Methods: The accuracy of Webgazer.js for software-based gaze tracking is tested under different lighting conditions. Predefined time delays of a prototype diagnosis task automation script are contrasted against with manual delays based on human time estimation to understand how automation influences diagnosis accuracy. SLI diagnosis binary classifier was built and tested based on randomised parameters. The obtained results were cross-compared to Singlims_ES.exe for equality.
Results: Webgazer.js achieved an average accuracy of 88.755% under global lighting conditions, 61.379% under low lighting conditions and 52.7% under face-focused lighting conditions. The diagnosis task automation script found to execute with actual time delays with a deviation percentage no more than 0.04%, while manually executing time delays based on human time estimation resulted in a deviation percentage of not more than 3.37%. One-tailed test probability value produced by both the newly built classifier and Singlims_ES were observed to be similar up to three decimal places.
Conclusion: The results obtained should serve as a foundation for further evaluation of computer tools to help speech language pathologists diagnose SLI.
BACKGROUND AND OBJECTIVE: Interstitial fibrosis in renal biopsy samples is a scarring tissue structure that may be visually quantified by pathologists as an indicator to the presence and extent of chronic kidney disease. The standard method of quantification by visual evaluation presents reproducibility issues in the diagnoses due to the uncertainties in human judgement.
METHODS: An automated quantification system for accurately measuring the amount of interstitial fibrosis in renal biopsy images is presented as a consistent basis of comparison among pathologists. The system identifies the renal tissue structures through knowledge-based rules employing colour space transformations and structural features extraction from the images. In particular, the renal glomerulus identification is based on a multiscale textural feature analysis and a support vector machine. The regions in the biopsy representing interstitial fibrosis are deduced through the elimination of non-interstitial fibrosis structures from the biopsy area. The experiments conducted evaluate the system in terms of quantification accuracy, intra- and inter-observer variability in visual quantification by pathologists, and the effect introduced by the automated quantification system on the pathologists' diagnosis.
RESULTS: A 40-image ground truth dataset has been manually prepared by consulting an experienced pathologist for the validation of the segmentation algorithms. The results from experiments involving experienced pathologists have demonstrated an average error of 9 percentage points in quantification result between the automated system and the pathologists' visual evaluation. Experiments investigating the variability in pathologists involving samples from 70 kidney patients also proved the automated quantification error rate to be on par with the average intra-observer variability in pathologists' quantification.
CONCLUSIONS: The accuracy of the proposed quantification system has been validated with the ground truth dataset and compared against the pathologists' quantification results. It has been shown that the correlation between different pathologists' estimation of interstitial fibrosis area has significantly improved, demonstrating the effectiveness of the quantification system as a diagnostic aide.
OBJECTIVE: This study aimed to review and analyse literature related to the detection and classification of acute leukaemia. The factors that were considered to improve understanding on the field's various contextual aspects in published studies and characteristics were motivation, open challenges that confronted researchers and recommendations presented to researchers to enhance this vital research area.
METHODS: We systematically searched all articles about the classification and detection of acute leukaemia, as well as their evaluation and benchmarking, in three main databases: ScienceDirect, Web of Science and IEEE Xplore from 2007 to 2017. These indices were considered to be sufficiently extensive to encompass our field of literature.
RESULTS: Based on our inclusion and exclusion criteria, 89 articles were selected. Most studies (58/89) focused on the methods or algorithms of acute leukaemia classification, a number of papers (22/89) covered the developed systems for the detection or diagnosis of acute leukaemia and few papers (5/89) presented evaluation and comparative studies. The smallest portion (4/89) of articles comprised reviews and surveys.
DISCUSSION: Acute leukaemia diagnosis, which is a field requiring automated solutions, tools and methods, entails the ability to facilitate early detection or even prediction. Many studies have been performed on the automatic detection and classification of acute leukaemia and their subtypes to promote accurate diagnosis.
CONCLUSIONS: Research areas on medical-image classification vary, but they are all equally vital. We expect this systematic review to help emphasise current research opportunities and thus extend and create additional research fields.
DESIGN AND METHODS: The activity of DPD was measured using 5-[2- (14)C]Fluorouracil (5-[2-(14)C]FUra) followed by separation of substrate and product 5-[2-(14)C]FUraH(2) with a 15 x 4.6 mm I.D., 5 microm particle size (d(p)) porous graphitic carbon (PGC) column (Hypercarb(R)) and HPLC with online detection of the radioactivity. This was standardized using the protein concentration of the cytosol (NanoOrange(R) Protein Quantitation).
RESULTS: Complete baseline separation of 5-[2-(14)C]Fluorouracil (5-[2-(14)C]FUra) and 5-[2-(14)C]Fluoro-5,6-dihydrouracil (5-[2-(14)C]FUraH(2)) was achieved using a porous graphitic carbon (PGC) column. The detection limit for 5-[2-(14)C]FUraH(2) was 0.4 pmol.
CONCLUSIONS: By using linear gradient separation (0.1% Trifluoroacetic acid [TFA] in water to 100% Methanol) protocols in concert with PGC columns (Hypercarb(R)), we have demonstrated that a PGC column has a distinct advantage over C-18 reverse phase columns in terms of column stability (pH 1-14). This method provides an improvement on the specific assay for DPD enzyme activity. It is rapid, reproducible and sensitive and can be used for routine screening for healthy and cancer patients for partial and profound DPD deficiency before treatment with 5- FUra.
RESULTS: The results on the validity of the ACL against IA between the subjects show accurate detection of n, sn, prn, sto, ls and li landmarks. The paired t-test showed that the seven linear measurements were statistically significant when p