Displaying publications 41 - 60 of 151 in total

Abstract:
Sort:
  1. Fathurrahman L, Hajar AH, Sakinah DW, Nurhazwani Z, Ahmad J
    Pak J Biol Sci, 2013 Nov 15;16(22):1517-23.
    PMID: 24511694
    One of the main limitations of productivity in photobioreactor is the inefficient conversion of the available light into biomass. Photoautotrophic cells such as microalgae only absorb a small fraction of supplied illumination due to limitation of its photosystem's (PS) absorbing rate. However, phenomenon of Flashing Light Effect (FLE) allows microalgae to utilize strong light exceptionally through intermittent exposure. Exposure of strong light at correct frequency of light and dark photoperiod would allow two pigment-protein complexes, PSI and PSII to be at the equilibrium mid-point potential to allow efficient light conversion. Narrow range of optimum frequency is crucial since overexposure to strong light would injured photosynthetic apparatus whereas longer dark period would contributed to loss of biomass due to triacylglycerol metabolism. The behaviour of microalgae towards various illumination conditions of FLE was determined at batch Photobioreactor (PBR) by varying the aeration flow rate: 16.94, 33.14 and 49.28 mL sec(-1) which yield, respectively the light exposure time of 3.99, 1.71 and 1.1 seconds per cycle. Maximum cell density in FLE-PBR was significantly higher at the exponential phase as compared to the continuously illuminated culture (p = 5.62 x 10(-5), a = 0.05) under the flow rate of 25.07 mL sec(-1). Maximum cell density yield of FLE-PBR and continuously illuminated PBR was, respectively 3.1125 x 10(7) and 2.947 x 10(7) cells mL(-1). Utilization of FLE as an innovative solution to increase the efficiency of microalgae to convert light into chemical energy would revolutionize the microalgae culture, reduce the time for cultivation and produce higher maximum biomass density.
    Matched MeSH terms: Population Density
  2. Foley DH, Rueda LM, Wilkerson RC
    J Med Entomol, 2007 Jul;44(4):554-67.
    PMID: 17695008
    To advance our limited knowledge of global mosquito biogeography, we analyzed country occurrence records from the Systematic Catalog of the Culicidae (http://www.mosquitocatalog. org/main.asp), and we present world maps of species richness and endemism. A latitudinal biodiversity gradient was observed, with species richness increasing toward the equator. A linear log-log species (y)-area (x) relationship (SAR) was found that we used to compare observed and expected species densities for each country. Brazil, Indonesia, Malaysia, and Thailand had the highest numbers of species, and Brazil also had the highest taxonomic output and number of type locations. Brazil, Australia, the Philippines, and Indonesia had the highest numbers of endemic species, but excluding small island countries, Panama, French Guiana, Malaysia, and Costa Rica had the highest densities of total species and endemic species. Globally, 50% of mosquito species are endemic. Island countries had higher total number of species and higher number of endemic species than mainland countries of similar size, but the slope of the SAR was similar for island and mainland countries. Islands also had higher numbers of publications and type locations, possibly due to greater sampling effort and/or species endemism on islands. The taxonomic output was lowest for some countries in Africa and the Middle East. A consideration of country estimates of past sampling effort and species richness and endemism is proposed to guide mosquito biodiversity surveys. For species groups, we show that the number of species of Anopheles subgenus Anopheles varies with those of subgenus Cellia in a consistent manner between countries depending on the region. This pattern is discussed in relation to hypotheses about the historical biogeography and ecology of this medically important genus. Spatial analysis of country species records offers new insight into global patterns of mosquito biodiversity and survey history.
    Matched MeSH terms: Population Density*
  3. Fort H, Vázquez DP, Lan BL
    Ecol Lett, 2016 Jan;19(1):4-11.
    PMID: 26498731 DOI: 10.1111/ele.12535
    A frequent observation in plant-animal mutualistic networks is that abundant species tend to be more generalised, interacting with a broader range of interaction partners than rare species. Uncovering the causal relationship between abundance and generalisation has been hindered by a chicken-and-egg dilemma: is generalisation a by-product of being abundant, or does high abundance result from generalisation? Here, we analyse a database of plant-pollinator and plant-seed disperser networks, and provide strong evidence that the causal link between abundance and generalisation is uni-directional. Specifically, species appear to be generalists because they are more abundant, but the converse, that is that species become more abundant because they are generalists, is not supported by our analysis. Furthermore, null model analyses suggest that abundant species interact with many other species simply because they are more likely to encounter potential interaction partners.
    Matched MeSH terms: Population Density
  4. Foster WA, Snaddon JL, Turner EC, Fayle TM, Cockerill TD, Ellwood MD, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3277-91.
    PMID: 22006968 DOI: 10.1098/rstb.2011.0041
    The conversion of natural forest to oil palm plantation is a major current threat to the conservation of biodiversity in South East Asia. Most animal taxa decrease in both species richness and abundance on conversion of forest to oil palm, and there is usually a severe loss of forest species. The extent of loss varies significantly across both different taxa and different microhabitats within the oil palm habitat. The principal driver of this loss in diversity is probably the biological and physical simplification of the habitat, but there is little direct evidence for this. The conservation of forest species requires the preservation of large reserves of intact forest, but we must not lose sight of the importance of conserving biodiversity and ecosystem processes within the oil palm habitat itself. We urgently need to carry out research that will establish whether maintaining diversity supports economically and ecologically important processes. There is some evidence that both landscape and local complexity can have positive impacts on biodiversity in the oil palm habitat. By intelligent manipulation of habitat complexity, it could be possible to enhance not only the number of species that can live in oil palm plantations but also their contribution to the healthy functioning of this exceptionally important and widespread landscape.
    Matched MeSH terms: Population Density
  5. Fukue Y, Kado T, Lee SL, Ng KK, Muhammad N, Tsumura Y
    J Plant Res, 2007 May;120(3):413-20.
    PMID: 17387430
    Pristine tropical rainforests in Southeast Asia have rich species diversity and are important habitats for many plant species. However, the extent of these forests has declined in recent decades and they have become fragmented due to human activities. These developments may reduce the genetic diversity of species within them and, consequently, the species' ability to adapt to environmental changes. Our objective in the study presented here was to clarify the effect of tree density on the genetic diversity and gene flow patterns of Shorea leprosula Miq. populations in Peninsular Malaysia. For this purpose, we related genetic diversity and pollen flow parameters of seedling populations in study plots to the density of mature trees in their vicinity. The results show that gene diversity and allelic richness were not significantly correlated to the mature tree density. However, the number of rare alleles among the seedlings and the selfing rates of the mother trees were negatively correlated with the density of the adult trees. Furthermore, in a population with high mature tree density pollination distances were frequently <200 m, but in populations with low adult tree density the distances were longer. These findings suggest that the density of flowering trees affects selfing rates, gene flow and, thus, the genetic diversity of S. leprosula populations. We also found an individual S. leprosula tree with a unique reproductive system, probably apomictic, mating system.
    Matched MeSH terms: Population Density
  6. Ganasegeran K, Jamil MFA, Ch'ng ASH, Looi I, Peariasamy KM
    Int J Environ Res Public Health, 2021 Sep 18;18(18).
    PMID: 34574790 DOI: 10.3390/ijerph18189866
    The rapid transmission of highly contagious infectious diseases within communities can yield potential hotspots or clusters across geographies. For COVID-19, the impact of population density on transmission models demonstrates mixed findings. This study aims to determine the correlations between population density, clusters, and COVID-19 incidence across districts and regions in Malaysia. This countrywide ecological study was conducted between 22 January 2021 and 4 February 2021 involving 51,476 active COVID-19 cases during Malaysia's third wave of the pandemic, prior to the reimplementation of lockdowns. Population data from multiple sources was aggregated and spatial analytics were performed to visualize distributional choropleths of COVID-19 cases in relation to population density. Hierarchical cluster analysis was used to synthesize dendrograms to demarcate potential clusters against population density. Region-wise correlations and simple linear regression models were deduced to observe the strength of the correlations and the propagation effects of COVID-19 infections relative to population density. Distributional heats in choropleths and cluster analysis showed that districts with a high number of inhabitants and a high population density had a greater number of cases in proportion to the population in that area. The Central region had the strongest correlation between COVID-19 cases and population density (r = 0.912; 95% CI 0.911, 0.913; p < 0.001). The propagation effect and the spread of disease was greater in urbanized districts or cities. Population density is an important factor for the spread of COVID-19 in Malaysia.
    Matched MeSH terms: Population Density
  7. García-Berro A, Talla V, Vila R, Wai HK, Shipilina D, Chan KG, et al.
    Mol Ecol, 2023 Feb;32(3):560-574.
    PMID: 36336800 DOI: 10.1111/mec.16770
    Migration is typically associated with risk and uncertainty at the population level, but little is known about its cost-benefit trade-offs at the species level. Migratory insects in particular often exhibit strong demographic fluctuations due to local bottlenecks and outbreaks. Here, we use genomic data to investigate levels of heterozygosity and long-term population size dynamics in migratory insects, as an alternative to classical local and short-term approaches such as regional field monitoring. We analyse whole-genome sequences from 97 Lepidoptera species and show that individuals of migratory species have significantly higher levels of genome-wide heterozygosity, a proxy for effective population size, than do nonmigratory species. Also, we contribute whole-genome data for one of the most emblematic insect migratory species, the painted lady butterfly (Vanessa cardui), sampled across its worldwide distributional range. This species exhibits one of the highest levels of genomic heterozygosity described in Lepidoptera (2.95 ± 0.15%). Coalescent modelling (PSMC) shows historical demographic stability in V. cardui, and high effective population size estimates of 2-20 million individuals 10,000 years ago. The study reveals that the high risks associated with migration and local environmental fluctuations do not seem to decrease overall genetic diversity and demographic stability in migratory Lepidoptera. We propose a "compensatory" demographic model for migratory r-strategist organisms in which local bottlenecks are counterbalanced by reproductive success elsewhere within their typically large distributional ranges. Our findings highlight that the boundaries of populations are substantially different for sedentary and migratory insects, and that, in the latter, local and even regional field monitoring results may not reflect whole population dynamics. Genomic diversity patterns may elucidate key aspects of an insect's migratory nature and population dynamics at large spatiotemporal scales.
    Matched MeSH terms: Population Density
  8. Gentry JW, Phang OW, Manikumaran C
    PMID: 918713
    Studies of larval mite populations along transects, as measured with black plates, were conducted in forest and grassland habitats for a period of 67 weeks. Larvae of both Leptotrombidium (Leptotrombidium) deliense and L. (L.) fletcheri were influenced greatly by rainfall, with the larvae being abundant and easily collected during periods of heavy rainfall and difficult or impossible to collect during dry periods. Simulated rainfall maintained larval populations for longer periods during dry weather.
    Matched MeSH terms: Population Density
  9. Gentry JW, Phang OW, Manikumaran C
    PMID: 918712
    Mite foci were fenced above and below ground to prevent the entry of host animals and to prevent the migration of mites within the soil. Weekly counts were made over a period of thirty weeks with larvae being collected at the beginning and end of the study, but not during the intervening period of hot, dry weather. Post-larval forms can survive for long periods and mite foci can remain productive without being visited by the host animals. Mite foci may be missed by normal survey methods during hot, dry weather.
    Matched MeSH terms: Population Density
  10. Gucel S
    Sains Malaysiana, 2013;42:1449-1453.
    Minuartia nifensis Mc Neill belongs to Caryophyllaceae family. It is distributed only on Nif Mountain. In order to prepare the basis for the ex-situ and in-situ protection principles, ecological data was collected as well as population size and distributon areas were recorded in an earlier study. Present study investigates the M. nifensis anatomically, morphologically and cytologically, with the aim of improving the description of this endemic species and establishing the basic information for future biosystematic studies.
    Matched MeSH terms: Population Density
  11. Guerrero-Sanchez S, Goossens B, Saimin S, Orozco-terWengel P
    PLoS One, 2021;16(10):e0257814.
    PMID: 34614000 DOI: 10.1371/journal.pone.0257814
    In Borneo, oil palm plantations have replaced much of natural resources, where generalist species tend to be the principal beneficiaries, due to the abundant food provided by oil palm plantations. Here, we analyse the distribution of the Asian water monitor lizard (Varanus salvator) population within an oil palm-dominated landscape in the Kinabatangan floodplain, Malaysian Borneo. By using mark-recapture methods we estimated its population size, survival, and growth in forest and plantation habitats. We compared body measurements (i.e. body weight and body length) of individuals living in forest and oil palm habitats as proxy for the population's health status, and used general least squares estimation models to evaluate its response to highly fragmented landscapes in the absence of intensive hunting pressures. Contrary to previous studies, the abundance of lizards was higher in the forest than in oil palm plantations. Recruitment rates were also higher in the forest, suggesting that these areas may function as a source of new individuals into the landscape. While there were no morphometric differences among plantation sites, we found significant differences among forested areas, where larger lizards were found inhabiting forest adjacent to oil palm plantations. Although abundant in food resources, the limited availability of refugia in oil palm plantations may intensify intra-specific encounters and competition, altering the body size distribution in plantation populations, contrary to what happens in the forest. We conclude that large patches of forest, around and within oil palm plantations, are essential for the dynamics of the monitor lizard population in the Kinabatangan floodplain, as well as a potential source of individuals to the landscape. We recommend assessing this effect in other generalist species, as well as the impact on the prey communities, especially to reinforce the establishment of buffer zones and corridors as a conservation strategy within plantations.
    Matched MeSH terms: Population Density
  12. Gul S, Zou X, Hassan CH, Azam M, Zaman K
    Environ Sci Pollut Res Int, 2015 Dec;22(24):19773-85.
    PMID: 26282441 DOI: 10.1007/s11356-015-5185-0
    This study investigates the relationship between energy consumption and carbon dioxide emission in the causal framework, as the direction of causality remains has a significant policy implication for developed and developing countries. The study employed maximum entropy bootstrap (Meboot) approach to examine the causal nexus between energy consumption and carbon dioxide emission using bivariate as well as multivariate framework for Malaysia, over a period of 1975-2013. This is a unified approach without requiring the use of conventional techniques based on asymptotical theory such as testing for possible unit root and cointegration. In addition, it can be applied in the presence of non-stationary of any type including structural breaks without any type of data transformation to achieve stationary. Thus, it provides more reliable and robust inferences which are insensitive to time span as well as lag length used. The empirical results show that there is a unidirectional causality running from energy consumption to carbon emission both in the bivariate model and multivariate framework, while controlling for broad money supply and population density. The results indicate that Malaysia is an energy-dependent country and hence energy is stimulus to carbon emissions.
    Matched MeSH terms: Population Density
  13. Hakim MA, Juraimi AS, Hanafi MM, Selamat A
    J Environ Biol, 2013 Sep;34(5):847-56.
    PMID: 24558797
    A survey was conducted at 100 different rice fields in coastal areas of West Malaysia to identify most common and prevalent weeds associated with rice. Fields surveyed were done according to the quantitative survey method by using 0.5m x 0.5m size quadrate with 20 samples from each field. A total of 53 different weed species belong to 18 families were identified of which 32 annual and 21 perennial; 12 grassy, 13 sedges and 28 broadleaved weeds. Based on relative abundance the most prevalent and abundant weed species were selected in the coastal rice field. Among the 10 most abundant weed species, there were four grasses viz. Echinochloa crusgalli, Leptochloo chinensis, Echinochloo colona, Oryza sotivo L. (weedy rice).; four sedges viz. Fimbristylis miliacea, Cyperus iria, Cyperus difformis, Scirpus grossus and two broadleaved weeds viz. Sphenocleo zeylonica, Jussiaea linifolio. Leptochloa chinensis, E. crusgalli, F. miliocea, E. colona were more prevalent and abundant species out of the 10 most dominant weed species in the coastal rice field of Peninsular Malaysia.
    Matched MeSH terms: Population Density
  14. Harihar A, Chanchani P, Borah J, Crouthers RJ, Darman Y, Gray TNE, et al.
    PLoS One, 2018;13(11):e0207114.
    PMID: 30408090 DOI: 10.1371/journal.pone.0207114
    With less than 3200 wild tigers in 2010, the heads of 13 tiger-range countries committed to doubling the global population of wild tigers by 2022. This goal represents the highest level of ambition and commitment required to turn the tide for tigers in the wild. Yet, ensuring efficient and targeted implementation of conservation actions alongside systematic monitoring of progress towards this goal requires that we set site-specific recovery targets and timelines that are ecologically realistic. In this study, we assess the recovery potential of 18 sites identified under WWF's Tigers Alive Initiative. We delineated recovery systems comprising a source, recovery site, and support region, which need to be managed synergistically to meet these targets. By using the best available data on tiger and prey numbers, and adapting existing species recovery frameworks, we show that these sites, which currently support 165 (118-277) tigers, have the potential to harbour 585 (454-739) individuals. This would constitute a 15% increase in the global population and represent over a three-fold increase within these specific sites, on an average. However, it may not be realistic to achieve this target by 2022, since tiger recovery in 15 of these 18 sites is contingent on the initial recovery of prey populations, which is a slow process. We conclude that while sustained conservation efforts can yield significant recoveries, it is critical that we commit our resources to achieving the biologically realistic targets for these sites even if the timelines are extended.
    Matched MeSH terms: Population Density
  15. Harmon D, Brechin SR
    George Wright Forum, 1994;11(3):97-116.
    PMID: 12290870
    Matched MeSH terms: Population Density*
  16. Hasan MM, Rafii MY, Ismail MR, Mahmood M, Rahim HA, Alam MA, et al.
    Biotechnology, biotechnological equipment, 2015 Mar 04;29(2):237-254.
    PMID: 26019637
    The world's population is increasing very rapidly, reducing the cultivable land of rice, decreasing table water, emerging new diseases and pests, and the climate changes are major issues that must be addressed to researchers to develop sustainable crop varieties with resistance to biotic and abiotic stresses. However, recent scientific discoveries and advances particularly in genetics, genomics and crop physiology have opened up new opportunities to reduce the impact of these stresses which would have been difficult if not impossible as recently as the turn of the century. Marker assisted backcrossing (MABC) is one of the most promising approaches is the use of molecular markers to identify and select genes controlling resistance to those factors. Regarding this, MABC can contribute to develop resistant or high-yielding or quality rice varieties by incorporating a gene of interest into an elite variety which is already well adapted by the farmers. MABC is newly developed efficient tool by which using large population sizes (400 or more plants) for the backcross F1 generations, it is possible to recover the recurrent parent genotype using only two or three backcrosses. So far, many high yielding, biotic and abiotic stresses tolerance, quality and fragrance rice varieties have been developed in rice growing countries through MABC within the shortest timeframe. Nowadays, MABC is being used widely in plant breeding programmes to develop new variety/lines especially in rice. This paper reviews recent literature on some examples of variety/ line development using MABC strategy.
    Matched MeSH terms: Population Density
  17. Hassan H, Shohaimi S, Hashim NR
    Geospat Health, 2012 Nov;7(1):21-5.
    PMID: 23242677
    Dengue fever is a recurring public health problem afflicting thousands of Malaysians annually. In this paper, the risk map for dengue fever in the peninsular Malaysian states of Selangor and Kuala Lumpur was modelled based on co-kriging and geographical information systems. Using population density and rainfall as the model's only input factors, the area with the highest risk for dengue infection was given as Gombak and Petaling, two districts located on opposite sides of Kuala Lumpur city that was also included in the risk assessment. Comparison of the modelled risk map with the dengue case dataset of 2010, obtained from the Ministry of Health of Malaysia, confirmed that the highest number of cases had been found in an area centred on Kuala Lumpur as predicted our risk profiling.
    Matched MeSH terms: Population Density
  18. Hearn AJ, Ross J, Bernard H, Bakar SA, Hunter LT, Macdonald DW
    PLoS One, 2016;11(3):e0151046.
    PMID: 27007219 DOI: 10.1371/journal.pone.0151046
    The marbled cat Pardofelis marmorata is a poorly known wild cat that has a broad distribution across much of the Indomalayan ecorealm. This felid is thought to exist at low population densities throughout its range, yet no estimates of its abundance exist, hampering assessment of its conservation status. To investigate the distribution and abundance of marbled cats we conducted intensive, felid-focused camera trap surveys of eight forest areas and two oil palm plantations in Sabah, Malaysian Borneo. Study sites were broadly representative of the range of habitat types and the gradient of anthropogenic disturbance and fragmentation present in contemporary Sabah. We recorded marbled cats from all forest study areas apart from a small, relatively isolated forest patch, although photographic detection frequency varied greatly between areas. No marbled cats were recorded within the plantations, but a single individual was recorded walking along the forest/plantation boundary. We collected sufficient numbers of marbled cat photographic captures at three study areas to permit density estimation based on spatially explicit capture-recapture analyses. Estimates of population density from the primary, lowland Danum Valley Conservation Area and primary upland, Tawau Hills Park, were 19.57 (SD: 8.36) and 7.10 (SD: 1.90) individuals per 100 km2, respectively, and the selectively logged, lowland Tabin Wildlife Reserve yielded an estimated density of 10.45 (SD: 3.38) individuals per 100 km2. The low detection frequencies recorded in our other survey sites and from published studies elsewhere in its range, and the absence of previous density estimates for this felid suggest that our density estimates may be from the higher end of their abundance spectrum. We provide recommendations for future marbled cat survey approaches.
    Matched MeSH terms: Population Density
  19. Hiebert L, Azzeri A, Dahlui M, Hecht R, Mohamed R, Hana Shabaruddin F, et al.
    Subst Use Misuse, 2020;55(6):871-877.
    PMID: 31933411 DOI: 10.1080/10826084.2019.1708943
    Background: As hepatitis C elimination efforts are launched, national strategies for screening and treatment scale-up in countries, such as Malaysia, must be designed and implemented. Strategic information, including estimates of the total number of patients chronically-infected with hepatitis C virus (HCV) and the size of key populations, such as people who inject drugs (PWID), is critical to informing these efforts. For Malaysia, the estimate of the PWID population size most frequently reported in global systematic reviews is for the year 2009. Objectives: To support ongoing national HCV planning efforts, we aimed to estimate the national population size of active PWID in Malaysia, for the years 2014 and 2017. Methods: To estimate the PWID population size, we applied standard benchmark-multiplier methodology, frequently used for PWID population size estimation, and extended it by adjusting for cessation of injecting drug use within the benchmark and calculating statistical uncertainty intervals. Results: The estimated active PWID population size was 153,000 (95% uncertainty interval (UI): 136,000-172,000) for 2014 and 156,000 (95% UI: 137,000-188,000) for 2017. Conclusions/importance: This updated estimate of the active PWID population size in Malaysia will help inform effective planning for the scale-up of HCV screening and treatment services. The proposed methodology is applicable to other countries that maintain national HIV registries and have conducted Integrated Biological and Behavioral Surveys among active PWID.
    Matched MeSH terms: Population Density
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links