Displaying publications 41 - 60 of 1877 in total

Abstract:
Sort:
  1. Hookabe N, Jimi N, Furushima Y, Fujiwara Y
    Biol Lett, 2024 Jul;20(7):20230573.
    PMID: 39079676 DOI: 10.1098/rsbl.2023.0573
    Chemosynthesis-based ecosystems such as hydrothermal vents and hydrocarbon seeps harbour various endemic species, each uniquely adapted to the extreme conditions. While some species rely on obligatory relationships with bacterial symbionts for nutrient uptake, scavengers and predators also play important roles in food web dynamics in these ecosystems. Acoels, members of the phylum Xenacoelomorpha, are simple, worm-like invertebrates found in marine environments worldwide but are scarcely understood taxa. This study presents a novel genus and species of acoel from a deep-sea hydrocarbon seep off Hatsushima, Japan, Hoftherma hatsushimaensis gen. et sp. nov. Our multi-locus phylogenetic analysis revealed that the acoels are nested within Hofsteniidae, a family previously known exclusively from shallow waters. This finding suggests that at least two independent colonization events occurred in the chemosynthesis-based environments from the phylum Xenoacoelomorpha, represented by hofsteniid acoels and Xenoturbella. Previous reports of hofsteniid species from low-oxygen and sulfide-rich environments, including intertidal habitats with decomposing leaves, in addition to H. hatsushimaensis gen. et sp. nov. from a deep-sea hydrocarbon seep, imply a common ancestral adaptation to sulfide-rich ecosystems within Hofsteniidae. Moreover, the sister relationship between solenofilomorphid acoels predominating in sulfide-rich habitats indicates common ancestral adaptation to sulfide-rich ecosystems between these two families.
    Matched MeSH terms: Phylogeny*
  2. Sum JS, Lee WC, Amir A, Braima KA, Jeffery J, Abdul-Aziz NM, et al.
    Parasit Vectors, 2014;7:309.
    PMID: 24993022 DOI: 10.1186/1756-3305-7-309
    Molecular techniques are invaluable for investigation on the biodiversity of Anopheles mosquitoes. This study aimed at investigating the spatial-genetic variations among Anopheles mosquitoes from different areas of Peninsular Malaysia, as well as deciphering evolutionary relationships of the local Anopheles mosquitoes with the mosquitoes from neighbouring countries using the anopheline ITS2 rDNA gene.
    Matched MeSH terms: Phylogeny*
  3. Chee SY, Devakie MN, Siti Azizah MN
    Genet. Mol. Res., 2011;10(2):1237-44.
    PMID: 21732288 DOI: 10.4238/vol10-2gmr1104
    Blood cockles are among the most economically important brackish water invertebrates found in Malaysia. However, our knowledge of blood cockle phylogeny and systematics is rudimentary, especially for the species Tegillarca granosa. It is unclear, for instance, whether the cockles occurring on the west coast of peninsular Malaysia constitute a single species, or multiple, phylogenetically distinct species. We performed the first DNA molecular phylogenetic analysis of T. granosa to distinguish it from other related species found in other parts of the world and to create a DNA database for the species. An approximately 585-nucleotide fragment of the mitochondrial DNA (cytochrome oxidase I, COI) was sequenced for 150 individual cockles, representing 10 populations: three from the north, four from the central part and three from the southern part of peninsular Malaysia. Phylogenetic analyses of the resulting dataset yielded tree topologies that not only showed the relationship between T. granosa and its closest relatives but its position in the evolutionary tree. Three mitochondrial clades were evident, each containing an individual genus. Using the mutation rate of the COI gene, the divergence time between T. granosa and its closest related species was estimated to be 460 thousand years ago. This study provides a phylogenetic framework for this ecologically prominent and commercially important cockle species.
    Matched MeSH terms: Phylogeny*
  4. Rosli MK, Zakaria SS, Syed-Shabthar SM, Zainal ZZ, Shukor MN, Mahani MC, et al.
    Genet. Mol. Res., 2011;10(1):482-93.
    PMID: 21476194 DOI: 10.4238/vol10-1gmr1002
    The Malayan gaur (Bos gaurus hubbacki) is one of the three subspecies of gaurs that can be found in Malaysia. We examined the phylogenetic relationships of this subspecies with other species of the genus Bos (B. javanicus, B. indicus, B. taurus, and B. grunniens). The sequence of a key gene, cytochrome b, was compared among 20 Bos species and the bongo antelope, used as an outgroup. Phylogenetic reconstruction was employed using neighbor joining and maximum parsimony in PAUP and Bayesian inference in MrBayes 3.1. All tree topologies indicated that the Malayan gaur is in its own monophyletic clade, distinct from other species of the genus Bos. We also found significant branching differences in the tree topologies between wild and domestic cattle.
    Matched MeSH terms: Phylogeny*
  5. Dixon LJ, Schlub RL, Pernezny K, Datnoff LE
    Phytopathology, 2009 Sep;99(9):1015-27.
    PMID: 19671003 DOI: 10.1094/PHYTO-99-9-1015
    The fungus Corynespora cassiicola is primarily found in the tropics and subtropics, and is widely diverse in substrate utilization and host association. Isolate characterization within C. cassiicola was undertaken to investigate how genetic diversity correlates with host specificity, growth rate, and geographic distribution. C. cassiicola isolates were collected from 68 different plant species in American Samoa, Brazil, Malaysia, and Micronesia, and Florida, Mississippi, and Tennessee within the United States. Phylogenetic analyses using four loci were performed with 143 Corynespora spp. isolates, including outgroup taxa obtained from culture collections: C. citricola, C. melongenae, C. olivacea, C. proliferata, C. sesamum, and C. smithii. Phylogenetic trees were congruent from the ribosomal DNA internal transcribed spacer region, two random hypervariable loci (caa5 and ga4), and the actin-encoding locus act1, indicating a lack of recombination within the species and asexual propagation. Fifty isolates were tested for pathogenicity on eight known C. cassiicola crop hosts: basil, bean, cowpea, cucumber, papaya, soybean, sweet potato, and tomato. Pathogenicity profiles ranged from one to four hosts, with cucumber appearing in 14 of the 16 profiles. Bootstrap analyses and Bayesian posterior probability values identified six statistically significant phylogenetic lineages. The six phylogenetic lineages correlated with host of origin, pathogenicity, and growth rate but not with geographic location. Common fungal genotypes were widely distributed geographically, indicating long-distance and global dispersal of clonal lineages. This research reveals an abundance of previously unrecognized genetic diversity within the species and provides evidence for host specialization on papaya.
    Matched MeSH terms: Phylogeny*
  6. Matsui M, Jaafar I
    Zoolog Sci, 2006 Jul;23(7):647-51.
    PMID: 16908965
    We describe a new species of cascade frog of the genus Rana, from west Malaysia. Rana monjerai, new species is a medium-sized frog of the subgenus Odorrana (SVL of males, 38-43 mm; of one female, 75 mm), and is distinguished from all other members of this subgenus by the combination of: white lip stripe, dorsolateral fold, full web on the fourth toe, vomerine teeth, gular vocal pouch and relatively large tympanum in males, no dorsal marking, no clear light spots on rear of thigh, first finger subequal to second, finely tuberculated dorsum, and unpigmented ova. The significance of finding this species from peninsular Malaysia is discussed.
    Matched MeSH terms: Phylogeny*
  7. Fatihah HN, Mat N, Zaimah AR, Zuhailah MN, Norhaslinda H, Khairil M, et al.
    PLoS One, 2012;7(12):e52441.
    PMID: 23285045 DOI: 10.1371/journal.pone.0052441
    This study is the first report to suggest a morphological phylogenetic framework for the seven varieties of Ficus deltoidea Jack (Ficus: Moraceae) from the Malay Peninsula of Malaysia. Several molecular-based classifications on the genus Ficus had been proposed, but neither had discussed the relationship between seven varieties of F. deltoidea to its allies nor within the varieties. The relationship between seven varieties of F. deltoidea is still debated due to the extreme morphological variabilities and ambiguous boundaries between taxa. Thus, the correct identification of these varieties is important as several morphological characters are variety-specific. To test the monophyly and further resolved the relationship in F. deltoidea, a morphological phylogenetic analysis was conducted based on herbarium specimens representing the seven varieties of F. deltoidea that were collected from the Malay Peninsula of Malaysia, by using related species of the genus Ficus; F. grossularioides, F. ischnopoda and F. oleifolia as the outgroups. Parsimony and neighbour-joining analyses indicated that F. deltoidea is monophyletic, in that the seven varieties of F. deltoidea nested into two clades; clade subspecies deltoidea (var. deltoidea, var. bilobata, var. angustifolia, var. kunstleri and var. trengganuensis) and clade subspecies motleyana (var. intermedia and var. motleyana).
    Matched MeSH terms: Phylogeny*
  8. Wee WY, Tan TK, Jakubovics NS, Choo SW
    PLoS One, 2016;11(3):e0152682.
    PMID: 27031249 DOI: 10.1371/journal.pone.0152682
    Mycobacterium brisbanense is a member of Mycobacterium fortuitum third biovariant complex, which includes rapidly growing Mycobacterium spp. that normally inhabit soil, dust and water, and can sometimes cause respiratory tract infections in humans. We present the first whole-genome analysis of M. brisbanense UM_WWY which was isolated from a 70-year-old Malaysian patient. Molecular phylogenetic analyses confirmed the identification of this strain as M. brisbanense and showed that it has an unusually large genome compared with related mycobacteria. The large genome size of M. brisbanense UM_WWY (~7.7Mbp) is consistent with further findings that this strain has a highly variable genome structure that contains many putative horizontally transferred genomic islands and prophage. Comparative analysis showed that M. brisbanense UM_WWY is the only Mycobacterium species that possesses a complete set of genes encoding enzymes involved in the urea cycle, suggesting that this soil bacterium is able to synthesize urea for use as plant fertilizers. It is likely that M. brisbanense UM_WWY is adapted to live in soil as its primary habitat since the genome contains many genes associated with nitrogen metabolism. Nevertheless, a large number of predicted virulence genes were identified in M. brisbanense UM_WWY that are mostly shared with well-studied mycobacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. These findings are consistent with the role of M. brisbanense as an opportunistic pathogen of humans. The whole-genome study of UM_WWY has provided the basis for future work of M. brisbanense.
    Matched MeSH terms: Phylogeny*
  9. Liedigk R, Kolleck J, Böker KO, Meijaard E, Md-Zain BM, Abdul-Latiff MA, et al.
    BMC Genomics, 2015 Mar 21;16:222.
    PMID: 25887664 DOI: 10.1186/s12864-015-1437-0
    BACKGROUND: Long-tailed macaques (Macaca fascicularis) are an important model species in biomedical research and reliable knowledge about their evolutionary history is essential for biomedical inferences. Ten subspecies have been recognized, of which most are restricted to small islands of Southeast Asia. In contrast, the common long-tailed macaque (M. f. fascicularis) is distributed over large parts of the Southeast Asian mainland and the Sundaland region. To shed more light on the phylogeny of M. f. fascicularis, we sequenced complete mitochondrial (mtDNA) genomes of 40 individuals from all over the taxon's range, either by classical PCR-amplification and Sanger sequencing or by DNA-capture and high-throughput sequencing.

    RESULTS: Both laboratory approaches yielded complete mtDNA genomes from M. f. fascicularis with high accuracy and/or coverage. According to our phylogenetic reconstructions, M. f. fascicularis initially diverged into two clades 1.70 million years ago (Ma), with one including haplotypes from mainland Southeast Asia, the Malay Peninsula and North Sumatra (Clade A) and the other, haplotypes from the islands of Bangka, Java, Borneo, Timor, and the Philippines (Clade B). The three geographical populations of Clade A appear as paraphyletic groups, while local populations of Clade B form monophyletic clades with the exception of a Philippine individual which is nested within the Borneo clade. Further, in Clade B the branching pattern among main clades/lineages remains largely unresolved, most likely due to their relatively rapid diversification 0.93-0.84 Ma.

    CONCLUSIONS: Both laboratory methods have proven to be powerful to generate complete mtDNA genome data with similarly high accuracy, with the DNA-capture and high-throughput sequencing approach as the most promising and only practical option to obtain such data from highly degraded DNA, in time and with relatively low costs. The application of complete mtDNA genomes yields new insights into the evolutionary history of M. f. fascicularis by providing a more robust phylogeny and more reliable divergence age estimations than earlier studies.

    Matched MeSH terms: Phylogeny*
  10. Chen CW, Rothfels CJ, Mustapeng AMA, Gubilil M, Karger DN, Kessler M, et al.
    J Plant Res, 2018 Jan;131(1):67-76.
    PMID: 28741041 DOI: 10.1007/s10265-017-0966-9
    The phylogenetic affinities of the fern genus Aenigmopteris have been the subject of considerable disagreement, but until now, no molecular data were available from the genus. Based on the analysis of three chloroplast DNA regions (rbcL, rps16-matK, and trnL-F) we demonstrate that Aenigmopteris dubia (the type species of the genus) and A. elegans are closely related and deeply imbedded in Tectaria. The other three species of genus are morphologically very similar; we therefore transfer all five known species into Tectaria. Detailed morphological comparison further shows that previously proposed diagnostic characters of Aenigmopteris fall within the range of variation of a broadly circumscribed Tectaria.
    Matched MeSH terms: Phylogeny*
  11. Nguyen XV, Nguyen-Nhat NT, Nguyen XT, Dao VH, M Liao L, Papenbrock J
    PLoS One, 2021;16(10):e0258956.
    PMID: 34679102 DOI: 10.1371/journal.pone.0258956
    The genus Halophila shows the highest species diversity within the seagrass genera. Southeast Asian countries where several boundary lines exist were considered as the origin of seagrasses. We hypothesize that the boundary lines, such as Wallace's and Lydekker's Lines, may act as marine geographic barriers to the population structure of Halophila major. Seagrass samples were collected at three islands in Vietnamese waters and analyzed by the molecular maker ITS. These sequences were compared with published ITS sequences from seagrasses collected in the whole region of interest. In this study, we reveal the haplotype and nucleotide diversity, linking population genetics, phylogeography, phylogenetics and estimation of relative divergence times of H. major and other members of the Halophila genus. The morphological characters show variation. The results of the ITS marker analysis reveal smaller groups of H. major from Myanmar, Shoalwater Bay (Australia) and Okinawa (Japan) with high supporting values. The remaining groups including Sri Lanka, Viet Nam, the Philippines, Thailand, Malaysia, Indonesia, Two Peoples Bay (Australia) and Tokushima (Japan) showed low supporting values. The Wallacea region shows the highest haplotype and also nucleotide diversity. Non-significant differences were found among regions, but significant differences were presented among populations. The relative divergence times between some members of section Halophila were estimated 2.15-6.64 Mya.
    Matched MeSH terms: Phylogeny*
  12. Rovie-Ryan JJ, Khan FAA, Abdullah MT
    BMC Ecol Evol, 2021 02 15;21(1):26.
    PMID: 33588750 DOI: 10.1186/s12862-021-01757-1
    BACKGROUND: We analyzed a combined segment (2032-bp) of the sex-determining region and the testis-specific protein of the Y-chromosome (Y-DNA) gene to clarify the gene flow and phylogenetic relationships of the long-tailed macaques (Macaca fascicularis) in Southeast Asia. Phylogenetic relationships were constructed using the maximum likelihood, Bayesian inference, and the median-joining network from a total of 164 adult male M. fascicularis from 62 localities in Malaysia, including sequences from the other regions from previous studies.

    RESULTS: Based on Y-DNA, we confirm the presence of two lineages of M. fascicularis: the Indochinese and Sundaic lineages. The Indochinese lineage is represented by M. fascicularis located northwards of the Surat Thani-Krabi depression region and is introgressed by the Macaca mulatta Y-DNA. The Sundaic lineage is free from such hybridization event, thus defined as the original carrier of the M. fascicularis Y-DNA. We further revealed that the Sundaic lineage differentiated into two forms: the insular and the continental forms. The insular form, which represents the ancestral form of M. fascicularis, consists of two haplotypes: a single homogenous haplotype occupying the island of Borneo, Philippines, and southern Sumatra; and the Javan haplotype. The more diverse continental form consists of 17 haplotypes in which a dominant haplotype was shared by individuals from southern Thai Peninsular (south of Surat Thani-Krabi depression), Peninsular Malaysia, and Sumatra. Uniquely, Sumatra contains both the continental and insular Y-DNA which can be explained by a secondary contact hypothesis.

    CONCLUSIONS: Overall, the findings in this study are important: (1) to help authority particularly in Malaysia on the population management activities including translocation and culling of conflict M. fascicularis, (2) to identify the unknown origin of captive M. fascicularis used in biomedical research, and; (3) the separation between the continental and insular forms warrants for the treatment as separate management units.

    Matched MeSH terms: Phylogeny*
  13. Kuwata K, Lum WM, Takahashi K, Benico G, Takahashi K, Lim PT, et al.
    Harmful Algae, 2024 Sep;138:102701.
    PMID: 39244236 DOI: 10.1016/j.hal.2024.102701
    Amphidoma languida, a marine thecate dinoflagellate that produces the lipophilic toxin azaspiracids (AZAs), is primarily found in the Atlantic. Although this species has not been recorded in the Asian Pacific, environmental DNAs related to Am. languida have been widely detected in the region by metabarcoding analysis. Their morphology and AZA production remain unclear. In this study, the morphology, ultrastructure, phylogeny, and AZA production of nine Amphidoma strains isolated from Japan, Malaysia, and Philippines were investigated. Phylogenetic trees inferred from rDNAs (SSU, ITS, and LSU rDNA) showed monophyly of the nine Pacific strains and were sister to the Am. languida clade, including the toxigenic strains from the Atlantic. Cells were ellipsoid, 8.7-16.7 µm in length and 7.4-14.0 µm in width, with a conspicuous apical pore complex. A large nucleus in the hyposome, parietal chloroplast with a spherical pyrenoid in the episome, and refractile bodies were observed. Thecal tabulation was typical of Amphidoma, Po, cp, X, 6', 6'', 6C, 5S, 6''', 2''''. A ventral pore was located on the anterior of 1' plate, beside the suture to 6' plate. The presence of a ventral depression, on the anterior of anterior sulcal plate, was different from Am. languida. A large antapical pore, containing approximately 10 small pores, was observed. Cells were apparently smaller than Am. trioculata, a species possessing three pores (ventral pore, ventral depression, and antapical pore). TEM showed the presence of crystalline structures, resembling guanine crystals, and cytoplasmic invaginations into the pyrenoid matrix. Flagellar apparatus lacking the striated root connective is similar to peridinioids and related dinoflagellates. AZAs were not detected from the Pacific strains by LC-MS/MS. This non-toxigenic Amphidoma species, here we propose as Amphidoma fulgens sp. nov., is widely distributed in the Asian Pacific. Moreover, molecular comparison also suggested that most of the environmental DNA sequences previously reported as Am. languida or related sequences from the Asian Pacific were attributable to Am. fulgens.
    Matched MeSH terms: Phylogeny*
  14. Fong SY, Akari Y, Amit LN, John JL, Chin AZ, Komoto S, et al.
    Infect Genet Evol, 2024 Nov;125:105685.
    PMID: 39461399 DOI: 10.1016/j.meegid.2024.105685
    G9P[8] has been the predominant rotavirus A (RVA) genotype in Malaysia since the 2000s. However, the overall genetic makeup and evolution of Malaysian G9P[8] strains are still unknown. Therefore, this study aimed to evaluate and characterize the complete genomes of three G9P[8] RVA strains isolated from diarrheic children under five years old in Sabah. Contrary to the classical Wa-like constellation, these strains contained a DS-1-like genotype. Two strains, namely L202 and L234, were genotype G9-P[8]-I1-R1-C1-M1-A1-N1-T1-E2-H1, while one (KN102) was genotype G9-P[8]-I1-R1-C1-M1-A2-N1-T1-E1-H1. Phylogenetic analysis revealed that the NSP4 genes of L202 and L234 strains were closer to that of G9P[8]-E2 strains from Japan, suggesting they might share a common ancestor. The findings from this study provide new insights into the genetic characteristics of circulating G9P[8] strains in Sabah, which are important for rotavirus surveillance and potential vaccine development in the region.
    Matched MeSH terms: Phylogeny*
  15. Shohaimi SA, Leow BL, Mohd Yusop FF, Sidik MR, Barker Z, Mohd Saeid FH
    Trop Biomed, 2024 Jun 01;41(2):183-189.
    PMID: 39154271 DOI: 10.47665/tb.41.2.008
    Low pathogenic avian influenza (LPAI) subtype H9N2 is a causative agent that has raised increasing concern about its impact on poultry and potential public health threats. Even though H9N2 is endemic in Peninsular Malaysia, it was first reported in Sabah in August 2022, after an outbreak associated with high mortality in broiler chickens. In the present study, based on the hemagglutinin (HA) gene, we report the genetic variations and phylogenetic analysis of a H9N2 virus isolated from broiler chickens in Sabah. The sequence analysis of the HA gene revealed a 98% similarity to the H9N2 virus recently isolated from China in 2018. The amino acids in the HA cleavage site displayed a characteristic LPAI motif (PARSSR/ GLF). Notably, at position 226, the isolate had amino acid Leucine (L) demonstrating its ability to bind to the receptor of mammals, resulting in the potential risk of transmission to humans. In addition, the H9N2 isolate harboured seven potential N-glycosylation sites. The phylogenetic analysis revealed that the isolate belonged to clade h9.4.2.5 in the Y280 lineage, similar to previously reported in Malaysia. However, we observed that the isolate in this study falls in a different cluster compared with previous Malaysian isolates, suggesting different source of H9N2 introduction into the country. This prompts us to propose continuous and thorough surveillance of poultry across the country and the necessity of implementing farm biosecurity to minimize economic losses and potential threats to public health.
    Matched MeSH terms: Phylogeny*
  16. Zuntini AR, Carruthers T, Maurin O, Bailey PC, Leempoel K, Brewer GE, et al.
    Nature, 2024 May;629(8013):843-850.
    PMID: 38658746 DOI: 10.1038/s41586-024-07324-0
    Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5-7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade.
    Matched MeSH terms: Phylogeny*
  17. Kuo LY, Tang SK, Huang YH, Xie PJ, Chen CW, Chang ZX, et al.
    Sci Data, 2024 Dec 02;11(1):1314.
    PMID: 39622837 DOI: 10.1038/s41597-024-04161-8
    Ferns belong to species-rich group of land plants, encompassing more than 11,000 extant species, and are crucial for reflecting terrestrial ecosystem changes. However, our understanding of their biodiversity hotspots, particularly in Southeast Asia, remains limited due to scarce genetic data. Despite harboring around one-third of the world's fern species, less than 6% of Southeast Asian ferns have been DNA-sequenced. In this study, we addressed this gap by sequencing 1,496 voucher-referenced and expert-identified fern samples from (sub)tropical Asia, spanning Malaysia, the Philippines, Taiwan, and Vietnam, to retrieve their rbcL and trnL-F sequences. This DNA barcode collection of Asian ferns encompasses 956 species across 152 genera and 34 families, filling major gaps in fern biodiversity understanding and advancing research in systematics, phylogenetics, ecology and conservation. This dataset significantly expands the Fern Tree of Life to over 6,000 species, serving as a pivotal and global reference for worldwide barcoding identification of ferns.
    Matched MeSH terms: Phylogeny*
  18. Medeiros ID, Ibáñez A, Arnold AE, Hedderson TA, Miadlikowska J, Flakus A, et al.
    Am J Bot, 2024 Dec;111(12):e16441.
    PMID: 39639425 DOI: 10.1002/ajb2.16441
    PREMISE: Southern Africa is a biodiversity hotspot rich in endemic plants and lichen-forming fungi. However, species-level data about lichen photobionts in this region are minimal. We focused on Trebouxia (Chlorophyta), the most common lichen photobiont, to understand how southern African species fit into the global biodiversity of this genus and are distributed across biomes and mycobiont partners.

    METHODS: We sequenced Trebouxia nuclear ribosomal ITS and rbcL of 139 lichen thalli from diverse biomes in South Africa and Namibia. Global Trebouxia phylogenies incorporating these new data were inferred with a maximum likelihood approach. Trebouxia biodiversity, biogeography, and mycobiont-photobiont associations were assessed in phylogenetic and ecological network frameworks.

    RESULTS: An estimated 43 putative Trebouxia species were found across the region, including seven potentially endemic species. Only five clades represent formally described species: T. arboricola s.l. (A13), T. cf. cretacea (A01), T. incrustata (A06), T. lynniae (A39), and T. maresiae (A46). Potential endemic species were not significantly associated with the Greater Cape Floristic Region or desert. Trebouxia species occurred frequently across multiple biomes. Annual precipitation, but not precipitation seasonality, was significant in explaining variation in Trebouxia communities. Consistent with other studies of lichen photobionts, the Trebouxia-mycobiont network had an anti-nested structure.

    CONCLUSIONS: Depending on the metric used, ca. 20-30% of global Trebouxia biodiversity occurs in southern Africa, including many species yet to be described. With a classification scheme for Trebouxia now well established, tree-based approaches are preferable over "barcode gap" methods for delimiting new species.

    Matched MeSH terms: Phylogeny*
  19. Tan SN, Kotaki Y, Teng ST, Lim HC, Gao C, Lundholm N, et al.
    Harmful Algae, 2025 Jan;141:102769.
    PMID: 39645396 DOI: 10.1016/j.hal.2024.102769
    The benthic pennate diatom Nitzschia navis-varingica, known for producing domoic acid (DA) and its isomers, is widely distributed in the Western Pacific (WP) region. To investigate the genetic differentiation and gene flow patterns among the populations in the WP, the genetic diversity of 354 strains of N. navis-varingica was analysed using two nuclear-encoded rDNA loci: the large subunit rDNA (LSU rDNA) and the internal transcribed spacer 2 (ITS2). Frustule morphology of each strain was examined by TEM. The LSU rDNA phylogeny revealed a monophyletic lineage encompassing all strains, with sequence divergences of <0.9 %. Phylogenetic and population genetic analyses of ITS2 identified eight distinct clades (designated as Groups A to H) with moderate to high genetic heterogeneity (0.5-19.7 %). The low genetic differentiations between the geographically separated populations (pairwise FST of <0.03) suggested high gene flow and lack of spatial genetic structuring. Molecular clock analysis of the ITS2 phylogeny traced the evolutionary history of N. navis-varingica to the Eocene Epoch, and the split between clades likely occurred from the mid-Miocene to Pleistocene Epochs (10.8-1.2 Ma). The population dispersal in the WP were likely influenced by historical events like the Quarternary glacial cycles during the period, contributing to its homogenous distributions in the region.
    Matched MeSH terms: Phylogeny*
  20. Bamouh Z, Tifrouin I, Elkarhat Z, Abid L, Fellahi S, Elharrak M
    Microb Pathog, 2024 Dec;197:107023.
    PMID: 39423917 DOI: 10.1016/j.micpath.2024.107023
    Contagious ecthyma (CE), also known as ORF is a highly contagious zoonotic viral skin disease that affects humans, sheep, goats and other domesticated and wild animals. As reported here-in, the objective of this study was to investigate a suspected outbreak of both sheeppox and ORF diseases in a sheep herd during the winter of 2020 in Northwest Morocco. The affected sheep showed nodules and proliferative scabby skin lesions around the mouth and hairless area of the body. Samples of skin crust were collected for virus identification and isolation. A virus was isolated in Vero cells, lamb testis and heart cells and the cytopathic effect was characterized by cells aggregation, ballooning, and detachment. Initially, the suspensions of skin crust were positive for sheeppox virus (SPPV) by PCR. Subsequent testing of the isolated virus from skin crust of affected animals indicated that the virus was SPPV-negative and ORFV-positive by PCR. Furthermore, nucleotide sequences of the B2L aligned with reference ORFV isolates for genetic analysis. Phylogenetic analyses results confirmed that the isolated virus was ORFV and that the virus was closely related to ORFV strains isolated in Sudan and Malaysia. In conclusion, this study is the first reported detection of ORFV in Morocco, and therefore, poses as an imminent threat to the health of humans, domestic and wild animals.
    Matched MeSH terms: Phylogeny*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links