Displaying publications 41 - 60 of 394 in total

Abstract:
Sort:
  1. Mills JN, Alim AN, Bunning ML, Lee OB, Wagoner KD, Amman BR, et al.
    Emerg Infect Dis, 2009 Jun;15(6):950-2.
    PMID: 19523300 DOI: 10.3201/eid1506.080453
    The 1999 outbreak of Nipah virus encephalitis in humans and pigs in Peninsular Malaysia ended with the evacuation of humans and culling of pigs in the epidemic area. Serologic screening showed that, in the absence of infected pigs, dogs were not a secondary reservoir for Nipah virus.
    Matched MeSH terms: Swine/virology; Swine Diseases/epidemiology; Swine Diseases/virology
  2. Pulliam JR, Epstein JH, Dushoff J, Rahman SA, Bunning M, Jamaluddin AA, et al.
    J R Soc Interface, 2012 Jan 7;9(66):89-101.
    PMID: 21632614 DOI: 10.1098/rsif.2011.0223
    Emerging zoonoses threaten global health, yet the processes by which they emerge are complex and poorly understood. Nipah virus (NiV) is an important threat owing to its broad host and geographical range, high case fatality, potential for human-to-human transmission and lack of effective prevention or therapies. Here, we investigate the origin of the first identified outbreak of NiV encephalitis in Malaysia and Singapore. We analyse data on livestock production from the index site (a commercial pig farm in Malaysia) prior to and during the outbreak, on Malaysian agricultural production, and from surveys of NiV's wildlife reservoir (flying foxes). Our analyses suggest that repeated introduction of NiV from wildlife changed infection dynamics in pigs. Initial viral introduction produced an explosive epizootic that drove itself to extinction but primed the population for enzootic persistence upon reintroduction of the virus. The resultant within-farm persistence permitted regional spread and increased the number of human infections. This study refutes an earlier hypothesis that anomalous El Niño Southern Oscillation-related climatic conditions drove emergence and suggests that priming for persistence drove the emergence of a novel zoonotic pathogen. Thus, we provide empirical evidence for a causative mechanism previously proposed as a precursor to widespread infection with H5N1 avian influenza and other emerging pathogens.
    Matched MeSH terms: Swine/virology; Swine Diseases/epidemiology*; Swine Diseases/transmission; Swine Diseases/virology
  3. Bain O, Ramachandran CP, Petter F, Mak JW
    Ann Parasitol Hum Comp, 1977 7 1;52(4):471-9.
    PMID: 931324
    Onchocerca dewittei n. sp. was collected from a wild Boar at the metatarse level (tendons and subcutaneous connective tissue); it can be differentiated from other species by the female cuticle showing straight ridges which overlap in the lateral fields, and by its relatively thick microfilaria (length 228-247 mu and width 6-7 mu). This suidean Onchocerca displays some primitive characters such as straight ridges and persistency of ten pairs of caudal papillae in the male; but as a whole this species is undoubtedly more highly evolved than O. raillieti Bain, Müller and coll., 1976, a parasite of Equidae.
    Matched MeSH terms: Swine/parasitology*
  4. King A
    Science, 2021 05 28;372(6545):893.
    PMID: 34045334 DOI: 10.1126/science.372.6545.893
    Matched MeSH terms: Swine/virology
  5. Heo CC, Mohamad AR, Rosli H, Nurul Ashikin A, Chen CD, John J, et al.
    Trop Biomed, 2009 Apr;26(1):106-9.
    PMID: 19696735
    An observational study was conducted in an oil palm plantation in Tanjung Sepat, Selangor, Malaysia on August until September 2007 to note the decomposition process of pigs and their related faunal succession. We collected six species of ants (Formicidae) from 3 subfamilies: Formicinae (Oecophylla smaragdina and Anoplolepis gracilipes), Myrmicinae (Tetramorium sp. and Pheidologeton sp.) and Ponerinae (Odontoponera sp. and Diacamma sp.) that were associated with pig carcasses placed on the ground. Oecophylla smaragdina, Pheidologeton sp. and Tetramorium sp. were found on a partially burnt pig carcass whereas the other species were recovered from unburned pig carcass. These ants predated on fly eggs, larvae, pupae and adults. Ants could be found at all stages of decomposition starting from fresh until dry stage. Predatory ants can reduce fly population and thus may affect the rate of carcass decomposition but this was not seen in our study. Even though O. smaragdina was seen at all stages of decomposition of the burnt pig, this did not alter much the decomposition process by fly larvae.
    Matched MeSH terms: Swine/parasitology*
  6. Pham TH, Lila MAM, Rahaman NYA, Lai HLT, Nguyen LT, Do KV, et al.
    BMC Vet Res, 2020 May 06;16(1):128.
    PMID: 32375821 DOI: 10.1186/s12917-020-02345-z
    BACKGROUND: In view of the current swine fever outbreak and the government aspiration to increase the goat population, a need arises to control and prevent outbreaks of goat pox. Despite North Vietnam facing sporadic cases of goat pox, this most recent outbreak had the highest recorded morbidity, mortality and case fatality rate. Thus, owing to the likelihood of a widespread recurrence of goat pox infection, an analysis of that outbreak was done based on selected signalment, management and disease pattern (signs and pathology) parameters. This includes examination of animals, inspection of facilities, tissue sampling and analysis for confirmation of goatpox along with questionaires.

    RESULTS: It was found that the susceptible age group were between 3 and 6 months old kids while higher infection rate occurred in those under the free-range rearing system. The clinical signs of pyrexia, anorexia, nasal discharge and lesions of pocks were not restricted to the skin but have extended into the lung and intestine. The pathogen had been confirmed in positive cases via PCR as goat pox with prevalence of 79.69%.

    CONCLUSIONS: The epidemiology of the current goat pox outbreak in North Vietnam denotes a significant prevalence which may affect the industry. This signals the importance of identifying the salient clinical signs and post mortem lesions of goat pox at the field level in order to achieve an effective control of the disease.

    Matched MeSH terms: Classical Swine Fever; Swine
  7. Lützhøft DO, Sinioja T, Christoffersen BØ, Jakobsen RR, Geng D, Ahmad HFB, et al.
    BMC Microbiol, 2022 Dec 01;22(1):287.
    PMID: 36456963 DOI: 10.1186/s12866-022-02704-w
    BACKGROUND: Gut microbiota dysbiosis is associated with the development of non-alcoholic steatohepatitis (NASH) through modulation of gut barrier, inflammation, lipid metabolism, bile acid signaling and short-chain fatty acid production. The aim of this study was to describe the impact of a choline-deficient amino acid defined high fat diet (CDAHFD) on the gut microbiota in a male Göttingen Minipig model and on selected pathways implicated in the development of NASH.

    RESULTS: Eight weeks of CDAHFD resulted in a significantly altered colon microbiota mainly driven by the bacterial families Lachnospiraceae and Enterobacteriaceae, being decreased and increased in relative abundance, respectively. Metabolomics analysis revealed that CDAHFD decreased colon content of short-chain fatty acid and increased colonic pH. In addition, serum levels of the microbially produced metabolite imidazole propionate were significantly elevated as a consequence of CDAHFD feeding. Hepatic gene expression analysis showed upregulation of mechanistic target of rapamycin (mTOR) and Ras Homolog, MTORC1 binding in addition to downregulation of insulin receptor substrate 1, insulin receptor substrate 2 and the glucagon receptor in CDAHFD fed minipigs. Further, the consequences of CDAHFD feeding were associated with increased levels of circulating cholesterol, bile acids, and glucagon but not total amino acids.

    CONCLUSIONS: Our results indicate imidazole propionate as a new potentially relevant factor in relation to NASH and discuss the possible implication of gut microbiota dysbiosis in the development of NASH. In addition, the study emphasizes the need for considering the gut microbiota and its products when developing translational animal models for NASH.

    Matched MeSH terms: Swine; Swine, Miniature
  8. Macdonald AA, Bosma AA
    Placenta, 1985 1 1;6(1):83-91.
    PMID: 3991477
    We examined the gross and microscopic anatomy of placental tissues and umbilical cords from six species representing the three living families of the Suina. These species included, of the Suidae, the wart hog (Phacochoerus aethiopicus), the giant forest hog (Hylochoerus meinertzhageni), the domestic pig (Sus scrofa), and the banded pig of Malaysia (Sus scrofa vittatus); of the Tayassuidae, the white-lipped peccary (Tayassu pecari); of the Hippopotamidae, the hippopotamus (Hippopotamus amphibius) and the pigmy hippopotamus (Choeropsis liberiensis). All these species have a diffuse epitheliochorial placenta. The chorion is folded, and has on its surface rows of shallow ripples or villi, interrupted by round, oval or irregularly shaped areolae. Placental capillaries indent the epithelial layer covering the tops and sides of the interareolar villi, but not the columnar cell layer lying in the troughs between these villi or covering the areolae. Cuboidal cells cover the crests of the villi in the Suidae and Hippopotamidae, whereas in the Tayassuidae the epithelium is syncytial in appearance. The similarities in placental structure between the six species are more apparent than the differences. Suidae and Tayassuidae have smooth umbilical cords containing two arteries and one vein; those of the Hippopotamidae are pustule-encrusted and contain two arteries and two veins.
    Matched MeSH terms: Swine*
  9. Mokhtar NFK, Shun YQ, Raja Nhari RMH, Mohamad NA, Shahidan NM, Warsanah IH, et al.
    PMID: 38190283 DOI: 10.1080/19440049.2023.2298476
    The inclusion of ingredients derived from pigs in highly processed consumer products poses a significant challenge for DNA-targeted analytical enforcement, which could be overcome by using digital PCR. However, most species detection methods use digital PCR to target single-copy nuclear genes, which limits their sensitivity. In this work, we examined the performance of a nanoplate-based digital PCR method that targets multi-copy nuclear (MPRE42) and mitochondrial (Cytb) genes. Poor separation of positive and negative partitions, as well as a 'rain effect' were obtained in the porcine-specific MPRE42 assay. Among the optimization strategies examined, the inclusion of restriction enzymes slightly improved the separation of positive and negative partitions, but a more extensive 'rain effect' was observed. The high copy number of the MPRE42 amplicon is hypothesized to contribute to the saturation of the positive signal. In contrast, the porcine-specific Cytb assay achieved perfect separation of positive and negative partitions with no 'rain effect'. This assay can detect as little as 0.4 pg of pork DNA, with a sensitivity of 0.05% (w/w) in a pork-chicken mixture, proving its applicability for detecting pork in meat and meat-based products. For the MPRE42 assay, potential applications in highly degraded products such as gelatin and lard are anticipated.
    Matched MeSH terms: Swine/genetics
  10. Li W, Ren Q, Feng J, Lee SY, Liu Y
    PLoS One, 2024;19(1):e0297164.
    PMID: 38241246 DOI: 10.1371/journal.pone.0297164
    Deer products from sika deer (Cervus nippon) and red deer (C. elaphus) are considered genuine and used for Traditional Chinese Medicine (TCM) materials in China. Deer has a very high economic and ornamental value, resulting in the formation of a characteristic deer industry in the prescription preparation of traditional Chinese medicine, health food, cosmetics, and other areas of development and utilization. Due to the high demand for deer products, the products are expensive and have limited production, but the legal use of deer is limited to only two species of sika deer and red deer; other wild deer are prohibited from hunting, so there are numerous cases of mixing and adulteration of counterfeit products and so on. There have been many reports that other animal (pig, cow, sheep, etc.) tissues or organs are often used for adulteration and confusion, resulting in poor efficacy of deer traditional medicine and trade fraud in deer products. To authenticate the deer products in a rapid and effective manner, the analysis used 22 deer products (antler, meat, bone, fetus, penis, tail, skin, and wool) that were in the form of blind samples. Total DNA extraction using a modified protocol successfully yielded DNA from the blind samples that was useful for PCR. Three candidate DNA barcoding loci, cox1, Cyt b, and rrn12, were evaluated for their discrimination strength through BLAST and phylogenetic clustering analyses. For the BLAST analysis, the 22 blind samples obtained 100% match identity across the three gene loci tested. It was revealed that 12 blind samples were correctly labeled for their species of origin, while three blind samples that were thought to originate from red deer were identified as C. nippon, and seven blind samples that were thought to originate from sika deer were identified as C. elaphus, Dama dama, and Rangifer tarandus. DNA barcoding analysis showed that all three gene loci were able to distinguish the two Cervus species and to identify the presence of adulterant species. The DNA barcoding technique was able to provide a useful and sensitive approach in identifying the species of origin in deer products.
    Matched MeSH terms: Swine/genetics
  11. Mohamad NA, Mustafa S, El Sheikha AF, Khairil Mokhtar NF, Ismail A, Ali ME
    J Sci Food Agric, 2016 May;96(7):2344-51.
    PMID: 26441285 DOI: 10.1002/jsfa.7482
    Poor quality and quantity of DNA extracted from gelatin and gelatin capsules often causes failure in the determination of animal species using PCR. Gelatin, which is mainly derived from porcine and bovine, has been a matter of concern among customers in order to fulfill religious obligation and safety precaution against several transmissible infectious diseases associated with bovine species. Thus, optimised DNA extraction from gelatin is very important for successful real-time PCR detection of gelatin species. In this work, the DNA extraction method was optimised in terms of lysis incubation period and inclusion of pre-treatment pH modification of samples.
    Matched MeSH terms: Swine
  12. Che' Amat A, González-Barrio D, Ortiz JA, Díez-Delgado I, Boadella M, Barasona JA, et al.
    Prev Vet Med, 2015 Sep 1;121(1-2):93-8.
    PMID: 26051843 DOI: 10.1016/j.prevetmed.2015.05.011
    Animal tuberculosis (TB) caused by infection with Mycobacterium bovis and closely related members of the M. tuberculosis complex (MTC), is often reported in the Eurasian wild boar (Sus scrofa). Tests detecting antibodies against MTC antigens are valuable tools for TB monitoring and control in suids. However, only limited knowledge exists on serology test performance in 2-6 month-old piglets. In this age-class, recent infections might cause lower antibody levels and lower test sensitivity. We examined 126 wild boar piglets from a TB-endemic site using 6 antibody detection tests in order to assess test performance. Bacterial culture (n=53) yielded a M. bovis infection prevalence of 33.9%, while serum antibody prevalence estimated by different tests ranged from 19% to 38%, reaching sensitivities between 15.4% and 46.2% for plate ELISAs and between 61.5% and 69.2% for rapid immunochromatographic tests based on dual path platform (DPP) technology. The Cohen kappa coefficient of agreement between DPP WTB (Wildlife TB) assay and culture results was moderate (0.45) and all other serological tests used had poor to fair agreements. This survey revealed the ability of several tests for detecting serum antibodies against the MTC antigens in 2-6 month-old naturally infected wild boar piglets. The best performance was demonstrated for DPP tests. The results confirmed our initial hypothesis of a lower sensitivity of serology for detecting M. bovis-infected piglets, as compared to older wild boar. Certain tests, notably the rapid animal-side tests, can contribute to TB control strategies by enabling the setup of test and cull schemes or improving pre-movement testing. However, sub-optimal test performance in piglets as compared to that in older wild boar should be taken into account.
    Matched MeSH terms: Swine; Swine Diseases/diagnosis*; Swine Diseases/microbiology
  13. Uppal PK
    Ann N Y Acad Sci, 2000;916:354-7.
    PMID: 11193645
    A pig-borne virus causing viral encephalitis amongst human beings in Malaysia was detected in 1997 by the Ministry of Health. Initially, the disease was considered to be Japanese encephalitis. Subsequently, it was thought to be a Hendra-like viral encephalitis, but on 10th April, 1999 the Minister of Health announced this mysterious and deadly virus to be a new virus named Nipah virus. The virus was characterized at CDC, Atlanta, Georgia. The gene sequencing of the enveloped virus revealed that one of the genes had 21% difference in the nucleotide sequence with about 8% difference in the amino acid sequence from Hendra virus isolated from horses in Australia in 1994. The virus was named after the village Nipah. In all, the Ministry of Health declared 101 human casualties, and 900,000 pigs were culled by April, 1999. The worst affected area in Malaysia was Negri Sembilan. The symptoms, incubation period in human being and pigs, animal to human transmission, threat of disease to other livestock, and control program adopted in Malaysia is described.
    Matched MeSH terms: Swine; Swine Diseases/transmission; Swine Diseases/virology
  14. Atherstone C, Diederich S, Weingartl HM, Fischer K, Balkema-Buschmann A, Grace D, et al.
    Transbound Emerg Dis, 2019 Mar;66(2):921-928.
    PMID: 30576076 DOI: 10.1111/tbed.13105
    Hendra virus (HeV) and Nipah virus (NiV), belonging to the genus Henipavirus, are among the most pathogenic of viruses in humans. Old World fruit bats (family Pteropodidae) are the natural reservoir hosts. Molecular and serological studies found evidence of henipavirus infection in fruit bats from several African countries. However, little is known about the potential for spillover into domestic animals in East Africa, particularly pigs, which served as amplifying hosts during the first outbreak of NiV in Malaysia and Singapore. We collected sera from 661 pigs presented for slaughter in Uganda between December 2015 and October 2016. Using HeV G and NiV G indirect ELISAs, 14 pigs (2%) were seroreactive in at least one ELISA. Seroprevalence increased to 5.4% in October 2016, when pigs were 9.5 times more likely to be seroreactive than pigs sampled in December 2015 (p = 0.04). Eight of the 14 ELISA-positive samples reacted with HeV N antigen in Western blot. None of the sera neutralized HeV or NiV in plaque reduction neutralization tests. Although we did not detect neutralizing antibodies, our results suggest that pigs in Uganda are exposed to henipaviruses or henipa-like viruses. Pigs in this study were sourced from many farms throughout Uganda, suggesting multiple (albeit rare) introductions of henipaviruses into the pig population. We postulate that given the widespread distribution of Old World fruit bats in Africa, spillover of henipaviruses from fruit bats to pigs in Uganda could result in exposure of pigs at multiple locations. A higher risk of a spillover event at the end of the dry season might be explained by higher densities of bats and contact with pigs at this time of the year, exacerbated by nutritional stress in bat populations and their reproductive cycle. Future studies should prioritize determining the risk of spillover of henipaviruses from pigs to people, so that potential risks can be mitigated.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology*; Swine Diseases/virology
  15. Imada T, Abdul Rahman MA, Kashiwazaki Y, Tanimura N, Syed Hassan S, Jamaluddin A
    J Vet Med Sci, 2004 Jan;66(1):81-3.
    PMID: 14960818
    Eight clones of monoclonal antibodies (Mabs) to Nipah virus (NV) were produced against formalin-inactivated NV antigens. They reacted positive by indirect immunofluorescent antibody test, and one of them also demonstrated virus neutralizing activity. They were classified into six different types based on their biological properties. These Mabs will be useful for immunodiagnosis of NV infections in animals and further research studies involving the genomes and proteins of NV.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology; Swine Diseases/virology*
  16. Vilcek S, Stadejek T, Ballagi-Pordány A, Lowings JP, Paton DJ, Belák S
    Virus Res, 1996 Aug;43(2):137-47.
    PMID: 8864203
    The genetic variability of classical swine fever virus was studied by comparative nucleotide sequence analysis of 76 virus isolates, collected during a half century from three continents. Parts of the E2 (gp55) and the polymerase gene coding regions of the viral genome were amplified by RT-PCR and DNA fragments of 254 and 207 bp, respectively, were sequenced. The comparative sequence analysis of the E2 region revealed two main phylogenetic groups of CSFV, indicating that the virus apparently evolved from two ancestor nodes. Group I (represented by Brescia strain) consisted of old and recent American and Asian viruses, as well as old English isolates from the 1950s. This group was subdivided into three subgroups, termed I.A-I.C. Group II (represented by Alfort strain) consisted of relatively recent isolates from Europe, together with strain Osaka, which was isolated in Japan from a pig of European origin. Based on genetic distances the group was divided into subgroups II.A and II.B. Malaysian isolates were branched into both groups, indicating multiple origins for contemporaneous outbreaks in that country. All ten vaccine strains tested were branched in group I, implying a common ancestor. The Japanese Kanagawa strain, isolated in 1974, and the British Congenital Tremor strain from 1964 were the most distinct variants of CSFV in our collection. The comparison of the nucleotide sequences of the polymerase coding region of 32 European strains distinguished subgroups II.A and II.B which were similar to the corresponding subgroups of the E2 phylogenetic tree. Thus, the results revealed that the E2 region and the polymerase coding regions seem to be appropriate for the grouping of CSFV isolates from all over the world, distinguishing two major groups of the virus. The reliability of these regions for phylogenetic analysis is indicated by the similarity of the results obtained from the two separate parts of the CSFV genome.
    Matched MeSH terms: Classical swine fever virus/classification; Classical swine fever virus/genetics*; Classical swine fever virus/isolation & purification
  17. Di KN, Pham DT, Tee TS, Binh QA, Nguyen TC
    Trop Anim Health Prod, 2021 Jun 05;53(3):340.
    PMID: 34089130 DOI: 10.1007/s11250-021-02780-6
    Inappropriate use of antibiotics in animal production system is one of the major factors leading to the antibiotic resistance (ABR) development. In Vietnam, the ABR situation is crucial as antibiotics have been used indiscriminately for disease prevention and as growth promoters in animals. Thus, a thorough understanding on the ABR in veterinary settings would be beneficial to the Vietnam public health authority in formulating timely interventions. This review aimed to provide information on the current status of antibiotic usage in animal husbandry in Vietnam, identified gaps in research, and suggested possible solutions to tackle ABR. To this end, data on ABR in animals were extracted from 3 major electronic databases (PubMed, Web of Science, and ScienceDirect) in the period of January 2013-December 2020. The review findings were reported according to PRISMA, which highlighted the emergence and persistence of ABR in bacterial isolates, including Escherichia coli, Enterococcus spp., and Salmonella species, obtained from pigs and poultry. The lack of awareness of Vietnamese farmers on the antibiotic utilization guidelines was one of the main causes driving the animal ABR. Hence, this paper calls for interventions to restrict antibiotics use in food-producing animals by national action plan and antibiotics control programs. Additionally, studies to evaluate knowledge, attitude, and practice (KAP) of the community are required to promote rational use of antibiotics in all sectors.
    Matched MeSH terms: Swine
  18. Sosa Portugal S, Cortey M, Tello M, Casanovas C, Mesonero-Escuredo S, Barrabés S, et al.
    Transbound Emerg Dis, 2021 Mar;68(2):519-530.
    PMID: 32619306 DOI: 10.1111/tbed.13709
    The present study was aimed to assess the diversity of influenza A viruses (IAV) circulating in pig farms in the Iberian Peninsula. The study included two different situations: farms suffering respiratory disease outbreaks compatible with IAV (n = 211) and randomly selected farms without overt respiratory disease (n = 19). Initially, the presence of IAV and lineage determination was assessed by qRT-PCR using nasal swabs. IAV was confirmed in 145 outbreaks (68.7%), mostly in nurseries (53/145; 36.5%). Subtyping by RT-qPCR was possible in 94 of those cases being H1avN2hu (33.6%), H1avN1av (24.3%) and H1huN2hu (18.7%), the most common lineages. H3huN2hu and H1pdmN1pdm represented 7.5% and 6.5% of the cases, respectively. As for the randomly selected farms, 15/19 (78.9%) were positive for IAV. Again, the virus was mostly found in nurseries and H1avN2hu was the predominant lineage. Virus isolation in MDCK cells was attempted from positive cases. Sixty of the isolates were fully sequenced with Illumina MiSeq®. Within those 60 isolates, the most frequent genotypes had internal genes of avian origin, and these were D (19/60; 31.7%) and A (11/60; 18.3%), H1avN2hu and H1avN1av, respectively. In addition, seven previously unreported genotypes were identified. In two samples, more than one H or N were found and it was not possible to precisely establish their genotypes. A great diversity was observed in the phylogenetic analysis. Notably, four H3 sequences clustered with human isolates from 2004-05 (Malaysia and Denmark) that were considered uncommon in pigs. Overall, this study indicates that IAV is a very common agent in respiratory disease outbreaks in Spanish pig farms. The genetic diversity of this virus is continuously expanding with clear changes in the predominant subtypes and lineages in relatively short periods of time. The current genotyping scheme has to be enlarged to include the new genotypes that could be found in the future.
    Matched MeSH terms: Swine; Swine Diseases/epidemiology; Swine Diseases/virology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links