Displaying publications 41 - 60 of 249 in total

Abstract:
Sort:
  1. Abu Osman NA, Spence WD, Solomonidis SE, Paul JP, Weir AM
    Med Eng Phys, 2010 Sep;32(7):760-5.
    PMID: 20678997 DOI: 10.1016/j.medengphy.2010.04.020
    The purpose of this investigation was to vary the load on the patellar tendon bar and to study the subsequent effect this has on the pattern of the pressure distribution at the stump-socket interface. Ten male subjects from the Southern General Hospital in Glasgow, UK participated in this study. Measuring systems utilising strain gauge and electrohydraulic technologies were designed, developed and constructed to enable pressure measurements to be conducted. One transducer, the patellar tendon (PT) transducer, was attached to the patellar tendon bar of the socket such that the patellar tendon bar was capable of being translated by +/-10 mm towards or away from the tendon. The results of this study showed that the position of the patellar tendon bar had no significant effect on the pressure distribution around the socket indicating that it is an unnecessary feature, which, we propose, may be eliminated during manufacture of a trans-tibial socket.
    Matched MeSH terms: Biomechanical Phenomena
  2. Mukundala VV, Lim HH
    Singapore Med J, 2001 Feb;42(2):82-4.
    PMID: 11358198
    Fracture-dislocation of the lumbo-sacral spine was an unusual injury and was divided into anterior, posterior and lateral types depending on the displacement of the cephalad portion of the spine over the caudal portion. According to the authors' knowledge, only 31 cases of traumatic fracture-dislocation of the lumbo-sacral spine were reported in the English literature. Only 3 previous reports referred to this injury with a posterior displacement, which was an even rarer injury. This was the fourth report of this type of injury.
    Matched MeSH terms: Biomechanical Phenomena
  3. Mohamad S, Shuid AN, Mohamed N, Fadzilah FM, Mokhtar SA, Abdullah S, et al.
    Clinics (Sao Paulo), 2012 Sep;67(9):1077-85.
    PMID: 23018307
    OBJECTIVE: Osteoporosis increases the risk of bone fractures and may impair fracture healing. The aim of this study was to investigate whether alpha-tocopherol can improve the late-phase fracture healing of osteoporotic bones in ovariectomized rats.

    METHOD: In total, 24 female Sprague-Dawley rats were divided into three groups. The first group was sham-operated, and the other two groups were ovariectomized. After two months, the right femora of the rats were fractured under anesthesia and internally repaired with K-wires. The sham-operated and ovariectomized control rat groups were administered olive oil (a vehicle), whereas 60 mg/kg of alpha-tocopherol was administered via oral gavage to the alpha-tocopherol group for six days per week over the course of 8 weeks. The rats were sacrificed, and the femora were dissected out. Computed tomography scans and X-rays were performed to assess fracture healing and callus staging, followed by the assessment of callus strengths through the biomechanical testing of the bones.

    RESULTS: Significantly higher callus volume and callus staging were observed in the ovariectomized control group compared with the sham-operated and alpha-tocopherol groups. The ovariectomized control group also had significantly lower fracture healing scores than the sham-operated group. There were no differences between the alpha-tocopherol and sham-operated groups with respect to the above parameters. The healed femora of the ovariectomized control group demonstrated significantly lower load and strain parameters than the healed femora of the sham-operated group. Alpha-tocopherol supplementation was not able to restore these biomechanical properties.

    CONCLUSION: Alpha-tocopherol supplementation appeared to promote bone fracture healing in osteoporotic rats but failed to restore the strength of the fractured bone.

    Matched MeSH terms: Biomechanical Phenomena
  4. Ramli ES, Suhaimi F, Asri SF, Ahmad F, Soelaiman IN
    J. Bone Miner. Metab., 2013 May;31(3):262-73.
    PMID: 23274351 DOI: 10.1007/s00774-012-0413-x
    Rapid onset of bone loss is a frequent complication of systemic glucocorticoid therapy which may lead to fragility fractures. Glucocorticoid action in bone depends upon the activity of 11β-hydroxysteroid dehydrogenase type 1 enzyme (11β-HSD1). Regulations of 11β-HSD1 activity may protect the bone against bone loss due to excess glucocorticoids. Glycyrrhizic acid (GCA) is a potent inhibitor of 11β-HSD. Treatment with GCA led to significant reduction in bone resorption markers. In this study we determined the effect of GCA on 11β-HSD1 activity in bones of glucocorticoid-induced osteoporotic rats. Thirty-six male Sprague-Dawley rats (aged 3 months and weighing 250-300 g) were divided randomly into groups of ten. (1) G1, sham operated group; (2) G2, adrenalectomized rats administered with intramuscular dexamethasone 120 μg/kg/day and oral vehicle normal saline vehicle; and (3) G3, adrenalectomized rats administered with intramuscular dexamethasone 120 μg/kg/day and oral GCA 120 mg/kg/day The results showed that GCA reduced plasma corticosterone concentration. GCA also reduced serum concentration of the bone resorption marker, pyridinoline and induced 11β-HSD1 dehydrogenase activity in the bone. GCA improved bone structure, which contributed to stronger bone. Therefore, GCA has the potential to be used as an agent to protect the bone against glucocorticoid induced osteoporosis.
    Matched MeSH terms: Biomechanical Phenomena/drug effects
  5. Hadizadeh M, Amri S, Mohafez H, Roohi SA, Mokhtar AH
    Gait Posture, 2016 07;48:152-158.
    PMID: 27318454 DOI: 10.1016/j.gaitpost.2016.05.002
    This study aimed to objectively evaluate changes in gait kinematics, kinetics and symmetry among anterior cruciate ligament (ACL) reconstructed athletes during rehabilitation. Twenty-two national athletes with ACL reconstruction and 15 healthy athletes were recruited for the study. Gait data were collected between the weeks 4-5, 8-9, and 12-13 post-operation using three-dimensional motion analysis system. Five separate components, including knee range of motion (ROM), vertical ground reaction force (VGRF), their symmetries and knee extension moment were evaluated. One way and repeated measure multivariate analysis of variance (MANOVA) were used to analyze the knee ROMs. The VGRF and extension moment were tested using repeated measure ANOVA and independent sample t-test. Findings indicated significant alterations in all measured components between patients' Test 1 and control group. Repeated measure analysis revealed significant effect for time in components of knee angular and VGRF (P<0.001), their symmetry index (P=0.03) and knee extension moment (P=0.045). Univariate outcomes demonstrated significant improvement in the injured limb's stance and swing (P<0.001), and single-stance (P=0.005) ROMs over time. Symmetry indexes of stance and swing ROM, and VGRF reduced significantly by 26.3% (P=0.001), 17.9% (P<0.001), and 31.9% (P=0.03) respectively. After three months, symmetry indexes of single-stance ROM and VGRF along with operated knee extension moment were the only variables which showed significant differences with control group. The rehabilitation program allowed national athletes to restore the operated limb's gait parameters except knee extension moment by 12-13 weeks post-reconstruction; however, more time is required to normalize single-stance ROM and VGRF asymmetries.
    Matched MeSH terms: Biomechanical Phenomena
  6. Islam MA, Sundaraj K, Ahmad RB, Sundaraj S, Ahamed NU, Ali MA
    PLoS One, 2014;9(8):e104280.
    PMID: 25090008 DOI: 10.1371/journal.pone.0104280
    In mechanomyography (MMG), crosstalk refers to the contamination of the signal from the muscle of interest by the signal from another muscle or muscle group that is in close proximity.
    Matched MeSH terms: Biomechanical Phenomena
  7. Eshraghi A, Abu Osman NA, Gholizadeh H, Ali S, Abas WA
    Am J Phys Med Rehabil, 2015 Jan;94(1):1-10.
    PMID: 24919079 DOI: 10.1097/PHM.0000000000000134
    This study aimed to compare the effects of different suspension methods on the interface stress inside the prosthetic sockets of transtibial amputees when negotiating ramps and stairs.
    Matched MeSH terms: Biomechanical Phenomena
  8. Kondo E, Merican AM, Yasuda K, Amis AA
    Arthroscopy, 2014 Mar;30(3):335-43.
    PMID: 24581258 DOI: 10.1016/j.arthro.2013.12.003
    The purpose of this study was to clarify the changes in the kinematics of the knee that result from isolated deficiency of the anteromedial (AM) or posterolateral (PL) bundle.
    Matched MeSH terms: Biomechanical Phenomena
  9. Aboodarda SJ, Byrne JM, Samson M, Wilson BD, Mokhtar AH, Behm DG
    J Strength Cond Res, 2014 Aug;28(8):2314-23.
    PMID: 24796986 DOI: 10.1519/JSC.0000000000000498
    Previous investigators have speculated that applying additional external load throughout the eccentric phase of the jumping movement could amplify the stretch-shortening cycle mechanism and modulate jumping performance and jump exercise intensity. The aims of this study, therefore, were to determine the effect of increased eccentric phase loading, as delivered using an elastic device, on drop jumps (DJs) performed from different drop heights. Of specific interest were changes in (a) the kinetics; eccentric and concentric impulse, rate of force development (RFD), concentric velocity and (b) the electromyographic (EMG) activity of leg muscles. In a randomized repeated-measure study, 15 highly resistance trained male subjects performed DJs from 3 heights (20, 35, and 50 cm) under 3 different conditions: body weight only (free DJ) and with elastic bands providing downward force equivalent to 20% (+20% DJ) and 30% (+30% DJ) of body mass. All DJs were recorded using video and force plate data that were synchronized with EMG data. Results demonstrated that using additional tensile load during the airborne and eccentric phases of the DJ could enhance eccentric impulse (p = 0.042) and RFD (p < 0.001) and resulted in small to moderate effect size (ES) increases in quadriceps intergrated EMG across the eccentric phase (0.23 > ES > 0.51). The observed greater eccentric loading, however, did not immediately alter concentric kinetics and jump height nor did it alter muscle activation levels during this phase. The findings indicated that, in addition to the conventional technique of increasing drop height, using a tensile load during the airborne and eccentric phases of the DJ could further improve eccentric loading of DJs. As it has been suggested that eccentric impulse and RFD are indicators of DJ exercise intensity, these findings suggest that the loaded DJs, using additional elastic load, may be an effective technique for improving DJ exercise intensity without acute effects on the jumping performance and neuromuscular activation level in highly trained athletes.
    Matched MeSH terms: Biomechanical Phenomena
  10. Tan VP, Macdonald HM, Kim S, Nettlefold L, Gabel L, Ashe MC, et al.
    J. Bone Miner. Res., 2014 Oct;29(10):2161-81.
    PMID: 24737388 DOI: 10.1002/jbmr.2254
    A preponderance of evidence from systematic reviews supports the effectiveness of weight-bearing exercises on bone mass accrual, especially during the growing years. However, only one systematic review (limited to randomized controlled trials) examined the role of physical activity (PA) on bone strength. Thus, our systematic review extended the scope of the previous review by including all PA intervention and observational studies, including organized sports participation studies, with child or adolescent bone strength as the main outcome. We also sought to discern the skeletal elements (eg, mass, structure, density) that accompanied significant bone strength changes. Our electronic-database, forward, and reference searches yielded 14 intervention and 23 observational studies that met our inclusion criteria. We used the Effective Public Health Practice Project (EPHPP) tool to assess the quality of studies. Due to heterogeneity across studies, we adopted a narrative synthesis for our analysis and found that bone strength adaptations to PA were related to maturity level, sex, and study quality. Three (of five) weight-bearing PA intervention studies with a strong rating reported significantly greater gains in bone strength for the intervention group (3% to 4%) compared with only three significant (of nine) moderate intervention studies. Changes in bone structure (eg, bone cross-sectional area, cortical thickness, alone or in combination) rather than bone mass most often accompanied significant bone strength outcomes. Prepuberty and peripuberty may be the most opportune time for boys and girls to enhance bone strength through PA, although this finding is tempered by the few available studies in more mature groups. Despite the central role that muscle plays in bones' response to loading, few studies discerned the specific contribution of muscle function (or surrogates) to bone strength. Although not the focus of the current review, this seems an important consideration for future studies.
    Matched MeSH terms: Biomechanical Phenomena
  11. As'arry A, Md Zain MZ, Mailah M, Hussein M
    Proc Inst Mech Eng H, 2013 Nov;227(11):1171-80.
    PMID: 23901066 DOI: 10.1177/0954411913494325
    Patients with hand tremors may find routine activities such as writing and holding objects affected. In response to this problem, an active control technique has been examined in order to lessen the severity of tremors. In this article, an online method of a hybrid proportional-integral control with active force control strategy for tremor attenuation is presented. An intelligent mechanism using iterative learning control is incorporated into the active force control loop to approximate the estimation mass parameter. Experiments were conducted on a dummy hand model placed horizontally in a tremor test rig. When activated by a shaker in the vertical direction, this resembles a postural tremor condition. In the proportional-integral plus active force control, a linear voice coil actuator is used as the main active tremor suppressive element. A sensitivity analysis is presented to investigate the robustness of the proposed controller in a real-time control environment. The findings of this study demonstrate that the intelligent active force control and iterative learning controller show excellent performance in reducing tremor error compared to classic pure proportional, proportional-integral and hybrid proportional-integral plus active force control controllers.
    Matched MeSH terms: Biomechanical Phenomena
  12. Daud R, Abdul Kadir MR, Izman S, Md Saad AP, Lee MH, Che Ahmad A
    J Foot Ankle Surg, 2013 Jul-Aug;52(4):426-31.
    PMID: 23623302 DOI: 10.1053/j.jfas.2013.03.007
    The trapezium shape of the talar dome limits the use of 2-dimensional plain radiography for morphometric assessment because only 2 of the 4 required parameters can be measured. We used computed tomography data to measure the 4 morphologic parameters of the trochlea tali: anterior width, posterior width, trochlea tali length, and angle of trapezium shape. A total of 99 subjects underwent computed tomography scanning, and the left and right talus bones were both virtually modeled in 3 dimensions. The 4 morphologic parameters were measured 3 times each to obtain the intraclass correlation, and analysis of variance was used to check for any significant differences between the repeated measurements. The average intraclass correlation coefficient for the measurements for 2 to 3 trials was 0.94 ± 0.04. Statistical analyses were performed on the data from all 198 talus bones using SAS software, comparing male and female and left and right bones. All 4 morphometric values were greater in the male group. No significant differences were found between the left and right talus bones. A strong positive correlation was observed between the trochlea tali length and the anterior width. The angle of trapezium shape showed no correlation with the other 3 parameters. The measurements were compared with the dimensions of the current talar components of 4 total ankle arthroplasty implants. However, most of them did not perfectly match the trapezium shape of the talus from our population. We successfully analyzed the trapezium shape of the trochlea tali using reliable virtual 3-dimensional measurements. Compared with other published reports, our study showed a relatively smaller dimension of the trochlea tali than the European counterparts.
    Matched MeSH terms: Biomechanical Phenomena
  13. Ahmad M, Uzir Wahit M, Abdul Kadir MR, Mohd Dahlan KZ
    ScientificWorldJournal, 2012;2012:474851.
    PMID: 22666129 DOI: 10.1100/2012/474851
    Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA) as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P) precipitates on the composite surface as proven from SEM and XRD analysis.
    Matched MeSH terms: Biomechanical Phenomena
  14. Eshraghi A, Maroufi N, Sanjari MA, Saeedi H, Keyhani MR, Gholizadeh H, et al.
    Prosthet Orthot Int, 2013 Feb;37(1):76-84.
    PMID: 22751219 DOI: 10.1177/0309364612448805
    Biomechanical factors, such as spinal deformities can result in balance control disorders.
    Matched MeSH terms: Biomechanical Phenomena
  15. Eshraghi A, Osman NA, Gholizadeh H, Karimi M, Ali S
    Prosthet Orthot Int, 2012 Mar;36(1):15-24.
    PMID: 22269941 DOI: 10.1177/0309364611431625
    One of the main indicators of the suspension system efficiency in lower limb prostheses is vertical displacement or pistoning within the socket. Decreasing pistoning and introducing an effective system for evaluating pistoning could contribute to the amputees' rehabilitation process.
    Matched MeSH terms: Biomechanical Phenomena
  16. Moo EK, Herzog W, Han SK, Abu Osman NA, Pingguan-Murphy B, Federico S
    Biomech Model Mechanobiol, 2012 Sep;11(7):983-93.
    PMID: 22234779 DOI: 10.1007/s10237-011-0367-2
    Experimental findings indicate that in-situ chondrocytes die readily following impact loading, but remain essentially unaffected at low (non-impact) strain rates. This study was aimed at identifying possible causes for cell death in impact loading by quantifying chondrocyte mechanics when cartilage was subjected to a 5% nominal tissue strain at different strain rates. Multi-scale modelling techniques were used to simulate cartilage tissue and the corresponding chondrocytes residing in the tissue. Chondrocytes were modelled by accounting for the cell membrane, pericellular matrix and pericellular capsule. The results suggest that cell deformations, cell fluid pressures and fluid flow velocity through cells are highest at the highest (impact) strain rate, but they do not reach damaging levels. Tangential strain rates of the cell membrane were highest at the highest strain rate and were observed primarily in superficial tissue cells. Since cell death following impact loading occurs primarily in superficial zone cells, we speculate that cell death in impact loading is caused by the high tangential strain rates in the membrane of superficial zone cells causing membrane rupture and loss of cell content and integrity.
    Matched MeSH terms: Biomechanical Phenomena
  17. Gouwanda D, Senanayake SM
    J Med Eng Technol, 2011 Nov;35(8):432-40.
    PMID: 22074136 DOI: 10.3109/03091902.2011.627080
    A real-time gait monitoring system that incorporates an immediate and periodical assessment of gait asymmetry is described. This system was designed for gait analysis and rehabilitation of patients with pathologic gait. It employs wireless gyroscopes to measure the angular rate of the thigh and shank in real time. Cross-correlation of the lower extremity (Cc(norm)), and normalized Symmetry Index (SI(norm)) are implemented as new approaches to periodically determine the gait asymmetry in each gait cycle. Cc(norm) evaluates the signal patterns measured by wireless gyroscopes in each gait cycle. SI(norm) determines the movement differences between the left and right limb. An experimental study was conducted to examine the viability of these methods. Artificial asymmetrical gait was simulated by placing a load on one side of the limbs. Results showed that there were significant differences between the normal gait and asymmetrical gait (p < 0.01). They also indicated that the system worked well in periodically assessing the gait asymmetry.
    Matched MeSH terms: Biomechanical Phenomena
  18. Raja Izaham RM, Abdul Kadir MR, Abdul Rashid AH, Hossain MG, Kamarul T
    Injury, 2012 Jun;43(6):898-902.
    PMID: 22204773 DOI: 10.1016/j.injury.2011.12.006
    The use of open wedge high tibial osteotomy (HTO) to correct varus deformity of the knee is well established. However, the stability of the various implants used in this procedure has not been previously demonstrated. In this study, the two most common types of plates were analysed (1) the Puddu plates that use the dynamic compression plate (DCP) concept, and (2) the Tomofix plate that uses the locking compression plate (LCP) concept. Three dimensional model of the tibia was reconstructed from computed tomography images obtained from the Medical Implant Technology Group datasets. Osteotomy and fixation models were simulated through computational processing. Simulated loading was applied at 60:40 ratios on the medial:lateral aspect during single limb stance. The model was fixed distally in all degrees of freedom. Simulated data generated from the micromotions, displacement and, implant stress were captured. At the prescribed loads, a higher displacement of 3.25 mm was observed for the Puddu plate model (p<0.001). Coincidentally the amount of stresses subjected to this plate, 24.7 MPa, was also significantly lower (p<0.001). There was significant negative correlation (p<0.001) between implant stresses to that of the amount of fracture displacement which signifies a less stable fixation using Puddu plates. In conclusion, this study demonstrates that the Tomofix plate produces superior stability for bony fixation in HTO procedures.
    Matched MeSH terms: Biomechanical Phenomena
  19. Gholizadeh H, Abu Osman NA, Lúvíksdóttir Á, Eshraghi A, Kamyab M, Wan Abas WA
    Prosthet Orthot Int, 2011 Dec;35(4):360-4.
    PMID: 21975850 DOI: 10.1177/0309364611423130
    Good suspension lessens the pistoning (vertical displacement) of the residual limb inside the prosthetic socket. Several methods are used for measuring the pistoning.
    Matched MeSH terms: Biomechanical Phenomena
  20. Afshar R, Fong TS, Latifi MH, Kanthan SR, Kamarul T
    J Hand Surg Eur Vol, 2012 Jun;37(5):396-401.
    PMID: 22019989 DOI: 10.1177/1753193411424557
    The use of bicortical screws to fix metacarpal fractures has been suggested to provide no added biomechanical advantage over unicortical screw fixation. However, this was only demonstrated in static loading regimes, which may not be representative of biological conditions. The present study was done to determine whether similar outcomes are obtained when cyclic loading is applied. Transverse midshaft osteotomies were created in 20 metacarpals harvested from three cadavers. Fractures were stabilised using 2.0 mm mini fragment plates fixed with either bicortical or unicortical screw fixation. These fixations were tested to failure with a three-point bending cyclic loading protocol using an electromechanical microtester and a 1 kN load cell. The mean load to failure was 370 N (SD 116) for unicortical fixation and 450 N (SD 135) for bicortical fixation. Significant differences between these two constructs were observed. A biomechanical advantage was found when using bicortical screws in metacarpal fracture plating.
    Matched MeSH terms: Biomechanical Phenomena
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links