Displaying publications 41 - 60 of 185 in total

Abstract:
Sort:
  1. Loc NH, Macrae TH, Musa N, Bin Abdullah MD, Abdul Wahid ME, Sung YY
    PLoS One, 2013;8(9):e73199.
    PMID: 24039886 DOI: 10.1371/journal.pone.0073199
    Non-lethal heat shock boosts bacterial and viral disease tolerance in shrimp, possibly due to increases in endogenous heat shock protein 70 (Hsp70) and/or immune proteins. To further understand the mechanisms protecting shrimp against infection, Hsp70 and the mRNAs encoding the immune-related proteins prophenoloxidase (proPO), peroxinectin, penaeidin, crustin and hemocyanin were studied in post-larvae of the white-leg shrimp Litopenaeus vannamei, following a non-lethal heat shock. As indicated by RT-qPCR, a 30 min abrupt heat shock increased Hsp70 mRNA in comparison to non-heated animals. Immunoprobing of western blots and quantification by ELISA revealed that Hsp70 production after heat shock was correlated with enhanced Hsp70 mRNA. proPO and hemocyanin mRNA levels were augmented, whereas peroxinectin and crustin mRNA levels were unchanged following non-lethal heat shock. Penaeidin mRNA was decreased by all heat shock treatments. Thirty min abrupt heat shock failed to improve survival of post-larvae in a standardized challenge test with Vibrio harveyi, indicating that under the conditions of this study, L. vannamei tolerance to Vibrio infection was influenced neither by Hsp70 accumulation nor the changes in the immune-related proteins, observations dissimilar to other shrimp species examined.
    Matched MeSH terms: RNA, Messenger/metabolism
  2. Jamil MF, Subki MF, Lan TM, Majid MI, Adenan MI
    J Ethnopharmacol, 2013 Jun 21;148(1):135-43.
    PMID: 23608241 DOI: 10.1016/j.jep.2013.03.078
    ETHNOPHARMACOLOGICAL RELEVANCE: [corrected] Mitragynine is an indole alkaloid compound of Mitragyna speciosa (M. speciosa) Korth. (Rubiaceae). This plant is native to the southern regions of Thailand and northern regions of Malaysia and is frequently used to manage the withdrawal symptoms in both countries.

    AIM OF STUDY: To investigate the effect of mitragynine after chronic morphine treatment on cyclic AMP (cAMP) level and mRNA expression of mu-opioid receptor (MOR) in human neuroblastoma SK-N-SH cell.

    METHOD AND MATERIALS: Mitragynine was isolated from the Mitragyna speciosa plant using the acid-base extraction method. The cAMP level upon forskolin stimulation in the cells was determined using the Calbiochem(®) Direct Immunoassay Kit. The mRNA expression of the MOR was carried out using quantitative RT-PCR.

    RESULT: Cotreatment and pretreatment of morphine and mitragynine significantly reduced the production of cAMP level at a lower concentration of mitragynine while the higher concentration of this compound could lead to the development of tolerance and dependence as shown by the increase of the cAMP level production in foskolin stimulation. In MOR mRNA expression study, cotreatment of morphine with mitragynine significantly reduced the down-regulation of MOR mRNA expression as compared to morphine treatment only.

    CONCLUSION: These finding suggest that mitragynine could possibly avoid the tolerance and dependence on chronic morphine treatment by reducing the up-regulation of cAMP level as well as reducing the down-regulation of MOR at a lower concentration of mitragynine.

    Matched MeSH terms: RNA, Messenger/metabolism
  3. Phang YL, Soga T, Kitahashi T, Parhar IS
    Neuroscience, 2012 Feb 17;203:39-49.
    PMID: 22198513 DOI: 10.1016/j.neuroscience.2011.12.016
    In addition to reproduction, gonadotropin-releasing hormone (GnRH) has been postulated to control cholesterol metabolism via cholesterol transport, which is carried out partly by the members of ATP-binding cassette (ABC) transporters G1 (ABCG1) and G4 (ABCG4). However, there is yet to be evidence demonstrating the relationship between these transporters with reference to GnRH neurons. In the present study, we cloned two ABCG1 messenger RNA (mRNA) variants and one ABCG4 mRNA and examined their expression in the brain including GnRH neurons (GnRH1, GnRH2, and GnRH3) in the cichlid tilapia (Oreochromis niloticus). Comparison of nucleotide sequences of the tilapia ABCG1 and ABCG4 with that of other fish species showed that both of these genes are evolutionarily conserved among fishes. ABCG1 and ABCG4 were shown to have high mRNA expressions in the CNS, pituitary, and gonads. In the brain, real-time polymerase chain reaction (PCR) showed that ABCG4 mRNA was higher than ABCG1a in all brain regions including the olfactory bulb (ABCG1=13.34, ABCG4=6796.35; P<0.001), dorsal telencephalon (ABCG1=8.64, ABCG4=10149.13; P=0.001), optic tectum (ABCG1=22.12, ABCG4=13931.04; P<0.01), cerebellum (ABCG1=8.68, ABCG4=12382.90; P<0.01), and preoptic area-midbrain-hypothalamus (ABCG1=21.36, ABCG4=13255.41; P=0.001). Similarly, although ABCG1 mRNA level is much higher in the pituitary compared with the brain, it was still significantly lower compared with ABCG4 (ABCG1=337.73, ABCG4=1157.87; P=0.01). The differential pattern of expression of ABCG1 and ABCG4 in the brain versus pituitary suggests that the two transporters are regulated by different mechanisms. Furthermore, ABCG1 and ABCG4 mRNA expressions were found in all three types of laser-captured GnRH neurons with highly similar percentage of expressions, suggesting that cholesterol efflux from GnRH neurons may require heterodimerization of both ABCG1 and ABCG4.
    Matched MeSH terms: RNA, Messenger/metabolism
  4. Ong WD, Voo CL, Kumar SV
    Mol Biol Rep, 2012 May;39(5):5889-96.
    PMID: 22207174 DOI: 10.1007/s11033-011-1400-3
    Improving the quality of the non-climacteric fruit, pineapple, is possible with information on the expression of genes that occur during the process of fruit ripening. This can be made known though the generation of partial mRNA transcript sequences known as expressed sequence tags (ESTs). ESTs are useful not only for gene discovery but also function as a resource for the identification of molecular markers, such as simple sequence repeats (SSRs). This paper reports on firstly, the construction of a normalized library of the mature green pineapple fruit and secondly, the mining of EST-SSRs markers using the newly obtained pineapple ESTs as well as publically available pineapple ESTs deposited in GenBank. Sequencing of the clones from the EST library resulted in 282 good sequences. Assembly of sequences generated 168 unique transcripts (UTs) consisting of 34 contigs and 134 singletons with an average length of ≈500 bp. Annotation of the UTs categorized the known proteins transcripts into the three ontologies as: molecular function (34.88%), biological process (38.43%), and cellular component (26.69%). Approximately 7% (416) of the pineapple ESTs contained SSRs with an abundance of trinucleotide SSRs (48.3%) being identified. This was followed by dinucleotide and tetranucleotide SSRs with frequency of 46 and 57%, respectively. From these EST-containing SSRs, 355 (85.3%) matched to known proteins while 133 contained flanking regions for primer design. Both the ESTs were sequenced and the mined EST-SSRs will be useful in the understanding of non-climacteric ripening and the screening of biomarkers linked to fruit quality traits.
    Matched MeSH terms: RNA, Messenger/metabolism
  5. Moktar NM, Yusof HM, Yahaya NH, Muhamad R, Das S
    Clin Ter, 2010;161(1):25-8.
    PMID: 20393674
    AIMS: The mRNA level for interleukin-6 (IL-6) is an important marker of osteoarthritis (OA). The present study aimed to investigate the level of IL-6 mRNA in the cartilage of OA knee while comparing it to the normal cartilage obtained from the same patient.
    MATERIALS AND METHODS: A total of 21 patients who underwent total knee replacement were recruited for this study. Sectioning of the destructive cartilage was performed in the medial part of the proximal tibiofemoral cartilage. The unaffected lateral part of the knee in the same patient, served as a control. The mRNA level for IL-6 was assessed using LightCycler 2.0 quantitative real-time polymerase chain reaction (qRT-PCR). actin mRNA was used as an endogenous control.
    RESULTS: Twelve out of 21 patients (57.1%) exhibited up regulation of IL-6 mRNA in the OA cartilage as compared to the normal cartilage. The rest of the patients (42.9%) showed down regulation of IL-6 mRNA. The statistical analysis showed there was insignificant level of IL-6 mRNA in the OA (1.91 +/- 0.45) as compared to the normal cartilage (1.13 +/- 0.44) (p > 0.05). The inter-individual variation in the level of IL-6 mRNA in the cartilage of idiopathic knee was in accordance with previous findings.
    CONCLUSIONS: These observations suggest IL-6 could also act as a catabolic agent in some patients or its expression might be influenced by other cytokines.
    Study site: Pusat Perubatan Universiti Kebangsaan Malaysia (PPUKM), Kuala Lumpur, Malaysia
    Matched MeSH terms: RNA, Messenger/metabolism
  6. Teoh PH, Shu-Chien AC, Chan WK
    Dev. Dyn., 2010 Mar;239(3):865-74.
    PMID: 20108353 DOI: 10.1002/dvdy.22221
    pbx1, a TALE (three-amino acid loop extension) homeodomain transcription factor, is involved in a diverse range of developmental processes. We examined the expression of pbx1 during zebrafish development by in situ hybridization. pbx1 transcripts could be detected in the central nervous system and pharyngeal arches from 24 hpf onwards. In the swim bladder anlage, pbx1 was detected as early as 28 hpf, making it the earliest known marker for this organ. Morpholino-mediated gene knockdown of pbx1 revealed that the swim bladder failed to inflate, with eventual lethality occurring by 8 dpf. The knockdown of pbx1 did not perturb the expression of prdc and foxA3, with both early swim bladder markers appearing normally at 36 and 48 hpf, respectively. However, the expression of anxa5 was completely abolished by pbx1 knockdown at 60 hpf suggesting that pbx1 may be required during the late stage of swim bladder development.
    Matched MeSH terms: RNA, Messenger/metabolism
  7. Abdullah JM, Ahmad F, Ahmad KA, Ghazali MM, Jaafar H, Ideris A, et al.
    Neurol Res, 2007 Apr;29(3):239-42.
    PMID: 17509221
    Brain tumorigenesis is a complex process involving multiple genetic alterations. Cyclin D1 and BAX genes are two of the most important regulators in controlling the normal proliferation and apoptosis of cells, respectively. In this study, we analysed the possibilities of involvement of cyclin D1 and BAX genes in the gliomagenesis.
    Matched MeSH terms: RNA, Messenger/metabolism
  8. Karim K, Giribabu N, Muniandy S, Salleh N
    J. Membr. Biol., 2016 04;249(1-2):65-76.
    PMID: 26403527 DOI: 10.1007/s00232-015-9848-z
    We hypothesized that progesterone-induced decrease in uterine fluid pH involves V-ATPase. In this study, expression and functional activity of V-ATPase in uterus were investigated under progesterone influence. Ovariectomized adult female rats received subcutaneous injection of estradiol-17β (1 µg/kg/day) or progesterone (20 mg/kg/day) for 3 days or 3 days estradiol-17β followed by 3 days vehicle, progesterone, or estradiol-17β plus progesterone. Mifepristone, a progesterone receptor blocker, was concomitantly given to the rats which received progesterone. A day after last injection, rate of uterine fluid secretion, its HCO3 (-) concentration, and pH were determined via in vivo uterine perfusion in rats under anesthesia. V-ATPase inhibitor, bafilomycin, was introduced into the perfusion buffer, and changes in these parameters were observed. Expression of V-ATPase A1 and B1/2 proteins and mRNAs in uterus were quantified by Western blotting and real-time PCR, respectively. Distribution of these proteins was observed by immunohistochemistry. Our findings showed that under progesterone influence, uterine fluid secretion rate, HCO3 (-) concentration, and pH were significantly reduced. Administration of bafilomycin did not cause significant changes in fluid secretion rate; however, HCO3 (-) concentration and pH were significantly elevated. In parallel with these changes, expression of V-ATPase A1 and B1/2 proteins and mRNAs were significantly increased with these proteins highly distributed in uterine luminal and glandular epithelia. In conclusion, increased expression and functional activity of V-ATPase were most likely responsible for the decreased in uterine fluid pH observed under progesterone influence.
    Matched MeSH terms: RNA, Messenger/metabolism
  9. Salleh N, Mokhtar HM, Kassim NM, Giribabu N
    J. Membr. Biol., 2015 Dec;248(6):1097-105.
    PMID: 26198330 DOI: 10.1007/s00232-015-9823-8
    Testosterone has been reported to cause a decrease in uterine fluid volume in which this could involve the aquaporins (AQPs). This study aimed to investigate effect of testosterone on uterine AQP-1, 5, and 7 expressions in order to explain the reported reduction in uterine fluid volume under testosterone influence. Ovariectomized adult female rats received peanut oil, testosterone (1 mg/kg/day), estrogen (0.2 µg/kg/day), or combined estrogen plus testosterone for three consecutive days. Other groups received 3 days estrogen followed by 2 days either peanut oil or testosterone with or without flutamide or finasteride. A day after last injection, uteri were harvested, and the levels of AQP-1, 5, and 7 messenger RNA (mRNA) in uterine tissue homogenates were analyzed by real-time PCR (qPCR). Distributions of AQP-1, 5, and 7 proteins in uterus were observed by immunofluorescence. Levels of AQP-1 mRNA were elevated in rats receiving either estrogen or testosterone-only treatment; however, levels of AQP-5 and 7 mRNAs were elevated in rats receiving testosterone-only treatment. In rats pre-treated with estrogen, testosterone treatment resulted in higher AQP-1, 5, and 7 mRNA levels compared to vehicle treatment. Testosterone effects were antagonized by flutamide but not finasteride. Immunofluorescence study showed that AQP-1 was highly distributed in uterine lumenal epithelium following estrogen or testosterone-only treatment. However, AQP-5 and 7 distributions were high in uterine lumenal epithelium following testosterone-only treatment. Testosterone-induced up-regulation of AQP-1, 5, and 7 expressions in uterus could explain the observed reduction in uterine fluid volume as reported under this condition.
    Matched MeSH terms: RNA, Messenger/metabolism
  10. Lee SK, Arunkumar S, Sirajudeen KN, Singh HJ
    J Physiol Biochem, 2010 Dec;66(4):321-7.
    PMID: 20680541 DOI: 10.1007/s13105-010-0038-2
    Glutathione (GSH) forms a part of the antioxidant system that plays a vital role in preventing oxidative stress, and an imbalance in the oxidant/antioxidant system has been linked to the pathogenesis of hypertension. The aim of this study was to investigate the status of the GSH system in the kidney of spontaneously hypertensive rats (SHR). Components of the GSH system, including glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), and total GSH content, were measured in the kidneys of 4, 6, 8, 12, and 16 weeks old SHR and Wistar-Kyoto (WKY) rats. Systolic blood pressure of SHR was significantly higher from the age of 6 weeks onwards compared with age-matched WKY rats. GPx activity in the SHR was significantly lower from the age of 8 weeks onwards when compared to that in age-matched WKY rats. No significant differences were evident in the GPx-1 protein abundance, and its relative mRNA levels, GR, GST activity, and total GSH content between SHR and age-matched WKY rats. The lower GPx activity suggests of an impairment of the GSH system in the SHR, which might be due to an abnormality in its protein rather than non-availability of a cofactor. Its role in the development of hypertension in SHR however remains unclear.
    Matched MeSH terms: RNA, Messenger/metabolism
  11. Yeap WC, Namasivayam P, Ooi TEK, Appleton DR, Kulaveerasingam H, Ho CL
    Plant Cell Environ, 2019 05;42(5):1657-1673.
    PMID: 30549047 DOI: 10.1111/pce.13503
    Abiotic stress reduces plant growth and crop productivity. However, the mechanism underlying posttranscriptional regulations of stress response remains elusive. Herein, we report the posttranscriptional mechanism of nucleocytoplasmic RNA transport of stress-responsive transcripts mediated by EgRBP42, a heterogeneous nuclear ribonucleoprotein-like RNA-binding protein from oil palm, which could be necessary for rapid protein translation to confer abiotic stress tolerance in plants. Transgenic Arabidopsis overexpressing EgRBP42 showed early flowering through alteration of gene expression of flowering regulators and exhibited tolerance towards heat, cold, drought, flood, and salinity stresses with enhanced poststress recovery response by increasing the expression of its target stress-responsive genes. EgRBP42 harbours nucleocytoplasmic shuttling activity mediated by the nuclear localization signal and the M9-like domain of EgRBP42 and interacts directly with regulators in the nucleus, membrane, and the cytoplasm. EgRBP42 regulates the nucleocytoplasmic RNA transport of target stress-responsive transcripts through direct binding to their AG-rich motifs. Additionally, EgRBP42 transcript and protein induction by environmental stimuli are regulated at the transcriptional and posttranscriptional levels. Taken together, the posttranscriptional regulation of RNA transport mediated by EgRBP42 may change the stress-responsive protein profiles under abiotic stress conditions leading to a better adaptation of plants to environmental changes.
    Matched MeSH terms: RNA, Messenger/metabolism*
  12. Abdul Satar NM, Ogawa S, Parhar IS
    Sci Rep, 2020 11 09;10(1):19361.
    PMID: 33168887 DOI: 10.1038/s41598-020-75777-0
    The habenula is a phylogenetically conserved epithalamic structure, which conveys negative information via inhibition of mesolimbic dopamine neurons. We have previously shown the expression of kisspeptin (Kiss1) in the habenula and its role in the modulation of fear responses in the zebrafish. In this study, to investigate whether habenular Kiss1 regulates fear responses via dopamine neurons in the zebrafish, Kiss1 peptides were intracranially administered close to the habenula, and the expression of dopamine-related genes (th1, th2 and dat) were examined in the brain using real-time PCR and dopamine levels using LC-MS/MS. th1 mRNA levels and dopamine levels were significantly increased in the telencephalon 24-h and 30-min after Kiss1 administration, respectively. In fish administered with Kiss1, expression of neural activity marker gene, npas4a and kiss1 gene were significantly decreased in the ventral habenula. Application of neural tracer into the median raphe, site of habenular Kiss1 neural terminal projections showed tracer-labelled projections in the medial forebrain bundle towards the telencephalon where dopamine neurons reside. These results suggest that Kiss1 negatively regulates its own neuronal activity in the ventral habenula via autocrine action. This, in turn affects neurons of the median raphe via interneurons, which project to the telencephalic dopaminergic neurons.
    Matched MeSH terms: RNA, Messenger/metabolism
  13. Ramlan H, Damanhuri HA
    Exp Gerontol, 2020 01;129:110779.
    PMID: 31705967 DOI: 10.1016/j.exger.2019.110779
    BACKGROUND: Older people are likely to develop anorexia of aging. Rostral C1 (rC1) catecholaminergic neurons in rostral ventrolateral medulla (RVLM) are recently discovered its role in food intake control. It is well established that these neurons regulate cardiovascular function.

    OBJECTIVE: This study aims to determine the effect of age on the function of rostral C1 (rC1) neurons in mediating feeding response.

    METHOD: Male Sprague Dawley rats at 3-months (n = 22) and 24-months (n = 22) old were used and further divided into two subgroups; 1) treatment group with 2-deoxy-d-glucose (2DG) and 2) vehicle group. Feeding hormones such as cholecystokinin (CCK), ghrelin and leptin were analysed using enzyme-linked immunosorbent assay (ELISA). Rat brain was carefully dissected to obtain the brainstem RVLM region. Further analysis was carried out to determine the level of proteins and genes in RVLM that were associated with feeding pathway. Protein expression of tyrosine hydroxylase (TH), phosphorylated TH at Serine40 (pSer40TH), AMP-activated protein kinase (AMPK), phosphorylated AMPK (phospho AMPK) and neuropeptide Y Y5 receptor (NPY5R) were determined by western blot. Expression of TH, AMPK and NPY genes were determined by real-time PCR.

    RESULTS: This study showed that blood glucose level was elevated in young and old rats following 2DG administration. Plasma CCK-8 concentration was higher in the aged rats at basal and increased with 2DG administration in young rats, but the leptin and ghrelin showed no changes. Old rats showed higher TH and lower AMPK mRNA levels. Glucoprivation decreased AMPK mRNA level in young rats and decreased TH mRNA in old rats. Aged rC1 neurons showed higher NPY5R protein level. Following glucoprivation, rC1 neurons produced distinct molecular changes across age in which, in young rats, AMPK phosphorylation level was increased and in old rats, TH phosphorylation level was increased.

    CONCLUSION: These findings suggest that glucose-counterregulatory responses by rC1 neurons at least, contribute to the ability of young and old rats in coping glucoprivation. Age-induced molecular changes within rC1 neurons may attenuate the glucoprivic responses. This situation may explain the impairment of feeding response in the elderly.

    Matched MeSH terms: RNA, Messenger/metabolism
  14. Li Y, Huang CX, Xu GS, Lundholm N, Teng ST, Wu H, et al.
    Harmful Algae, 2017 07;67:119-130.
    PMID: 28755714 DOI: 10.1016/j.hal.2017.06.008
    The genus Pseudo-nitzschia has attracted attention because of production of the toxin, domoic acid (DA), causing Amnesic Shellfish Poisoning (ASP). Pseudo-nitzschia blooms occur frequently in Chinese coastal waters, and DA has been detected in several marine organisms, but so far no Pseudo-nitzschia strains from Chinese waters have been shown to produce DA. In this study, monoclonal Pseudo-nitzschia strains were established from Chinese coastal waters and examined using light microscopy, electron microscopy and molecular markers. Five strains, sharing distinct morphological and molecular features differentiating them from other Pseudo-nitzschia species, represent a new species, Pseudo-nitzschia simulans sp. nov. Morphologically, the taxon belongs to the P. pseudodelicatissima group, cells possessing a central nodule and each stria comprising one row of poroids. The new species is characterized by the poroid structure, which typically comprises two sectors, each sector located near opposite margins of the poroid. The production of DA was examined by liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses of cells in stationary growth phase. Domoic acid was detected in one of the five strains, with concentrations around 1.05-1.54 fg cell-1. This is the first toxigenic diatom species reported from Chinese waters.
    Matched MeSH terms: RNA, Messenger/metabolism
  15. Loh SY, Giribabu N, Gholami K, Salleh N
    Arch Biochem Biophys, 2017 Jan 15;614:41-49.
    PMID: 28024836 DOI: 10.1016/j.abb.2016.12.008
    We hypothesized that higher blood pressure in males than females could be due to testosterone effects on aquaporin (AQP) expression in kidneys.

    METHODS: Orchidectomized adult male Sprague-Dawley (SD) rats received seven days subcutaneous testosterone treatment (125 μg/kg/day or 250 μg/kg/day), with or without flutamide or finasteride. Following completion of treatment, MAP was determined in rats under anaesthesia via carotid artery cannulation. In another cohort of rats, kidneys were removed following sacrifice and AQP-1, 2, 3, 4, 6 and 7 protein and mRNA levels were determined by Western blotting and Real-time PCR respectively. Distribution of AQP subunits' protein in the nephrons were visualized by immunofluorescence.

    RESULTS: Testosterone caused MAP, AQP-1, 2, 4, 6 and 7 protein and mRNA levels in kidneys to increase while AQP-3 protein and mRNA levels in kidneys to decrease (p 

    Matched MeSH terms: RNA, Messenger/metabolism
  16. Long I, Suppian R, Ismail Z
    Neurochem Res, 2011 Mar;36(3):533-9.
    PMID: 21188515 DOI: 10.1007/s11064-010-0375-0
    Downstream Regulatory Element Antagonist Modulator (DREAM) protein modulates pain by regulating prodynorphin gene transcription. Therefore, we investigate the changes of mRNA and DREAM protein in relation to the mRNA and prodynorphin protein expression on the ipsilateral side of the rat spinal cord after formalin injection (acute pain model). DREAM like immunoreactivity (DLI) was not significantly different between C and F groups. However, we detected the upregulation of mean relative DREAM protein level in the nuclear but not in the cytoplasmic extract in the F group. These effects were consistent with the upregulation of the relative DREAM mRNA level. Prodynorphin like immunoreactivity (PLI) expression increased but the relative prodynorphin mRNA level remained unchanged. In conclusion, we suggest that upregulation of DREAM mRNA and protein expression in the nuclear compartment probably has functional consequences other than just the repression of prodynorphin gene. It is likely that these mechanisms are important in the modulation of pain.
    Matched MeSH terms: RNA, Messenger/metabolism*
  17. Loh SY, Jahans-Price T, Greenwood MP, Greenwood M, Hoe SZ, Konopacka A, et al.
    eNeuro, 2017 12 21;4(6).
    PMID: 29279858 DOI: 10.1523/ENEURO.0243-17.2017
    The supraoptic nucleus (SON) is a group of neurons in the hypothalamus responsible for the synthesis and secretion of the peptide hormones vasopressin and oxytocin. Following physiological cues, such as dehydration, salt-loading and lactation, the SON undergoes a function related plasticity that we have previously described in the rat at the transcriptome level. Using the unsupervised graphical lasso (Glasso) algorithm, we reconstructed a putative network from 500 plastic SON genes in which genes are the nodes and the edges are the inferred interactions. The most active nodal gene identified within the network was Caprin2. Caprin2 encodes an RNA-binding protein that we have previously shown to be vital for the functioning of osmoregulatory neuroendocrine neurons in the SON of the rat hypothalamus. To test the validity of the Glasso network, we either overexpressed or knocked down Caprin2 transcripts in differentiated rat pheochromocytoma PC12 cells and showed that these manipulations had significant opposite effects on the levels of putative target mRNAs. These studies suggest that the predicative power of the Glasso algorithm within an in vivo system is accurate, and identifies biological targets that may be important to the functional plasticity of the SON.
    Matched MeSH terms: RNA, Messenger/metabolism
  18. Jaya-Ram A, Ishak SD, Enyu YL, Kuah MK, Wong KL, Shu-Chien AC
    PMID: 21130179 DOI: 10.1016/j.cbpa.2010.11.018
    There is very little information on the capacity of freshwater carnivorous fish to biosynthesize highly unsaturated fatty acids (HUFA). The striped snakehead fish (Channa striata) is a carnivorous species cultured inland of several Southeast Asian countries due to its pharmaceutical properties in wound healing enhancement. We described here the full-length cDNA cloning of a striped snakehead fatty acid desaturase (fads), which is responsible for desaturation of unsaturated fatty acids in the HUFA biosynthesis. Bioinformatics analysis reveals a protein coding region with length of 445 amino acids containing all characteristic features of desaturase enzyme, including a cytochrome b5-domain with the heme-binding motif, two transmembrane domains and three histidine-rich regions. The striped snakehead fads amino acid sequence shares high similarity with known fads of other teleosts. The mRNA expression of striped snakehead fads also showed an ontogenic-related increase in expression in 0-20 days after hatch larva. Using ISH, we localized the presence of fads in larva brain, liver and intestinal tissues.
    Matched MeSH terms: RNA, Messenger/metabolism
  19. Iryani MTM, Sorgeloos P, Danish-Daniel M, Tan MP, Wong LL, Mok WJ, et al.
    Cell Stress Chaperones, 2020 Nov;25(6):1099-1103.
    PMID: 32383141 DOI: 10.1007/s12192-020-01113-0
    Females of the brine shrimp Artemia franciscana produce either free-swimming nauplii via ovoviviparous pathway of reproduction or encysted embryos, known as cysts, via oviparous pathway, in which biological processes are arrested. While previous study has shown a crucial role of ATP-dependent molecular chaperone, heat shock protein 70 (Hsp70) in protecting A. franciscana nauplii against various abiotic and abiotic stressors, the function of this protein in diapausing embryos and cyst development, however, remains unknown. RNA interference (RNAi) was applied in this study to examine the role of Hsp70 in cyst development and stress tolerance, with the latter performed by desiccation and freezing, a common method used for diapause termination in Artemia cysts. Hsp70 knockdown was apparent in cysts released from females that were injected with Hsp70 dsRNA. The loss of Hsp70 affected neither the development nor morphology of the cysts. The time between fertilization and cyst release from Artemia females injected with Hsp70 dsRNA was delayed slightly, but the differences were not significant when compared to the controls. However, the hatching percentage of cysts which lacks Hsp70 were reduced following desiccation and freezing. Taken together, these results indicated that Hsp70 possibly plays a role in the stress tolerance but not in the development of diapause-destined embryos of Artemia. This research makes fundamental contributions to our understanding of the role molecular chaperone Hsp70 plays in Artemia, an excellent model organism for diapause studies of the crustaceans.
    Matched MeSH terms: RNA, Messenger/metabolism
  20. Yusof NA, Hashim NH, Beddoe T, Mahadi NM, Illias RM, Bakar FD, et al.
    Cell Stress Chaperones, 2016 Jul;21(4):707-15.
    PMID: 27154490 DOI: 10.1007/s12192-016-0696-2
    The ability of eukaryotes to adapt to an extreme range of temperatures is critically important for survival. Although adaptation to extreme high temperatures is well understood, reflecting the action of molecular chaperones, it is unclear whether these molecules play a role in survival at extremely low temperatures. The recent genome sequencing of the yeast Glaciozyma antarctica, isolated from Antarctic sea ice near Casey Station, provides an opportunity to investigate the role of molecular chaperones in adaptation to cold temperatures. We isolated a G. antarctica homologue of small heat shock protein 20 (HSP20), GaSGT1, and observed that the GaSGT1 mRNA expression in G. antarctica was markedly increased following culture exposure at low temperatures. Additionally, we demonstrated that GaSGT1 overexpression in Escherichia coli protected these bacteria from exposure to both high and low temperatures, which are lethal for growth. The recombinant GaSGT1 retained up to 60 % of its native luciferase activity after exposure to luciferase-denaturing temperatures. These results suggest that GaSGT1 promotes cell thermotolerance and employs molecular chaperone-like activity toward temperature assaults.
    Matched MeSH terms: RNA, Messenger/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links