Displaying publications 41 - 60 of 210 in total

Abstract:
Sort:
  1. Chen JW, Chan KG
    J Bacteriol, 2012 Nov;194(22):6331.
    PMID: 23105069 DOI: 10.1128/JB.01637-12
    Dyella japonica strain A8 is a Malaysian tropical soil bacterial strain which shows N-acylhomoserine lactone-degrading activity. Here, we present its draft genome sequence. A putative quorum-quenching gene was identified based on the genome sequence analysis of strain A8. To the best of our knowledge, this is the first genome announcement of a member from the genus of Dyella, and this is also the first work that reports the quorum-quenching activity of Dyella japonica.
    Matched MeSH terms: Soil Microbiology*
  2. Chen JW, Gan HM, Yin WF, Chan KG
    J Bacteriol, 2012 Dec;194(23):6681-2.
    PMID: 23144419 DOI: 10.1128/JB.01866-12
    Roseomonas sp. strain B5 was isolated from Malaysian tropical soil that showed N-acylhomoserine lactone degradation. This is the first genome announcement of a member from the genus of Roseomonas and the first report on the quorum-quenching activity of Roseomonas spp.
    Matched MeSH terms: Soil Microbiology
  3. See-Too WS, Ee R, Madhaiyan M, Kwon SW, Tan JY, Lim YL, et al.
    Int J Syst Evol Microbiol, 2017 Apr;67(4):944-950.
    PMID: 27959786 DOI: 10.1099/ijsem.0.001721
    A taxonomic study was performed on a novel Gram-stain-positive, coccus-shaped, orange-pigmented motile bacterium, designated as strain L10.15T. The organism was isolated from a soil sample collected in Lagoon Island (close to Adelaide Island, western Antarctic Peninsula) using a quorum-quenching enrichment medium. Growth occurred at 4-30 °C, pH 6-11 and at moderately high salinity (0-15 %, w/v, NaCl), with optimal growth at 26 °C, at pH 7-8 and with 6 % (w/v) NaCl. 16S rRNA gene sequence analysis showed that strain L10.15T belonged to the genus Planococcus and was closely related to Planococcus halocryophilus Or1T (99.3 % similarity), Planococcus donghaensis JH1T (99.0 %), Planococcus antarcticus DSM 14505T (98.3 %), Planococcus plakortidis AS/ASP6 (II)T (97.6 %), Planococcus maritimus TF-9T (97.5 %), Planococcus salinarum ISL-6T (97.5 %) and Planococcus kocurii NCIMB 629T (97.5 %). However, the average nucleotide identity-MUMmer analysis showed low genomic relatedness values of 71.1-81.7 % to the type strains of these closely related species of the genus Planococcus. The principal fatty acids were anteiso-C15 : 0, C16 : 1ω7c and anteiso-C17 :  0, and the major menaquinones of strain L10.15T were MK-5 (48 %), MK-6 (6 %) and MK-7 (44 %). Polar lipid analysis revealed the presence of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and aminophospholipid. The DNA G+C content was 39.4 mol%. The phenotypic and genotypic data indicate that strain L10.15T represents a novel species of the genus Planococcus, for which the name Planococcus versutus sp. nov. is proposed. The type strain is L10.15T (=DSM 101994T=KACC 18918T).
    Matched MeSH terms: Soil Microbiology*
  4. An J, Nam J, Kim B, Lee HS, Kim BH, Chang IS
    Bioresour Technol, 2015 Aug;190:175-81.
    PMID: 25941759 DOI: 10.1016/j.biortech.2015.04.071
    The effect of two different anode-embedding orientations, lengthwise- and widthwise-embedded anodes was explored, on the performance of sediment microbial fuel cells (SMFCs) using a chessboard anode. The maximum current densities and power densities in SMFCs having lengthwise-embedded anodes (SLA1-SLA10) varied from 38.2mA/m(2) to 121mA/m(2) and from 5.5mW/m(2) to 20mW/m(2). In comparison, the maximum current densities and maximum power densities in SMFCs having anodes widthwise-embedded between 0cm to 8cm (SWA2-SWA5) increased from 82mA/m(2) to 140mA/m(2) and from 14.7mW/m(2) to 31.1mW/m(2) as the anode depth became deeper. Although there was a difference in the performance among SWA5-SWA10, it was considered negligible. Hence, it is concluded that it is important to embed anodes widthwise at the specific anode depths, in order to improve of SMFC performance. Chessboard anode used in this work could be a good option for the determination of optimal anode depths.
    Matched MeSH terms: Soil Microbiology*
  5. Shazmin, Ahmad SA, Naqvi TA, Munis MFH, Javed MT, Chaudhary HJ
    World J Microbiol Biotechnol, 2023 Mar 31;39(6):141.
    PMID: 37000294 DOI: 10.1007/s11274-023-03575-7
    Widespread and inadequate use of Monocrotophos has led to several environmental issues. Biodegradation is an ecofriendly method used for detoxification of toxic monocrotophos. In the present study, Msd2 bacterial strain was isolated from the cotton plant growing in contaminated sites of Sahiwal, Pakistan. Msd2 is capable of utilizing the monocrotophos (MCP) organophosphate pesticide as its sole carbon source for growth. Msd2 was identified as Brucella intermedia on the basis of morphology, biochemical characterization and 16S rRNA sequencing. B. intermedia showed tolerance of MCP up to 100 ppm. The presence of opd candidate gene for pesticide degradation, gives credence to B. intermedia as an effective bacterium to degrade MCP. Screening of the B. intermedia strain Msd2 for plant growth promoting activities revealed its ability to produce ammonia, exopolysaccharides, catalase, amylase and ACC-deaminase, and phosphorus, zinc and potassium solubilization. The optimization of the growth parameters (temperatures, shaking rpm, and pH level) of the MCP-degrading isolate was carried out in minimal salt broth supplemented with MCP. The optimal pH, temperature, and rpm for Msd2 growth were observed as pH 6, 35 °C, and 120 rpm, respectively. Based on optimization results, batch degradation experiment was performed. Biodegradation of MCP by B. intermedia was monitored using HPLC and recorded 78% degradation of MCP at 100 ppm concentration within 7 days of incubation. Degradation of MCP by Msd2 followed the first order reaction kinetics. Plant growth promoting and multi-stress tolerance ability of Msd2 was confirmed by molecular analysis. It is concluded that Brucella intermedia strain Msd2 could be beneficial as potential biological agent for an effective bioremediation for polluted environments.
    Matched MeSH terms: Soil Microbiology
  6. Kämpfer P, Lai WA, Arun AB, Young CC, Rekha PD, Martin K, et al.
    Int J Syst Evol Microbiol, 2012 Nov;62(Pt 11):2750-2756.
    PMID: 22286908 DOI: 10.1099/ijs.0.039057-0
    A Gram-negative, coccoid-shaped bacterium, strain CC-CCM15-8(T), was isolated from a rhizosphere soil sample of the plant Crossostephium chinense (L.) Makino (Seremban) from Budai Township, Chiayi County, Taiwan. 16S rRNA gene sequence analysis clearly allocated strain CC-CCM15-8(T) to the Paracoccus cluster, showing highest similarities to the type strains of 'Paracoccus beibuensis' (98.8%), Paracoccus homiensis (97.6%), Paracoccus aestuarii (97.7%) and Paracoccus zeaxanthinifaciens (97.7%). The fatty acid profile, comprising C(18:1)ω7c as the major component and C(10:0) 3-OH as the characteristic hydroxylated fatty acid, supported the placement of strain CC-CCM15-8(T) within the genus Paracoccus. The polyamine pattern consisted of putrescine and spermidine as major components. Ubiqinone Q-10 was the major quinone type (95%); ubiquinone Q-9 was also detected (5%). The complex polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, and unidentified phospholipids, lipids and glycolipids. Levels of DNA-DNA relatedness between strain CC-CCM15-8(T) and 'P. beibuensis' LMG 25871(T), P. aestuarii DSM 19484(T), P. zeaxanthinifaciens LMG 21993(T) and P. homiensis KACC 11518(T) were 24.9% (34.8%, reciprocal analysis), 15.7% (17.5%), 17.7% (23.4%) and 16.0% (25.4%), respectively. Physiological and biochemical test results allowed the phenotypic differentiation of strain CC-CCM15-8(T) from its closest relatives in the genus Paracoccus. Based on the data presented, it is concluded that strain CC-CCM15-8(T) represents a novel species of the genus Paracoccus, for which the name Paracoccus rhizosphaerae sp. nov. is proposed. The type strain is CC-CCM15-8(T) (=LMG 26205(T)=CCM 7904(T)).
    Matched MeSH terms: Soil Microbiology
  7. Lam MQ, Vodovnik M, Zorec M, Chen SJ, Goh KM, Yahya A, et al.
    Int J Syst Evol Microbiol, 2020 Mar;70(3):1769-1776.
    PMID: 31976852 DOI: 10.1099/ijsem.0.003970
    To date, there is sparse information for the genus Robertkochia with Robertkochia marina CC-AMO-30DT as the only described member. We report here a new species isolated from mangrove soil collected at Malaysia Tanjung Piai National Park and perform polyphasic characterization to determine its taxonomic position. Strain CL23T is a Gram-negative, yellow-pigmented, strictly aerobic, catalase-positive and oxidase-positive bacterium. The optimal growth conditions were determined to be at pH 7.0, 30-37 °C and in 1-2 % (w/v) NaCl. The major respiratory quinone was menaquinone-6 (MK-6) and the highly abundant polar lipids were four unidentified lipids, a phosphatidylethanolamine and two unidentified aminolipids. The 16S rRNA gene similarity between strain CL23T and R. marina CC-AMO-30DT is 96.67 %. Strain CL23T and R. marina CC-AMO-30DT clustered together and were distinguished from taxa of closely related genera in 16S rRNA gene phylogenetic analysis. Genome sequencing revealed that strain CL23T has a genome size of 4.4 Mbp and a G+C content of 40.72 mol%. Overall genome related indexes including digital DNA-DNA hybridization value and average nucleotide identity are 17.70 % and approximately 70%, below the cutoffs of 70 and 95%, respectively, indicated that strain CL23T is a distinct species from R. marina CC-AMO-30DT. Collectively, based on the phenotypic, chemotaxonomic, phylogenetic and genomic evidences presented here, strain CL23T is proposed to represent a new species with the name Robertkochia solimangrovi sp. nov. (KCTC 72252T=LMG 31418T). An emended description of the genus Robertkochia is also proposed.
    Matched MeSH terms: Soil Microbiology*
  8. Miyashita NT, Iwanaga H, Charles S, Diway B, Sabang J, Chong L
    Genes Genet Syst, 2013;88(2):93-103.
    PMID: 23832301
    Bacterial community structure was investigated in five tropical rainforests in Sarawak, Malaysia and one temperate forest in Kyoto, Japan. A hierarchical sampling approach was employed, in which soil samples were collected from five sampling-sites within each forest. Pyrosequencing was performed to analyze a total of 493,790 16S rRNA amplicons. Despite differences in aboveground conditions, the composition of bacterial groups was similar across all sampling-sites and forests, with Acidobacteria, Proteobacteria, Verrucomicrobia, Planctomycetes and Bacteroidetes accounting for 90% of all Phyla detected. At higher taxonomic levels, the same taxa were predominant, although there was significant heterogeneity in relative abundance of specific taxa across sampling-sites within one forest or across different forests. In all forests, the level of bacterial diversity, estimated using the Chao1 index, was on the order of 1,000, suggesting that tropical rainforests did not necessarily have a large soil bacterial diversity. The average number of reads per species (OTUs) per sampling-site was 8.0, and more than 40-50% of species were singletons, indicating that most bacterial species occurred infrequently and that few bacterial species achieved high predominance. Approximately 30% of species were specific to one sampling-site within a forest, and 40-60% of species were uniquely detected in one of the six forests studied here. Only 0.2% of species were detected in all forests, while on average 32.1% of species were detected in all sampling-sites within a forest. The results suggested that bacterial communities adapted to specific micro- and macro-environments, but macro-environmental diversity made a larger contribution to total bacterial diversity in forest soil.
    Matched MeSH terms: Soil Microbiology*
  9. Wee WY, Tan TK, Jakubovics NS, Choo SW
    PLoS One, 2016;11(3):e0152682.
    PMID: 27031249 DOI: 10.1371/journal.pone.0152682
    Mycobacterium brisbanense is a member of Mycobacterium fortuitum third biovariant complex, which includes rapidly growing Mycobacterium spp. that normally inhabit soil, dust and water, and can sometimes cause respiratory tract infections in humans. We present the first whole-genome analysis of M. brisbanense UM_WWY which was isolated from a 70-year-old Malaysian patient. Molecular phylogenetic analyses confirmed the identification of this strain as M. brisbanense and showed that it has an unusually large genome compared with related mycobacteria. The large genome size of M. brisbanense UM_WWY (~7.7Mbp) is consistent with further findings that this strain has a highly variable genome structure that contains many putative horizontally transferred genomic islands and prophage. Comparative analysis showed that M. brisbanense UM_WWY is the only Mycobacterium species that possesses a complete set of genes encoding enzymes involved in the urea cycle, suggesting that this soil bacterium is able to synthesize urea for use as plant fertilizers. It is likely that M. brisbanense UM_WWY is adapted to live in soil as its primary habitat since the genome contains many genes associated with nitrogen metabolism. Nevertheless, a large number of predicted virulence genes were identified in M. brisbanense UM_WWY that are mostly shared with well-studied mycobacterial pathogens such as Mycobacterium tuberculosis and Mycobacterium abscessus. These findings are consistent with the role of M. brisbanense as an opportunistic pathogen of humans. The whole-genome study of UM_WWY has provided the basis for future work of M. brisbanense.
    Matched MeSH terms: Soil Microbiology*
  10. Yee EY, Choon SE
    Cutis, 2018 Oct;102(4):223;230;231.
    PMID: 30489556
    Matched MeSH terms: Soil Microbiology
  11. Oslan SN, Salleh AB, Rahman RN, Basri M, Chor AL
    Acta Biochim. Pol., 2012;59(2):225-9.
    PMID: 22577620
    Yeasts are a convenient platform for many applications. They have been widely used as the expression hosts. There is a need to have a new yeast expression system to contribute the molecular cloning demands. Eight yeast isolates were screened from various environment sources and identified through ribosomal DNA (rDNA) Internal Transcribed Spacer (ITS). Full sequence of the rDNA ITS region for each isolate was BLASTed and phylogenetic study was constructed by using MEGA4. Among the isolates, isolate WB from 'ragi' (used to ferment carbohydrates) could be identified as a new species in order Saccharomycetales according to rDNA ITS region, morphology and biochemical tests. Isolate SO (from spoiled orange), RT (rotten tomato) and RG (different type of 'ragi') were identified as Pichia sp. Isolates R1 and R2, S4 and S5 (from the surrounding of a guava tree) were identified as Issatchenkia sp. and Hanseniaspora sp., respectively. Geneticin, 50 µg/mL, was determined to be the antibiotic marker for all isolates excepted for isolates RT and SO which used 500 µg/mL and 100 µg/mL Zeocin, respectively. Intra-extracellular proteins were screened for lipolytic activity at 30°C and 70°C. Thermostable lipase activity was detected in isolates RT and R1 with 0.6 U/mg and 0.1 U/mg, respectively. In conclusion, a new yeast-vector system for isolate WB can be developed by using phleomycin or geneticin as the drugs resistance marker. Moreover, strains RT and R1 can be investigated as a novel source of a thermostable lipase.
    Matched MeSH terms: Soil Microbiology
  12. Ismail S, Dadrasnia A
    PLoS One, 2015;10(4):e0120931.
    PMID: 25875763 DOI: 10.1371/journal.pone.0120931
    Environmental contamination by petroleum hydrocarbons, mainly crude oil waste from refineries, is becoming prevalent worldwide. This study investigates the bioremediation of water contaminated with crude oil waste. Bacillus salamalaya 139SI, a bacterium isolated from a private farm soil in the Kuala Selangor in Malaysia, was found to be a potential degrader of crude oil waste. When a microbial population of 108 CFU ml-1 was used, the 139SI strain degraded 79% and 88% of the total petroleum hydrocarbons after 42 days of incubation in mineral salt media containing 2% and 1% of crude oil waste, respectively, under optimum conditions. In the uninoculated medium containing 1% crude oil waste, 6% was degraded. Relative to the control, the degradation was significantly greater when a bacteria count of 99 × 108 CFU ml-1 was added to the treatments polluted with 1% oil. Thus, this isolated strain is useful for enhancing the biotreatment of oil in wastewater.
    Matched MeSH terms: Soil Microbiology
  13. Aqeel M, Ran J, Hu W, Irshad MK, Dong L, Akram MA, et al.
    Chemosphere, 2023 Mar;318:137924.
    PMID: 36682633 DOI: 10.1016/j.chemosphere.2023.137924
    Ecosystem functions directly depend upon biophysical as well as biogeochemical reactions occurring at the soil-microbe-plant interface. Environment is considered as a major driver of any ecosystem and for the distributions of living organisms. Any changes in climate may potentially alter the composition of communities i.e., plants, soil microbes and the interactions between them. Since the impacts of global climate change are not short-term, it is indispensable to appraise its effects on different life forms including soil-microbe-plant interactions. This article highlights the crucial role that microbial communities play in interacting with plants under environmental disturbances, especially thermal and water stress. We reviewed that in response to the environmental changes, actions and reactions of plants and microbes vary markedly within an ecosystem. Changes in environment and climate like warming, CO2 elevation, and moisture deficiency impact plant and microbial performance, their diversity and ultimately community structure. Plant and soil feedbacks also affect interacting species and modify community composition. The interactive relationship between plants and soil microbes is critically important for structuring terrestrial ecosystems. The anticipated climate change is aggravating the living conditions for soil microbes and plants. The environmental insecurity and complications are not short-term and limited to any particular type of organism. We have appraised effects of climate change on the soil inhabiting microbes and plants in a broader prospect. This article highlights the unique qualities of tripartite interaction between plant-soil-microbe under climate change.
    Matched MeSH terms: Soil Microbiology
  14. Zhu F, Storey S, Ashaari MM, Clipson N, Doyle E
    Environ Sci Pollut Res Int, 2017 Feb;24(6):5404-5414.
    PMID: 28025788 DOI: 10.1007/s11356-016-8251-3
    Benzo(a)pyrene degradation was compared in soil that was either composted, incubated at a constant temperature of 22 °C, or incubated under a temperature regime typical of a composting process. After 84 days, significantly more (61%) benzo(a)pyrene was removed from composted soil compared to soils incubated at a constant temperature (29%) or at composting temperatures (46%). Molecular fingerprinting approaches indicated that in composted soils, bacterial community changes were driven by both temperature and organic amendment, while fungal community changes were primarily driven by temperature. Next-generation sequencing data revealed that the bacterial community in composted soil was dominated by Actinobacteria (order Actinomycetales), Firmicutes (class Bacilli), and Proteobacteria (classes Gammaproteobacteria and Alphaproteobacteria), regardless of whether benzo(a)pyrene was present or not. The relative abundance of unclassified Actinomycetales (Actinobacteria) was significantly higher in composted soil when degradation was occurring, indicating a potential role for these organisms in benzo(a)pyrene metabolism. This study provides baseline data for employing straw-based composting strategies for the removal of high molecular weight PAHs from soil and contributes to the knowledge of how microbial communities respond to incubation conditions and pollutant degradation.
    Matched MeSH terms: Soil Microbiology*
  15. López-Quintero CA, Atanasova L, Franco-Molano AE, Gams W, Komon-Zelazowska M, Theelen B, et al.
    Antonie Van Leeuwenhoek, 2013 Nov;104(5):657-74.
    PMID: 23884864 DOI: 10.1007/s10482-013-9975-4
    The diversity of Trichoderma (Hypocreales, Ascomycota) colonizing leaf litter as well as the rhizosphere of Garcinia macrophylla (Clusiaceae) was investigated in primary and secondary rain forests in Colombian Amazonia. DNA barcoding of 107 strains based on the internal transcribed spacers 1 and 2 (ITS1 and 2) of the ribosomal RNA gene cluster and the partial sequence of the translation elongation factor 1 alpha (tef1) gene revealed that the diversity of Trichoderma was dominated (71 %) by three common cosmopolitan species, namely Trichoderma harzianum sensu lato (41 %), Trichoderma spirale (17 %) and Trichoderma koningiopsis (13 %). Four ITS 1 and 2 phylotypes (13 strains) could not be identified with certainty. Multigene phylogenetic analysis and phenotype profiling of four strains with an ITS1 and 2 phylotype similar to Trichoderma strigosum revealed a new sister species of the latter that is described here as Trichoderma strigosellum sp. nov. Sequence similarity searches revealed that this species also occurs in soils of Malaysia and Cameroon, suggesting a pantropical distribution.
    Matched MeSH terms: Soil Microbiology*
  16. Kusale SP, Attar YC, Sayyed RZ, Malek RA, Ilyas N, Suriani NL, et al.
    Molecules, 2021 Mar 26;26(7).
    PMID: 33810565 DOI: 10.3390/molecules26071894
    Bacteria that surround plant roots and exert beneficial effects on plant growth are known as plant growth-promoting rhizobacteria (PGPR). In addition to the plant growth-promotion, PGPR also imparts resistance against salinity and oxidative stress and needs to be studied. Such PGPR can function as dynamic bioinoculants under salinity conditions. The present study reports the isolation of phytase positive multifarious Klebsiella variicola SURYA6 isolated from wheat rhizosphere in Kolhapur, India. The isolate produced various plant growth-promoting (PGP), salinity ameliorating, and antioxidant traits. It produced organic acid, yielded a higher phosphorous solubilization index (9.3), maximum phytase activity (376.67 ± 2.77 U/mL), and copious amounts of siderophore (79.0%). The isolate also produced salt ameliorating traits such as indole acetic acid (78.45 ± 1.9 µg/mL), 1 aminocyclopropane-1-carboxylate deaminase (0.991 M/mg/h), and exopolysaccharides (32.2 ± 1.2 g/L). In addition to these, the isolate also produced higher activities of antioxidant enzymes like superoxide dismutase (13.86 IU/mg protein), catalase (0.053 IU/mg protein), and glutathione oxidase (22.12 µg/mg protein) at various salt levels. The isolate exhibited optimum growth and maximum secretion of these metabolites during the log-phase growth. It exhibited sensitivity to a wide range of antibiotics and did not produce hemolysis on blood agar, indicative of its non-pathogenic nature. The potential of K. variicola to produce copious amounts of various PGP, salt ameliorating, and antioxidant metabolites make it a potential bioinoculant for salinity stress management.
    Matched MeSH terms: Soil Microbiology*
  17. Akhtar N, Ilyas N, Yasmin H, Sayyed RZ, Hasnain Z, A Elsayed E, et al.
    Molecules, 2021 Mar 12;26(6).
    PMID: 33809305 DOI: 10.3390/molecules26061569
    Plant growth-promoting rhizobacteria (PGPR) mediate heavy metal tolerance and improve phytoextraction potential in plants. The present research was conducted to find the potential of bacterial strains in improving the growth and phytoextraction abilities of Brassica nigra (L.) K. Koch. in chromium contaminated soil. In this study, a total of 15 bacterial strains were isolated from heavy metal polluted soil and were screened for their heavy metal tolerance and plant growth promotion potential. The most efficient strain was identified by 16S rRNA gene sequencing and was identified as Bacillus cereus. The isolate also showed the potential to solubilize phosphate and synthesize siderophore, phytohormones (indole acetic acid, cytokinin, and abscisic acid), and osmolyte (proline and sugar) in chromium (Cr+3) supplemented medium. The results of the present study showed that chromium stress has negative effects on seed germination and plant growth in B. nigra while inoculation of B. cereus improved plant growth and reduced chromium toxicity. The increase in seed germination percentage, shoot length, and root length was 28.07%, 35.86%, 19.11% while the fresh and dry biomass of the plant increased by 48.00% and 62.16%, respectively, as compared to the uninoculated/control plants. The photosynthetic pigments were also improved by bacterial inoculation as compared to untreated stress-exposed plants, i.e., increase in chlorophyll a, chlorophyll b, chlorophyll a + b, and carotenoid was d 25.94%, 10.65%, 20.35%, and 44.30%, respectively. Bacterial inoculation also resulted in osmotic adjustment (proline 8.76% and sugar 28.71%) and maintained the membrane stability (51.39%) which was also indicated by reduced malondialdehyde content (59.53% decrease). The antioxidant enzyme activities were also improved to 35.90% (superoxide dismutase), 59.61% (peroxide), and 33.33% (catalase) in inoculated stress-exposed plants as compared to the control plants. B. cereus inoculation also improved the uptake, bioaccumulation, and translocation of Cr in the plant. Data showed that B. cereus also increased Cr content in the root (2.71-fold) and shoot (4.01-fold), its bioaccumulation (2.71-fold in root and 4.03-fold in the shoot) and translocation (40%) was also high in B. nigra. The data revealed that B. cereus is a multifarious PGPR that efficiently tolerates heavy metal ions (Cr+3) and it can be used to enhance the growth and phytoextraction potential of B. nigra in heavy metal contaminated soil.
    Matched MeSH terms: Soil Microbiology
  18. Shultana R, Kee Zuan AT, Yusop MR, Saud HM, El-Shehawi AM
    PLoS One, 2021;16(12):e0260869.
    PMID: 34898612 DOI: 10.1371/journal.pone.0260869
    Soil salinity exert negative impacts on agricultural production and regarded as a crucial issue in global wetland rice production (Oryza sativa L.). Indigenous salt-tolerant plant growth-promoting rhizobacteria (Bacillus sp.) could be used for improving rice productivity under salinity stress. This study screened potential salt-tolerant plant growth-promoting rhizobacteria (PGPR) collected from coastal salt-affected rice cultivation areas under laboratory and glasshouse conditions. Furthermore, the impacts of these PGPRs were tested on biochemical attributes and nutrient contents in various rice varieties under salt stress. The two most promising PGPR strains, i.e., 'UPMRB9' (Bacillus tequilensis 10b) and 'UPMRE6' (Bacillus aryabhattai B8W22) were selected for glasshouse trial. Results indicated that 'UPMRB9' improved osmoprotectant properties, i.e., proline and total soluble sugar (TSS), antioxidant enzymes like superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). Moreover, 'UPMRB9' inoculated rice plants accumulated higher amount of nitrogen and calcium in tissues. Therefore, the indigenous salt-tolerant PGPR strain 'UPMRB9' could be used as a potential bio-augmentor for improving biochemical attributes and nutrient uptake in rice plants under salinity stress. This study could serve as a preliminary basis for future large-scale trials under glasshouse and field conditions.
    Matched MeSH terms: Soil Microbiology
  19. Strauss JM, Groves MG, Mariappan M, Ellison DW
    Am J Trop Med Hyg, 1969 Sep;18(5):698-702.
    PMID: 5810797
    Matched MeSH terms: Soil Microbiology*
  20. Kalyon B, Tan GY, Pinto JM, Foo CY, Wiese J, Imhoff JF, et al.
    J Antibiot (Tokyo), 2013 Oct;66(10):609-16.
    PMID: 23820614 DOI: 10.1038/ja.2013.53
    Langkocyclines A1-A3 and B1 and B2, five new angucycline antibiotics produced by Streptomyces sp. Acta 3034, were detected in the course of our HPLC-diode array screening. The producing strain was isolated from the rhizospheric soil of a Clitorea sp. collected from Burau Bay, Langkawi, Malaysia, and was characterized by morphological, physiological and chemotaxonomic features in addition to 16S ribosomal RNA gene sequence information. Strain Acta 3034 is closely related to Streptomyces psammoticus NBRC 13971(T) and Streptomyces lanatus NBRC 12787(T). Langkocyclines consist of an angular tetracyclic benz[a]anthracene skeleton and hydrolyzable O-glycosidic sugar moieties. The yellow-colored A-type langkocyclines differ in their aglycon from the blue-lilac-colored B-type langkocyclines. The A-type langkocycline aglycon is identical to that of aquayamycin and urdamycin A. The chemical structures of the langkocyclines were elucidated by HR-MS, 1D and 2D NMR experiments. They are biologically active against Gram-positive bacteria and exhibit a moderate antiproliferative activity against various human tumor cell lines.
    Matched MeSH terms: Soil Microbiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links