3) interacts with the hexanoyl chitosan to form a hexanoyl chitosan-salt complex that results in the shifting of the N(COR)(2), CONHR and OCOR bands to lower wavenumbers. Interactions between EC and DEC with LiCF(3)SO(3) has been noted and discussed. Evidence of interaction between EC and DEC has been obtained experimentally. Studies on polymer-plasticizer spectra suggested that there is no interaction between the polymer host and plasticizers. Competition between plasticizer and polymer on associating with Li(+) ions was observed from the spectral data for gel polymer electrolytes. The obtained spectroscopic data has been correlated with the conductivity performance of hexanoyl chitosan-based polymer electrolytes.
    Matched MeSH terms: Molecular Structure
  2. El-Faham A, Soliman SM, Osman SM, Ghabbour HA, Siddiqui MR, Fun HK, et al.
    PMID: 26845586 DOI: 10.1016/j.saa.2016.01.051
    Novel series of 2-(4,6-dimethoxy,1,3,5-triazin-2-yl) amino acid ester derivatives were synthesized using simple one pot method in methanol. The products were obtained in high yields and purities as observed from their spectral data, elemental analyses, GC-MS and X-ray crystallographic analysis. The B3LYP/6-311G(d,p) calculated molecular structures are well correlated with the geometrical parameters obtained from the X-ray analyses. The spectroscopic properties such as IR vibrational modes, NMR chemical shifts and UV-Vis electronic transitions were discussed both experimentally and theoretically. The IR vibrational frequencies showed good correlations with the experimental data (R(2)=0.9961-0.9995). The electronic spectra were assigned based on the TD-DFT results. Intense electronic transition band is calculated at 198.1nm (f=0.1389), 204.2nm (f=0.2053), 205.0 (f=0.1704) and 205.7 (0.2971) for compounds 6a-i, respectively. The molecular orbital energy levels contributed in the longest wavelength transition band were explained. For all compounds, the experimental wavelengths showed red shifts compared to the calculations due to the solvent effect. The NMR chemical shifts were calculated using GIAO method. The NBO analyses were performed to predict the stabilization energies due to the electron delocalization processes occur in the studied systems.
    Matched MeSH terms: Molecular Structure
  3. Chidan Kumar CS, Parlak C, Fun HK, Tursun M, Bilge M, Chandraju S, et al.
    PMID: 25989614 DOI: 10.1016/j.saa.2015.05.012
    Molecular structure and properties of 1-(2-hydroxy-4,5-dimethylphenyl)ethanone were experimentally investigated by X-ray diffraction technique and vibrational spectroscopy. Experimental results on the molecular structure of the reported compound were supported with computational studies using the density functional theory (DFT), with the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311+G(3df,p) basis set. Potential energy distribution (PED) and potential energy surface (PES) analyses were performed to identify characteristic frequencies and reliable conformational analysis correspondingly. The compound crystallizes in monoclinic space group C2/c with the CO up-OH down conformation. There is a good agreement between the experimentally determined geometrical parameters and vibrational frequencies of the compound to those predicted theoretically.
    Matched MeSH terms: Molecular Structure
  4. Thanigaimani K, Arshad S, Khalib NC, Razak IA, Arunagiri C, Subashini A, et al.
    PMID: 25942090 DOI: 10.1016/j.saa.2015.04.028
    The structure of (E)-1-(4-Bromophenyl)-3-(napthalen-2-yl)prop-2-en-1-one (C19H13BrO) crystallized in the triclinic system of P-1 space group. The unit cell dimensions are: a=5.8944 (9)Å, b=7.8190 (12)Å, c=16.320 (2)Å, α=102.4364 (19)°, β=95.943 (2)°, γ=96.274 (2)° and Z=2. The physical properties of this compound was determined by the spectroscopic methods (FTIR and (1)H and (13)C NMR). Quantum chemical investigations have been employed to investigate the structural and spectral properties. The molecular structure, vibrational assignments, (1)H and (13)C NMR chemical shift values, non-linear optical (NLO) effect, HOMO-LUMO analysis and natural bonding orbital (NBO) analysis were calculated using HF and DFT/B3LYP methods with 6-311++G(d,p) basis set in the ground state. The results show that the theoretical calculation of the geometrical parameters, vibrational frequencies and chemical shifts are comparable with the experimental data. The crystal structure is influenced and stabilized by weak C-H⋯π interactions connecting the molecules into infinite supramolecular one dimensional ladder-like arrangement. Additionally, this compound is evaluated for their antibacterial activities against gram positive and gram negative strains using a micro dilution procedure and shows activities against a panel of microorganisms.
    Matched MeSH terms: Molecular Structure
  5. Panicker CY, Varghese HT, Narayana B, Divya K, Sarojini BK, War JA, et al.
    PMID: 25863457 DOI: 10.1016/j.saa.2015.03.064
    The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of Methyl N-({[2-(2-methoxyacetamido)-4-(phenylsulfanyl) phenyl]amino} [(methoxycarbonyl)imino]methyl)carbamate have been investigated using HF and DFT levels of calculations. The geometrical parameters are in agreement with XRD data. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. Molecular electrostatic potential study was also performed. The first and second hyperpolarizability was calculated in order to find its role in nonlinear optics. Molecular docking studies are also reported. Prediction of Activity Spectra analysis of the title compound predicts anthelmintic and antiparasitic activity as the most probable activity with Pa (probability to be active) value of 0.808 and 0.797, respectively. Molecular docking studies show that both the phenyl groups and the carbonyl oxygens of the molecule are crucial for bonding and these results draw us to the conclusion that the compound might exhibit pteridine reductase inhibitory activity.
    Matched MeSH terms: Molecular Structure
  6. Barakat A, Al-Najjar HJ, Al-Majid AM, Soliman SM, Mabkhot YN, Shaik MR, et al.
    PMID: 25827772 DOI: 10.1016/j.saa.2015.03.016
    The synthesis and spectral characterization of the 5-(2,6-dichlorobenzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione;3 was reported. The solid state molecular structure of 3 was studied using X-ray crystallography. The relative stabilities of the seven possible isomers of 3 were calculated by DFT/B3LYP method using 6-311 G(d,p) basis set. The calculated total energies and thermodynamic parameters were used to predict the relative stabilities of these isomers. The effect of solvent polarity on the relative stability of these isomers was studied at the same level of theory using PCM. It was found that the keto form, (T0), is the most stable isomer both in the gaseous state and solution. In solution, the calculated total energies of all isomers are decreased indicating that all isomers are stabilized by the solvent effect. The vibrational spectra of the most stable isomer, 3(T0) are calculated using the same level of theory and the results are compared with the experimentally measured FTIR spectra. Good correlation was obtained between the experimental and calculated vibrational frequencies (R(2)=0.9992). The electronic spectra of 3(T0) in gas phase as well as in solutions were calculated using the TD-DFT method. All the predicted electronic transitions showed very little spectral shifts and increase in the intensity of absorption due to solvent effect. Also the (1)H- and (13)C-NMR chemical shifts of the stable isomer were calculated and the results were correlated with the experimental data. Good correlations between the experimental and calculated chemical shifts were obtained.
    Matched MeSH terms: Molecular Structure
  7. Maidur SR, Patil PS, Ekbote A, Chia TS, Quah CK
    Spectrochim Acta A Mol Biomol Spectrosc, 2017 Sep 05;184:342-354.
    PMID: 28528255 DOI: 10.1016/j.saa.2017.05.015
    In the present work, the title chalcone, (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl) methylene]amino}phenyl)prop-2-en-1-one (abbreviated as FAMFC), was synthesized and structurally characterized by single-crystal X-ray diffraction. The compound is crystallized in the monoclinic system with non-centrosymmetric space group P21 and hence it satisfies the essential condition for materials to exhibit second-order nonlinear optical properties. The molecular structure was further confirmed by using FT-IR and 1H NMR spectroscopic techniques. The title crystal is transparent in the Vis-NIR region and has a direct band gap. The third-order nonlinear optical properties were investigated in solution (0.01M) by Z-scan technique using a continuous wave (CW) DPSS laser at the wavelength of 532nm. The title chalcone exhibited significant two-photon absorption (β=35.8×10-5cmW-1), negative nonlinear refraction (n2=-0.18×10-8cm2W-1) and optical limiting (OL threshold=2.73kJcm-2) under the CW regime. In support of the experimental results, a comprehensive theoretical study was carried out on the molecule of FAMFC using density functional theory (DFT). The optimized geometries and frontier molecular orbitals were calculated by employing B3LYP/6-31+G level of theory. The optimized molecular structure was confirmed computationally by IR vibrational and 1H NMR spectral analysis. The experimental UV-Vis-NIR spectrum was interpreted using computational chemistry under time-dependent DFT. The static and dynamic NLO properties such as dipole moments (μ), polarizability (α), and first hyperpolarizabilities (β) were computed by using finite field method. The obtained dynamic first hyperpolarizability β(-2ω;ω,ω) at input frequency ω=0.04282a.u. is predicted to be 161 times higher than urea standard. The electronic excitation energies and HOMO-LUMO band gap for FAMFC were also evaluated by DFT. The experimental and theoretical results are in good agreement, and the NLO study suggests that FAMFC molecule can be a potential candidate in the nonlinear optical applications.
    Matched MeSH terms: Molecular Structure
  8. Abou-Zied OK, Zahid NI, Khyasudeen MF, Giera DS, Thimm JC, Hashim R
    Sci Rep, 2015;5:8699.
    PMID: 25731606 DOI: 10.1038/srep08699
    Local heterogeneity in lipid self-assembly is important for executing the cellular membrane functions. In this work, we chemically modified 2-(2'-hydroxyphenyl)benzoxazole (HBO) and attached a C8 alkyl chain in two different locations to probe the microscopic environment of four lipidic phases of dodecyl β-maltoside. The fluorescence change in HBO and the new probes (HBO-1 and HBO-2) shows that in all phases (micellar, hexagonal, cubic and lamellar) three HBO tautomeric species (solvated syn-enol, anionic, and closed syn-keto) are stable. The formation of multi tautomers reflects the heterogeneity of the lipidic phases. The results indicate that HBO and HBO-1 reside in a similar location within the head group region, whereas HBO-2 is slightly pushed away from the sugar-dominated area. The stability of the solvated syn-enol tautomer is due to the formation of a hydrogen bond between the OH group of the HBO moiety and an adjacent oxygen atom of a sugar unit. The detected HBO anions was proposed to be a consequence of this solvation effect where a hydrogen ion abstraction by the sugar units is enhanced. Our results point to a degree of local heterogeneity and ionization ability in the head group region as a consequence of the sugar amphoterism.
    Matched MeSH terms: Molecular Structure
  9. Akter N, Radiman S, Mohamed F, Rahman IA, Reza MI
    Sci Rep, 2011;1:71.
    PMID: 22355590 DOI: 10.1038/srep00071
    The phase behaviour of a system composed of amino acid-based surfactant (sodium N-lauroylsarcosinate hydrate), 1-decanol and deionised water was investigated for vesicle formation. Changing the molar ratio of the amphiphiles, two important aggregate structures were observed in the aqueous corner of the phase diagram. Two different sizes of microemulsions were found at two amphiphile-water boundaries. A stable single vesicle lobe was found for 1∶2 molar ratios in 92 wt% water with vesicles approximately 100 nm in size and with high zeta potential value. Structural variation arises due to the reduction of electrostatic repulsions among the ionic headgroups of the surfactants and the hydration forces due to adsorbed water onto monolayer's. The balance of these two forces determines the aggregate structures. Analysis was followed by the molecular geometrical structure. These findings may have implications for the development of drug delivery systems for cancer treatments, as well as cosmetic and food formulations.
    Matched MeSH terms: Molecular Structure
  10. Al-Amiery AA, Al-Majedy YK, Kadhum AA, Mohamad AB
    Sci Rep, 2015;5:11825.
    PMID: 26134661 DOI: 10.1038/srep11825
    The rational design of 4-hydroxycoumarins with tailor-made antioxidant activities is required nowadays due to the wide variety of pharmacologically significant, structurally interesting of coumarins and researcher orientation toward green chemistry and natural products. A simple and unique coumarins have been achieved by reaction of 4-hydroxycoumarin with aromatic aldehyde accompanied with the creation of a macromolecules have 2-aminothiazolidin-4-one. The molecular structures of the compounds were characterized by the Fourier transformation infrared and Nuclear magnetic resonance spectroscopies, in addition to CHN analysis. The scavenging abilities of new compounds against stable DPPH radical (DPPH•) and hydrogen peroxide were done and the results show that the compounds exhibited high antioxidant activates.
    Matched MeSH terms: Molecular Structure
  11. Ibeji CU, Salleh NAM, Sum JS, Ch'ng ACW, Lim TS, Choong YS
    Sci Rep, 2020 11 03;10(1):18925.
    PMID: 33144641 DOI: 10.1038/s41598-020-75799-8
    Pulmonary tuberculosis, caused by Mycobacterium tuberculosis, is one of the most persistent diseases leading to death in humans. As one of the key targets during the latent/dormant stage of M. tuberculosis, isocitrate lyase (ICL) has been a subject of interest for new tuberculosis therapeutics. In this work, the cleavage of the isocitrate by M. tuberculosis ICL was studied using quantum mechanics/molecular mechanics method at M06-2X/6-31+G(d,p): AMBER level of theory. The electronic embedding approach was applied to provide a better depiction of electrostatic interactions between MM and QM regions. Two possible pathways (pathway I that involves Asp108 and pathway II that involves Glu182) that could lead to the metabolism of isocitrate was studied in this study. The results suggested that the core residues involved in isocitrate catalytic cleavage mechanism are Asp108, Cys191 and Arg228. A water molecule bonded to Mg2+ acts as the catalytic base for the deprotonation of isocitrate C(2)-OH group, while Cys191 acts as the catalytic acid. Our observation suggests that the shuttle proton from isocitrate hydroxyl group C(2) atom is favourably transferred to Asp108 instead of Glu182 with a lower activation energy of 6.2 kcal/mol. Natural bond analysis also demonstrated that pathway I involving the transfer of proton to Asp108 has a higher intermolecular interaction and charge transfer that were associated with higher stabilization energy. The QM/MM transition state stepwise catalytic mechanism of ICL agrees with the in vitro enzymatic assay whereby Asp108Ala and Cys191Ser ICL mutants lost their isocitrate cleavage activities.
    Matched MeSH terms: Molecular Structure
  12. Ahmad MN, Karim NU, Normaya E, Mat Piah B, Iqbal A, Ku Bulat KH
    Sci Rep, 2020 06 12;10(1):9566.
    PMID: 32533034 DOI: 10.1038/s41598-020-66488-7
    Lipid oxidation and microbial contamination are the major factors contributing to food deterioration. Food additives like antioxidants and antibacterials can prevent food spoilage by delaying oxidation and preventing the growth of bacteria. Artocarpus altilis leaves exhibited biological properties that suggested its use as a new source of natural antioxidant and antimicrobial. Supercritical fluid extraction (SFE) was used to optimize the extraction of bioactive compounds from the leaves using response surface methodology (yield and antioxidant activity). The optimum SFE conditions were 50.5 °C temperature, 3784 psi pressure and 52 min extraction time. Verification test results (Tukey's test) showed that no significant difference between the expected and experimental DPPH activity and yield value (99%) were found. Gas-chromatography -mass spectrometry (GC-MS) analysis revealed three major bioactive compounds existed in A. altilis extract. The extract demonstrated antioxidant and antibacterial properties with 2,3-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric reducing ability of plasma (FRAP), hydroxyl radical scavenging activity, tyrosinase mushrrom inhibition of 41.5%, 8.15 ± 1.31 (µg of ascorbic acid equivalents), 32%, 37% and inhibition zone diameter of 0.766 ± 0.06 cm (B. cereus) and 1.27 ± 0.12 cm (E. coli). Conductor like screening model for real solvents (COSMO RS) was performed to explain the extraction mechanism of the major bioactive compounds during SFE. Molecular electrostatic potential (MEP) shows the probability site of nucleophilic and electrophilic attack during bacterial inhibition. Based on molecular docking study, non-covalent interactions are the main interaction occurring between the major bioactive compounds and bacteria (antibacterial inhibition).
    Matched MeSH terms: Molecular Structure
  13. Taha M, Rahim F, Khan AA, Anouar EH, Ahmed N, Shah SAA, et al.
    Sci Rep, 2020 05 14;10(1):7969.
    PMID: 32409737 DOI: 10.1038/s41598-020-64729-3
    The current study describes synthesis of diindolylmethane (DIM) derivatives based-thiadiazole as a new class of urease inhibitors. Diindolylmethane is natural product alkaloid reported to use in medicinal chemistry extensively. Diindolylmethane-based-thiadiazole analogs (1-18) were synthesized and characterized by various spectroscopic techniques 1HNMR, 13C-NMR, EI-MS and evaluated for urease (jack bean urease) inhibitory potential. All compounds showed excellent to moderate inhibitory potential having IC50 value within the range of 0.50 ± 0.01 to 33.20 ± 1.20 µM compared with the standard thiourea (21.60 ± 0.70 µM). Compound 8 (IC50 = 0.50 ± 0.01 µM) was the most potent inhibitor amongst all derivatives. Structure-activity relationships have been established for all compounds. The key binding interactions of most active compounds with enzyme were confirmed through molecular docking studies.
    Matched MeSH terms: Molecular Structure
  14. Salar U, Khan KM, Chigurupati S, Taha M, Wadood A, Vijayabalan S, et al.
    Sci Rep, 2017 12 05;7(1):16980.
    PMID: 29209017 DOI: 10.1038/s41598-017-17261-w
    Current research is based on the identification of novel inhibitors of α-amylase enzyme. For that purpose, new hybrid molecules of hydrazinyl thiazole substituted chromones 5-27 were synthesized by multi-step reaction and fully characterized by various spectroscopic techniques such as EI-MS, HREI-MS, 1H-NMR and 13C-NMR. Stereochemistry of the iminic bond was confirmed by NOESY analysis of a representative molecule. All compounds 5-27 along with their intervening intermediates 1-4, were screened for in vitro α-amylase inhibitory, DPPH and ABTS radical scavenging activities. All compounds showed good inhibition potential in the range of IC50 = 2.186-3.405 µM as compared to standard acarbose having IC50 value of 1.9 ± 0.07 µM. It is worth mentioning that compounds were also demonstrated good DPPH (IC50 = 0.09-2.233 µM) and ABTS (IC50 = 0.584-3.738 µM) radical scavenging activities as compared to standard ascorbic acid having IC50 = 0.33 ± 0.18 µM for DPPH and IC50 = 0.53 ± 0.3 µM for ABTS radical scavenging activities. In addition to that cytotoxicity of the compounds were checked on NIH-3T3 mouse fibroblast cell line and found to be non-toxic. In silico studies were performed to rationalize the binding mode of compounds (ligands) with the active site of α-amylase enzyme.
    Matched MeSH terms: Molecular Structure
  15. Derakhshankhah H, Hosseini A, Taghavi F, Jafari S, Lotfabadi A, Ejtehadi MR, et al.
    Sci Rep, 2019 02 07;9(1):1558.
    PMID: 30733474 DOI: 10.1038/s41598-018-37621-4
    Fibrinogen is one of the key proteins that participate in the protein corona composition of many types of nanoparticles (NPs), and its conformational changes are crucial for activation of immune systems. Recently, we demonstrated that the fibrinogen highly contributed in the protein corona composition at the surface of zeolite nanoparticles. Therefore, understanding the interaction of fibrinogen with zeolite nanoparticles in more details could shed light of their safe applications in medicine. Thus, we probed the molecular interactions between fibrinogen and zeolite nanoparticles using both experimental and simulation approaches. The results indicated that fibrinogen has a strong and thermodynamically favorable interaction with zeolite nanoparticles in a non-cooperative manner. Additionally, fibrinogen experienced a substantial conformational change in the presence of zeolite nanoparticles through a concentration-dependent manner. Simulation results showed that both E- and D-domain of fibrinogen are bound to the EMT zeolite NPs via strong electrostatic interactions, and undergo structural changes leading to exposing normally buried sequences. D-domain has more contribution in this interaction and the C-terminus of γ chain (γ377-394), located in D-domain, showed the highest level of exposure compared to other sequences/residues.
    Matched MeSH terms: Molecular Structure
  16. Tan, Hueyling
    Scientific Research Journal, 2012;9(1):43-61.
    MyJurnal
    Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use of peptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study of biological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries of existing disciplines. Many self-assembling systems are range from bi- and tri-block copolymers to DNA structures as well as simple and complex proteins and peptides. The ultimate goal is to harness molecular self-assembly such that design and control of bottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes of life and non-life science applications. Such aspirations can be achieved through understanding the fundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.
    Matched MeSH terms: Molecular Structure
  17. Chaudhry AR, Armed R, Irfan A, Shaari A, Maarof H, Abdullah GAS
    Sains Malaysiana, 2014;43:867-875.
    We have designed new derivatives of naphtha [2 ,1-b:6 ,5-13V difuran as DPNDF-CN1 and DPNDF-CN2. The molecular structures of DPNDF, its derivatives DPNDF-CN1 and DPNDF-CN2 have been optimized at the ground (So) and first excited (S1) states using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respectively. Then the highest occupied molecular orbitals (HOMOs), the lowest unoccupied molecular orbitals (Lumos), photoluminescence properties, electron affinities (EELS), reorganization energies (.1.$) and ionization potentials (iPs) have been investigated. The balanced A(h) and A(e) showed that DPNDF, DPNDF-CN1 and DPNDF-CN2 would be better charge transport materials for both hole and electron. The effect of attached acceptors on the geometrical parameters, electronic, optical and charge transfer properties have also been investigated.
    Matched MeSH terms: Molecular Structure
  18. Siti Farhana Hisham, Ishak Ahmad, Rusli Daik, Anita Ramli
    Sains Malaysiana, 2011;40:1179-1186.
    In this study, poly(ethylene terephthalate) (PET) wastes bottle was recycled by glycolysis process using ethylene glycol. The unsaturated polyester resin (UPR) was then prepared by reacting the glycolysed product with maleic anhydride. The blend of UPR based on recycled PET wastes with liquid natural rubber (LNR) was carried out by varying the amount of LNR from 0 to 7.5 wt%. Mechanical tests such as tensile and impact were conducted to investigate the effects of LNR on the mechanical properties. Scanning Electron Microscopy (SEM) was used to analyze the morphology of the breaking area resulted from the tensile tests on the UPR and blend samples. From the results, the blend of 2.5 wt% LNR in UPR based recycled PET wastes achieved the highest strength in the mechanical properties and showed a well dispersed of elastomer particles in the sample morphology compared to other blends concentrations. This blend sample was then compared to the optimum blend of LNR with commercial resin through the glass transition temperature value Tg, mechanical strength and morphology properties. The comparison study showed that the Tg for UPR based recycled PET was higher than the value represented from commercial resin due to the degree of crystalinity in the molecular structure of the materials. LNR was found to be an effective impact modifier which gave a greater improvement in UPR from recycled PET wastes structure but not to the commercial one which needs 5% LNR to achieve the optimum properties. Thus, the compatibility between the UP resin based recycled PET and LNR was much better than with the commercial resin.
    Matched MeSH terms: Molecular Structure
  19. Algamal ZY, Lee MH, Al-Fakih AM, Aziz M
    SAR QSAR Environ Res, 2016 Sep;27(9):703-19.
    PMID: 27628959 DOI: 10.1080/1062936X.2016.1228696
    In high-dimensional quantitative structure-activity relationship (QSAR) modelling, penalization methods have been a popular choice to simultaneously address molecular descriptor selection and QSAR model estimation. In this study, a penalized linear regression model with L1/2-norm is proposed. Furthermore, the local linear approximation algorithm is utilized to avoid the non-convexity of the proposed method. The potential applicability of the proposed method is tested on several benchmark data sets. Compared with other commonly used penalized methods, the proposed method can not only obtain the best predictive ability, but also provide an easily interpretable QSAR model. In addition, it is noteworthy that the results obtained in terms of applicability domain and Y-randomization test provide an efficient and a robust QSAR model. It is evident from the results that the proposed method may possibly be a promising penalized method in the field of computational chemistry research, especially when the number of molecular descriptors exceeds the number of compounds.
    Matched MeSH terms: Molecular Structure
  20. Al-Fakih AM, Algamal ZY, Lee MH, Aziz M, Ali HTM
    SAR QSAR Environ Res, 2019 Feb;30(2):131-143.
    PMID: 30734580 DOI: 10.1080/1062936X.2019.1568298
    An improved binary differential search (improved BDS) algorithm is proposed for QSAR classification of diverse series of antimicrobial compounds against Candida albicans inhibitors. The transfer functions is the most important component of the BDS algorithm, and converts continuous values of the donor into discrete values. In this paper, the eight types of transfer functions are investigated to verify their efficiency in improving BDS algorithm performance in QSAR classification. The performance was evaluated using three metrics: classification accuracy (CA), geometric mean of sensitivity and specificity (G-mean), and area under the curve. The Kruskal-Wallis test was also applied to show the statistical differences between the functions. Two functions, S1 and V4, show the best classification achievement, with a slightly better performance of V4 than S1. The V4 function takes the lowest iterations and selects the fewest descriptors. In addition, the V4 function yields the best CA and G-mean of 98.07% and 0.977%, respectively. The results prove that the V4 transfer function significantly improves the performance of the original BDS.
    Matched MeSH terms: Molecular Structure
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links