Displaying publications 41 - 60 of 102 in total

Abstract:
Sort:
  1. Harith-Fadzilah N, Haris-Hussain M, Abd Ghani I, Zakaria A, Amit S, Zainal Z, et al.
    Insects, 2020 Jun 30;11(7).
    PMID: 32630104 DOI: 10.3390/insects11070407
    The red palm weevil (RPW) is a stem boring Coleoptera that decimates host palm trees from within. The challenge of managing this pest is due to a lack of physical symptoms during the early stages of infestation. Investigating the physiological changes that occur within RPW-infested palm trees may be useful in establishing a new approach in RPW detection. In this study, the effects of RPW infestation were investigated in Elaeis guineensis by observing changes in physical and physiological parameters during the progress of infestation by visual inspection and the comparison of growth, gas exchange, stomatal conductance, and chlorophyll content between the non-infested control, physically wounded, and RPW-infested E. guineensis groups. During the study period, four distinct levels of physical infestation were observed and recorded. The RPW-infested group displayed significantly lower maximum photosynthesis activity (Amax) starting from the third week post-infestation. However, growth in terms of change in plant height and stem circumference, leaves' stomatal conductance, and chlorophyll content were not significantly different between the three groups during the duration of the study. The significant drop in photosynthesis was observed one week before physical changes appeared. This suggests the promising utilisation of photosynthesis activity as a signal for detecting RPW infestation at the early stage of attacks, which could be useful for integration in integrated pest management (IPM).
    Matched MeSH terms: Pest Control
  2. Colley FC, Ow-Yang CK
    PMID: 4201357
    Matched MeSH terms: Pest Control, Biological
  3. Harith Fadzilah N, Abdul-Ghani I, Hassan M
    Arch Insect Biochem Physiol, 2019 Jan;100(1):e21520.
    PMID: 30426561 DOI: 10.1002/arch.21520
    Biopesticides are collective pest control harnessing the knowledge of the target pest and its natural enemies that minimize the risks of synthetic pesticides. A subset of biopesticides; bioinsecticides, are specifically used in controlling insect pests. Entomopathogens (EPMs) are micro-organisms sought after as subject for bioinsecticide development. However, lack of understanding of EPM mechanism of toxicity and pathogenicity slowed the progress of bioinsecticide development. Proteomics is a useful tool in elucidating the interaction of entomopathogenic fungi, entomopathogenic bacteria, and entomopathogenic virus with their target host. Collectively, proteomics shed light onto insect host response to EPM infection, mechanism of action of EPM's toxic proteins and secondary metabolites besides characterizing secreted and membrane-bound proteins of EPM that more precisely describe relevant proteins for host recognition and mediating pathogenesis. However, proteomics requires optimized protein extraction methods to maximize the number of proteins for analysis and availability of organism's genome for a more precise protein identification.
    Matched MeSH terms: Pest Control
  4. Ishak I, Ng LC, Haris-Hussain M, Jalinas J, Idris AB, Azlina Z, et al.
    J Econ Entomol, 2020 02 08;113(1):43-49.
    PMID: 31586213 DOI: 10.1093/jee/toz233
    Metarhizium anisopliae Metchnikoff (Hypocreales: Clavicipitaceae) is a fungal pathogen that causes disease in various insect pests, and it can be exploited and developed as a biological control agent to combat the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). The study on indigenous isolates is crucial especially for development of bioinsecticides in the future. The M. anisopliae strain called MET-GRA4 was tested for pathogenicity against adult red palm weevil and treated in vitro with different spore viabilities. The isolates exhibited pathogenicity with 100% mortality 21 d postinfection. The median lethal time (LT50) for 85% viable spores was 8.6 d, while 39% viable spores had an LT50 value of 21.37 d, with 92 and 16.6% mycosis, respectively. The species MET-GRA4 strain was molecularly characterized using ITS1 and ITS4 from pure culture (Isolate A), mass-produced spores (Isolate B), and infected red palm weevil cadavers (Isolate C). The DNA sequences obtained matched M. anisopliae sequences, with 99% similarity. This new isolate of M. anisopliae has potential as a targeted bioinsecticide for management of red palm weevil.
    Matched MeSH terms: Pest Control, Biological
  5. Kabir MH, Nur-E-Alam SM, Datta A, Tan ML, Rahman MS
    PLoS One, 2023;18(9):e0292254.
    PMID: 37773932 DOI: 10.1371/journal.pone.0292254
    The use of pheromone traps can minimize the excess application of synthetic insecticides, while can also benefit the environment. The use of pheromone traps has been promoted and suggested to vegetable farmers of Bangladesh for widespread adoption. However, the majority of farmers have continued to spray insecticides instead of using pheromone traps. The present study investigated the factors influencing farmers' adoption, dis-adoption, and non-adoption behavior of pheromone traps for managing insect pests. Primary data were collected from 438 vegetable growers. Data were analyzed using descriptive statistics and multinomial logistic regression. About 27% of the farmers abandoned the technique shortly after it was adopted as it was time-consuming to manage insect pests. Marginal effect analysis revealed that the likelihood of continued adoption was 34.6% higher for farmers who perceived that pheromone traps were useful in controlling insect pests. In contrast, the likelihood of dis-adoption was 16.5% and 10.4% higher for farmers who maintained communication with private pesticide company agents and neighbor farmers, respectively. Extension services by government extension personnel might be encouraged and maintained as a key component in increasing farmer awareness regarding the use of pheromone trap. Strategies to promote pheromone traps in vegetable production should highlight the positive impacts to farmers and the environment, as this would most likely lead to their continued and widespread use after initial adoption.
    Matched MeSH terms: Pest Control, Biological
  6. Kermani N, Abu Hassan ZA, Suhaimi A, Abuzid I, Ismail NF, Attia M, et al.
    PLoS One, 2014;9(6):e100671.
    PMID: 24968125 DOI: 10.1371/journal.pone.0100671
    The diamondback moth (DBM) Plutella xylostella (L.) has traditionally been managed using synthetic insecticides. However, the increasing resistance of DBM to insecticides offers an impetus to practice integrated pest management (IPM) strategies by exploiting its natural enemies such as pathogens, parasitoids, and predators. Nevertheless, the interactions between pathogens and parasitoids and/or predators might affect the effectiveness of the parasitoids in regulating the host population. Thus, the parasitism rate of Nosema-infected DBM by Cotesia vestalis (Haliday) (Hym., Braconidae) can be negatively influenced by such interactions. In this study, we investigated the effects of Nosema infection in DBM on the parasitism performance of C. vestalis. The results of no-choice test showed that C. vestalis had a higher parasitism rate on non-infected host larvae than on Nosema-treated host larvae. The C. vestalis individuals that emerged from Nosema-infected DBM (F1) and their progeny (F2) had smaller pupae, a decreased rate of emergence, lowered fecundity, and a prolonged development period compared to those of the control group. DBM infection by Nosema sp. also negatively affected the morphometrics of C. vestalis. The eggs of female C. vestalis that developed in Nosema-infected DBM were larger than those of females that developed in non-infected DBM. These detrimental effects on the F1 and F2 generations of C. vestalis might severely impact the effectiveness of combining pathogens and parasitoids as parts of an IPM strategy for DBM control.
    Matched MeSH terms: Pest Control, Biological/methods*
  7. Subramaniam TS, Lee HL, Ahmad NW, Murad S
    Biotechnol J, 2012 Nov;7(11):1323-7.
    PMID: 23125042 DOI: 10.1002/biot.201200282
    On December 21, 2010, 6000 genetically modified (GM) mosquitoes were released in an uninhabited forest in Malaysia. The purpose of the deliberate release was a limited “marked release and recapture” (MRR) experiment, a standard ecological method in entomology, to evaluate under field conditions, the flight distance and longevity of the sterile male Aedes aegypti strain OX513A(My1), a GM strain. As with any other GM technologies, the release was received with mixed responses. As the scientific community debate over the public engagement strategies for similar GM releases, dengue incidence continues to rise with a heavy toll on morbidity, mortality and healthcare budgets. Meanwhile the wild female Aedes aegypti continues to breed offspring, surviving and evading conventional interventions for vector control.
    Matched MeSH terms: Pest Control, Biological/methods*
  8. Lakxmy AP, Xavier R, Reenajosephine CM, Lee YW, Marimuthu K, Kathiresan S, et al.
    Eur Rev Med Pharmacol Sci, 2011 Feb;15(2):149-55.
    PMID: 21434481
    To evaluate the mosquito larvicidal potential of the native Bacillus thuringiensis isolate BtReXO2, which was isolated from a tropical rain forest ecosystem in Malaysia. This study also aimed at determining the phenotypic and biochemical characteristics of the isolate.
    Matched MeSH terms: Pest Control, Biological*
  9. Aldridge S
    Nat Biotechnol, 2008 Jul;26(7):725.
    PMID: 18612284 DOI: 10.1038/nbt0708-725a
    Matched MeSH terms: Pest Control, Biological/methods*
  10. Ramle M, Wahid MB, Norman K, Glare TR, Jackson TA
    J Invertebr Pathol, 2005 May;89(1):85-90.
    PMID: 16039309
    The rhinoceros beetle, Oryctes rhinoceros, has emerged as a serious pest of oil palm since the prohibition of burning as a method for maintaining estate hygiene in the 1990s. The abundance of beetles is surprising given that the Malay peninsula was the site of first discovery of the Oryctes virus, which has been used to effect good as a biological control agent in other regions. A survey of adult beetles was carried out throughout Malaysia using pheromone traps. Captured beetles were examined for presence of virus using both visual/microscopic examination and PCR detection methods. The survey indicated that Oryctes virus was common in Malaysia among the adult beetles. Viral DNA analysis was carried out after restriction with HindIII enzyme and indicated at least three distinct viral genotypes. Bioassays were used to compare the viral strains and demonstrate that one strain (type B) is the most virulent against both larvae and adults of the beetle. Virus type B has been cultured and released into healthy populations where another strain (type A) forms the natural background. Capture and examination of beetles from the release site and surrounding area has shown that the spread and persistence of the applied virus strain is accompanied by a reduction in palm frond damage.
    Matched MeSH terms: Pest Control, Biological*
  11. Susanto A, Sudharto PS, Purba RY
    Mycopathologia, 2005 Jan;159(1):153-7.
    PMID: 15750748
    Basal Stem Rot (BSR) disease caused by Ganoderma boninense is the most destructive disease in oil palm, especially in Indonesia and Malaysia. The available control measures for BSR disease such as cultural practices and mechanical and chemical treatment have not proved satisfactory due to the fact that Ganoderma has various resting stages such as melanised mycelium, basidiospores and pseudosclerotia. Alternative control measures to overcome the Ganoderma problem are focused on the use of biological control agents and planting resistant material. Present studies conducted at Indonesian Oil Palm Research Institute (IOPRI) are focused on enhancing the use of biological control agents for Ganoderma. These activities include screening biological agents from the oil palm rhizosphere in order to evaluate their effectiveness as biological agents in glasshouse and field trials, testing their antagonistic activities in large scale experiments and eradicating potential disease inoculum with biological agents. Several promising biological agents have been isolated, mainly Trichoderma harzianum, T. viride, Gliocladium viride, Pseudomonas fluorescens, and Bacillus sp. A glasshouse and field trial for Ganoderma control indicated that treatment with T. harzianum and G. viride was superior to Bacillus sp. A large scale trial showed that the disease incidence was lower in a field treated with biological agents than in untreated fields. In a short term programme, research activities at IOPRI are currently focusing on selecting fungi that can completely degrade plant material in order to eradicate inoculum. Digging holes around the palm bole and adding empty fruit bunches have been investigated as ways to stimulate biological agents.
    Matched MeSH terms: Pest Control, Biological/methods*
  12. Sariah M, Choo CW, Zakaria H, Norihan MS
    Mycopathologia, 2005 Jan;159(1):113-7.
    PMID: 15750742
    Basal stem rot of oil palm caused by Ganoderma boninense is of major economic importance. Observations of the low incidence of disease due to Ganoderma species in natural stands, suggest that the disease is kept under control by some biological means. Trichoderma spp. are saprophytic fungi with high antagonistic activities against soil-borne pathogens. However, their abundance and distribution are soil and crop specific. Trichoderma species have been found to be concentrated in the A1 (0-30 cm) and Be soil horizons (30-60 cm), although the abundance of Trichoderma was not significantly different between the oil palm and non-oil palm ecosystems. Characterisation of Trichoderma isolates based on cultural, morphological and DNA polymorphism showed that T. harzianum, T. virens, T. koningii and T. longibrachiatum made up 72, 14, 10 and 4% of the total Trichoderma isolates isolated. As Trichoderma species are present in the oil palm ecosystem, but at lower numbers and in locations different from those desired, soil augmentation with antagonistic Trichoderma spp. can be developed as a strategy towards integrated management of basal stem rot of oil palm.
    Matched MeSH terms: Pest Control, Biological/methods*
  13. Chandrawathani P, Omar J, Waller PJ
    Vet Parasitol, 1998 Apr 30;76(4):321-5.
    PMID: 9650868
    Two laboratory trials were conducted to determine the effect of the addition of spores (conidia) of the nematophagous fungus, Arthrobotrys oligospora, on the development of the ruminant parasite, Strongyloides papillosus, in cultures of bovine faeces. Both studies showed that at a concentration of 2000 conidia/g faeces virtually eliminated infective larvae (> 99% reduction), following 14 days incubation under ideal conditions (25 degrees C and saturated humidity) for free-living development of this parasite species. In one trial, a high level of control was also observed at a 10-fold decrease in conidia concentration (200 spores/g faeces). This work has demonstrated, in principle, that A. oligospora could provide a practical biological control agent against S. papillosus infecting intensively raised young ruminants in the humid tropics/subtropics.
    Matched MeSH terms: Pest Control, Biological*
  14. Lee HL, Seleena P
    PMID: 1948250
    A screening program searching for indigenous microbial control agents of mosquitos in Malaysia is initiated since 1987 and to date at least 20 isolates of mosquitocidal Bacillus thuringiensis serotypes have been obtained. Preliminary field evaluation of several isolates indicated that they are highly effective in the control of medically important mosquito species. For operational purposes, there is an urgent need to produce this agent utilizing cheap and locally available wastes through fermentation biotechnology. Fermentation studies in shake-flasks containing standard nutrient broth and soya bean waste, respectively, indicate that it takes about 37 hours for a Malaysian isolate of B. thuringiensis serotype H-14 to mature. In the grated coconut waste, fishmeal and rice bran, the bacteria took 28 hours, 26 hours and 126 hours respectively to mature. The endotoxin was harvested from the standard nutrient broth at 55 hours and at 50 hours from soybean, grated coconut waste and fishmeal. The endotoxin could only be harvested 150 hours after inoculation from rice bran medium. However, no bacterial growth was detected in palm oil effluent. In terms of endotoxin and biomass production, fishmeal appears to be a suitable medium. Variations in the pH of the fermenting media were also noted.
    Matched MeSH terms: Pest Control, Biological/methods*
  15. Lee HL, Seleena P
    PMID: 2237596
    A nationwide screening program searching for microbial control agents of mosquitos was initiated in Malaysia in 1986. A total of 725 samples were collected and 2,394 bacterial colonies were isolated and screened for larvicidal activity. From such screening, 20 Bacillus thuringiensis, 6 B. sphaericus, 1 Clostridium bifermentans and 2 Pseudomonas pseudomallei larvicidal isolates were obtained. Of these, a new B. thuringiensis named as subspecies malaysianensis was found, while the C. bifermentans was also a new anaerobe individualized as serovar malaysia. It was concluded that this screening program was highly successful.
    Matched MeSH terms: Pest Control, Biological/methods*
  16. Ahmad R, Chu WL, Ismail Z, Lee HL, Phang SM
    PMID: 15272748
    The effect of ten microalgal chlorophytes isolated from mosquito breeding containers on the survival, larval development and adult body size of the mosquito Aedes aegypti was investigated. All larvae fed with six of the microalgal isolates died after 7 days. These isolates were found to be resistant to digestion by mosquito larvae. Delayed pupation and body size reduction of the mosquitos fed with Chlorococcum UMACC 218 and Scenedesmus UMACC 220 were observed. In contrast, larvae fed with Ankistrodesmus convolutus UMACC 101 and Chlorococcum UMACC 213 were bigger in size than those fed with normal insectory feed. The present study showed that microalgal chlorophytes have the potential to be used as larvicidal agents for mosquitos.
    Matched MeSH terms: Pest Control, Biological/methods*
  17. Lie Kian Joe, Owyang CK
    PMID: 4749072
    Matched MeSH terms: Pest Control, Biological*
  18. Cheong PCH, Glare TR, Rostás M, Haines S, Brookes JJ, Ford S
    J Invertebr Pathol, 2020 01;169:107276.
    PMID: 31715183 DOI: 10.1016/j.jip.2019.107276
    The fungal insect pathogen Beauveria bassiana produces a range of insecticidal metabolites and enzymes, including chitinases and proteases, which may assist the disease progression. The enzymes often play a predominant role in the pathogenicity pathway and both chitinases and proteases have previously been shown to be important in host infection. Spray application of supernatants of B. bassiana broth cultures of an isolate from New Zealand caused significant mortality in the green peach aphid, Myzus persicae, within 24 h, demonstrating an apparent contact toxicity. Three-day-old broth cultures were the most effective, with less insect mortality seen using six-day-old broth. However, aphicidal activity increased again when treating aphids with seven-day-old broth. Cultures grew substantially better and produced more potent aphicidal cultures when cultured in media with an initial pH above 5.5. Chitinase was produced a day earlier than the serine protease Pr1, but the peak production periods of these enzymes did not correlate with the aphicidal activities of three- or six-day-old cultures. Cultures treated with EDTA or heated to inactivate the enzymes still showed strong insecticidal activity. Neither beauvericin nor bassianolide, two known insecticidal metabolites, were detected in the supernatants. Therefore the key aphicidal components of B. bassiana cultures were not associated with chitinase nor Pr1 and are yet to be identified.
    Matched MeSH terms: Pest Control, Biological*
  19. Yiallouros M, Storch V, Thiery I, Becker N
    J Am Mosq Control Assoc, 1994 Mar;10(1):51-5.
    PMID: 7912261
    Clostridium bifermentans serovar malaysia (C.b.m.) is highly toxic to mosquito larvae. In this study, the following aquatic nontarget invertebrates were treated with high C.b.m. concentrations (up to 1,600-fold the toxic concentration for Anopheles stephensi) to study their susceptibility towards the bacterial toxin: Planorbis planorbis (Pulmonata); Asellus aquaticus (Isopoda); Daphnia pulex (Cladocera); Cloeon dipterum (Ephemeroptera); Plea leachi (Heteroptera); and Eristalis sp., Chaoborus crystallinus, Chironomus thummi, and Psychoda alternata (Diptera). In addition, bioassays were performed with mosquito larvae (Aedes aegypti, Anopheles stephensi, and Culex pipiens). Psychoda alternata larvae were very susceptible, with LC50/LC90 values comparable to those of mosquito larvae (about 10(3)-10(5) spores/ml). The tests with Chaoborus crystallinus larvae showed significant mortality rates at high concentrations, but generally not before 4 or 5 days after treatment. The remaining nontarget organisms did not show any susceptibility. The investigation confirms the specificity of C.b.m. to nematocerous Diptera.
    Matched MeSH terms: Pest Control, Biological/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links