Displaying publications 41 - 60 of 66 in total

Abstract:
Sort:
  1. Bhowmick S, Chakravarty C, Sellathamby S, Lal SK
    Arch Virol, 2017 Apr;162(4):919-929.
    PMID: 27942972 DOI: 10.1007/s00705-016-3153-8
    The matrix protein 2 (M2) is a spliced product of segment 7 genome of influenza A virus. Previous studies indicate its role in uncoating of the viral ribonucleoprotein complex during viral entry and in membrane scission while budding. Despite its crucial role in the viral life cycle, little is known about its subcellular distribution and dynamics. In this study, we have shown that the M2 protein is translocated from the membrane to the cytoplasm by a retrograde route via endosomes and the Golgi network. It utilizes retromer cargo while moving from the endosome to the trans-Golgi network and prevents endosome fusion with the lysosome. Further, M2 interacts with the endoplasmic-reticulum-resident AAA-ATPase p97 for its release into the cytoplasm. Our study also revealed that the M2 protein in the cellular milieu does not undergo ubiquitin-mediated proteasomal degradation. The migration of M2 through this pathway inside the infected cell suggests possible new roles that the M2 protein may have in the host cytoplasm, apart from its previously described functions.
    Matched MeSH terms: Cytoplasm/metabolism*
  2. Abubakar S, Azila A, Suzana M, Chang LY
    Malays J Pathol, 2002 Jun;24(1):29-36.
    PMID: 16329553
    At least three major antigenic dengue 2 virus proteins were recognized by pooled dengue fever patients' sera in infected Aedes albopictus (C6/36) mosquito cells. Dengue virus envelope (E), premembrane (PrM) and non-structural protein 1 (NS 1) dimer were detected beginning on day 3 postinfection in both the cell membrane and cytosolic fractions. Using the patients' sera, the presence of antigenic intermediate core protein (C)-PrM and NS1-non-structural protein 2a (NS2a) in the cytoplasmic fraction of dengue 2 virus infected cells was revealed. The presence of a approximately 92 and approximately 84 kDa NS 1 dimer in the membrane (NS 1m) and cytosolic (NS 1c) fractions of C6/36 cells, respectively, was also recognized. Using individual patient's serum, it was further confirmed that all patients' sera contained antibodies that specifically recognized E, NS 1 and PrM present in the dengue 2 virus-infected cell membrane fractions, suggesting that these glycosylated virus proteins were the main antigenic proteins recognized in vivo. Detection of dengue 2 virus C antibody in some patients further suggested that C could be antigenic if presented in vivo.
    Matched MeSH terms: Cytoplasm/metabolism; Cytoplasm/virology
  3. Yadav M, Nambiar S, Khoo SP, Yaacob HB
    Arch Oral Biol, 1997 Aug;42(8):559-67.
    PMID: 9347118
    The prevalence and cellular distribution of human herpesvirus 7 (HHV-7) in archival labial salivary glands was analysed for virus-specific DNA sequences by polymerase chain reaction (PCR) and in situ hybridization signals. In addition, the cellular expression of HHV-7-encoded protein was detected by immunohistochemical staining with a virus-specific monoclonal antibody. Eleven of 20 samples were positive for the HHV-7 DNA sequence by PCR. Eighteen of 20 tissues analysed by in situ hybridization showed signals in ductal, serous and mucous cells. Some nuclei of these cells and also the myoepithelial population were positive. In immunolocalization studies, all 20 salivary glands consistently showed HHV-7-expressed protein in the cytoplasm of ductal cuboidal and columnar cells. The protein was also found in the cytoplasm of mucous and serous acinar cells that were immunopositive for HHV-7. The observations are consistent with the suggestion that the labial salivary gland is a site for virus replication, potential persistence and a source of infective HHV-7 in saliva.
    Matched MeSH terms: Cytoplasm/ultrastructure; Cytoplasm/virology
  4. Han H, Chou CC, Li R, Liu J, Zhang L, Zhu W, et al.
    Sci Rep, 2018 06 22;8(1):9566.
    PMID: 29934599 DOI: 10.1038/s41598-018-27724-3
    Chalocomoracin (CMR), one of the major secondary metabolites found in fungus-infected mulberry leaves, is a potent anticancer agent. However, its anticancer mechanism remains elusive. Here, we demonstrated the potent anti-tumor activity and molecular mechanism of CMR both in vitro and in vivo. We showed for the first time that CMR treatment markedly promoted paraptosis along with extensive cytoplasmic vacuolation derived from the endoplasmic reticulum, rather than apoptosis, in PC-3 and MDA-MB-231cell lines. Additional studies revealed that ectopic expression of Myc-PINK1 (PTEN-induced kinase 1), a key regulator of mitophagy, rendered LNCap cells susceptible to CMR-induced paraptosis, suggesting that the mitophagy-dependent pathway plays a crucial role in inducing paraptosis by activating PINK1. CMR treatment directly upregulated PINK1 and downregulated Alix genes in MDA-MB-231 and PC-3 cell lines. Furthermore, mitophagy signaling and paraptosis with cytoplasmic vacuolation could be blocked by antioxidant N-acetylcysteine (NAC), indicating the novel pathway was triggered by reactive oxygen species (ROS) production. An in vivo MDA-MB-231 xenograft tumor model revealed that CMR suppressed tumor growth by inducing vacuolation production through the same signal changes as those observed in vitro. These data suggest that CMR is a potential therapeutic entity for cancer treatment through a non-apoptotic pathway.
    Matched MeSH terms: Cytoplasm/drug effects; Cytoplasm/metabolism
  5. Afzan MY, Sivanandam S, Kumar GS
    Diagn Microbiol Infect Dis, 2010 Oct;68(2):159-62.
    PMID: 20846588 DOI: 10.1016/j.diagmicrobio.2010.06.005
    Trichomonas vaginalis, a flagellate protozoan parasite commonly found in the human genitourinary tract, is transmitted primarily by sexual intercourse. Diagnosis is usually by in vitro culture method and staining with Giemsa stain. There are laboratories that use Gram stain as well. We compared the use of modified Field's (MF), Giemsa, and Gram stains on 2 axenic and xenic isolates of T. vaginalis, respectively. Three smears from every sediment of spun cultures of all 4 isolates were stained, respectively, with each of the stains. We showed that MF staining, apart from being a rapid stain (20 s), confers sharper staining contrast, which differentiates the nucleus and the cytoplasm of the organism when compared to Giemsa and Gram staining especially on parasites from spiked urine samples. The alternative staining procedure offers in a diagnostic setting a rapid stain that can easily visualize the parasite with sharp contrasting characteristics between organelles especially the nucleus and cytoplasm. Vacuoles are more clearly visible in parasites stained with MF than when stained with Giemsa.
    Matched MeSH terms: Cytoplasm/ultrastructure
  6. Khan S, Zakariah M, Rolfo C, Robrecht L, Palaniappan S
    Oncotarget, 2017 May 09;8(19):30830-30843.
    PMID: 27027344 DOI: 10.18632/oncotarget.8306
    Although the idea of bacteria causing different types of cancer has exploded about century ago, the potential mechanisms of carcinogenesis is still not well established. Many reports showed the involvement of M. hominis in the development of prostate cancer, however, mechanistic approach for growth and development of prostate cancer has been poorly understood. In the current study, we predicted M. hominis proteins targeting in the mitochondria and cytoplasm of host cells and their implication in prostate cancer. A total of 77 and 320 proteins from M. hominis proteome were predicted to target in the mitochondria and cytoplasm of host cells respectively. In particular, various targeted proteins may interfere with normal growth behaviour of host cells, thereby altering the decision of programmed cell death. Furthermore, we investigated possible mechanisms of the mitochondrial and cytoplasmic targeted proteins of M. hominis in etiology of prostate cancer by screening the whole proteome.
    Matched MeSH terms: Cytoplasm/metabolism
  7. Ling KH, Brautigan PJ, Moore S, Fraser R, Cheah PS, Raison JM, et al.
    Genomics, 2016 Mar;107(2-3):88-99.
    PMID: 26802803 DOI: 10.1016/j.ygeno.2016.01.006
    Natural antisense transcripts (NATs) are involved in cellular development and regulatory processes. Multiple NATs at the Sox4 gene locus are spatiotemporally regulated throughout murine cerebral corticogenesis. In the study, we evaluated the potential functional role of Sox4 NATs at Sox4 gene locus. We demonstrated Sox4 sense and NATs formed dsRNA aggregates in the cytoplasm of brain cells. Over expression of Sox4 NATs in NIH/3T3 cells generally did not alter the level of Sox4 mRNA expression or protein translation. Upregulation of a Sox4 NAT known as Sox4ot1 led to the production of a novel small RNA, Sox4_sir3. Its biogenesis is Dicer1-dependent and has characteristics resemble piRNA. Expression of Sox4_sir3 was observed in the marginal and germinative zones of the developing and postnatal brains suggesting a potential role in regulating neurogenesis. We proposed that Sox4 sense-NATs serve as Dicer1-dependent templates to produce a novel endo-siRNA- or piRNA-like Sox4_sir3.
    Matched MeSH terms: Cytoplasm/metabolism
  8. Hassan Z, Mustafa S, Rahim RA, Isa NM
    In Vitro Cell Dev Biol Anim, 2016 Mar;52(3):337-348.
    PMID: 26659392 DOI: 10.1007/s11626-015-9978-8
    Development of tumour that is resistant to chemotherapeutics and synthetic drugs, coupled with their life-threatening side effects and the adverse effects of surgery and hormone therapies, led to increased research on probiotics' anticancer potentials. The current study investigated the potential of live, heat-killed cells (HKC) and the cytoplasmic fractions (CF) of Enterococcus faecalis and Staphylococcus hominis as anti-breast cancer agents. MCF-7 cell line was treated with 25, 50, 100 and 200 μg/mL each of live, HKC and CF of the bacteria; and cytotoxicity was evaluated for 24, 48 and 72 h using MTT assay. The morphological features of the treated cells were examined by fluorescence microscopy. The stage of cell cycle arrest and apoptosis were quantified by flow cytometry. The bacterial effect on non-malignant breast epithelial cell line, MCF-10A, was assessed using MTT assay for 24, 48 and 72 h. All the three forms of the bacteria caused a significant decrease in MCF-7 (up to 33.29%) cell proliferation in concentration- and time-dependent manner. Morphological features of apoptosis like cell death, cell shrinkage and membrane blebbing were observed. Flow cytometry analyses suggested that about 34.60% of treated MCF-7 was undergoing apoptosis. A strong anti-proliferative activity was efficiently induced through sub-G1 accumulation (up to 83.17%) in treated MCF-7 and decreased number in the G0/G1 phase (74.39%). MCF-10A cells treated with both bacteria showed no significant difference with the untreated (>90% viability). These bacteria can be used as good alternative nutraceutical with promising therapeutic indexes for breast cancer because of their non-cytotoxic effects to normal cells.
    Matched MeSH terms: Cytoplasm/metabolism*
  9. Kamilla L, Mansor SM, Ramanathan S, Sasidharan S
    Microsc Microanal, 2009 Aug;15(4):366-72.
    PMID: 19575837 DOI: 10.1017/S1431927609090783
    Clitoria ternatea is known for its antimicrobial activity but the antifungal effects of leaf extract on growth and morphogenesis of Aspergillus niger have not been observed. The extract showed a favorable antifungal activity against A. niger with a minimum inhibition concentration 0.8 mg/mL and minimum fungicidal concentration 1.6 mg/mL, respectively. The leaf extract exhibited considerable antifungal activity against filamentous fungi in a dose-dependent manner with 0.4 mg/mL IC50 value on hyphal growth of A. niger. The main changes observed under scanning electron microscopy after C. ternatea extract treatment were loss of cytoplasm in fungal hyphae and the hyphal wall and its diameter became markedly thinner, distorted, and resulted in cell wall disruption. In addition, conidiophore alterations were also observed when A. niger was treated with C. ternatea leaf extract.
    Matched MeSH terms: Cytoplasm/ultrastructure
  10. Menon N, Mariappan V, Vellasamy KM, Samudi C, See JX, Ganesh PS, et al.
    Access Microbiol, 2020;2(5):acmi000110.
    PMID: 32974575 DOI: 10.1099/acmi.0.000110
    Burkholderia pseudomallei is the causative agent for melioidosis. Because of its intracellular nature, the bacterium is capable of replicating within a plethora of eukaryotic cell lines. B. pseudomallei can remain dormant within host cells without symptoms for years, causing recrudescent infections. Here, we investigated the pathogenesis mechanism behind the suppression of T cell responses by B. pseudomallei . Peripheral blood mononuclear cells (1×106 cells/well) isolated by Ficoll Paque (Sigma-Aldrich) density gradient centrifugation were incubated with optimized concentrations of bacterial crude culture filtrate antigens (CFAs) (10 ug ml-1) and heat-killed bacteria [1 : 10 multiplicity of infection (m.o.i.)]. Following incubation, cells were investigated for surface expression of coinhibitory molecules by flow cytometry. We found that B. pseudomallei induced the upregulation of programmed death 1 (PD-1), a molecule responsible for T cell exhaustion, on T cells in vitro following exposure to crude CFAs of B. pseudomallei . This upregulation of PD-1 probably contributes to poor immune surveillance and disease pathogenesis.
    Matched MeSH terms: Cytoplasm
  11. Tan CW, Ng MH, Ohnmar H, Lokanathan Y, Nur-Hidayah H, Roohi SA, et al.
    Indian J Orthop, 2013 Nov;47(6):547-52.
    PMID: 24379458 DOI: 10.4103/0019-5413.121572
    BACKGROUND AND AIM: Synthetic nerve conduits have been sought for repair of nerve defects as the autologous nerve grafts causes donor site morbidity and possess other drawbacks. Many strategies have been investigated to improve nerve regeneration through synthetic nerve guided conduits. Olfactory ensheathing cells (OECs) that share both Schwann cell and astrocytic characteristics have been shown to promote axonal regeneration after transplantation. The present study was driven by the hypothesis that tissue-engineered poly(lactic-co-glycolic acid) (PLGA) seeded with OECs would improve peripheral nerve regeneration in a long sciatic nerve defect.

    MATERIALS AND METHODS: Sciatic nerve gap of 15 mm was created in six adult female Sprague-Dawley rats and implanted with PLGA seeded with OECs. The nerve regeneration was assessed electrophysiologically at 2, 4 and 6 weeks following implantation. Histopathological examination, scanning electron microscopic (SEM) examination and immunohistochemical analysis were performed at the end of the study.

    RESULTS: Nerve conduction studies revealed a significant improvement of nerve conduction velocities whereby the mean nerve conduction velocity increases from 4.2 ΁ 0.4 m/s at week 2 to 27.3 ΁ 5.7 m/s at week 6 post-implantation (P < 0.0001). Histological analysis revealed presence of spindle-shaped cells. Immunohistochemical analysis further demonstrated the expression of S100 protein in both cell nucleus and the cytoplasm in these cells, hence confirming their Schwann-cell-like property. Under SEM, these cells were found to be actively secreting extracellular matrix.

    CONCLUSION: Tissue-engineered PLGA conduit seeded with OECs provided a permissive environment to facilitate nerve regeneration in a small animal model.

    Matched MeSH terms: Cytoplasm
  12. Mohd Ariffin K, Abd Ghani F, Hussin H, Md Said S, Yunus R, Veerakumarasivam A, et al.
    Malays J Pathol, 2021 Apr;43(1):49-54.
    PMID: 33903305
    INTRODUCTION: Hedgehog (HH) pathway is an important signalling cascade for growth and patterning during embryonic development. Constitutive activation of Hedgehog pathway can be found in various types of malignancies including medulloblastoma, basal cell carcinoma, gastrointestinal, breast, pancreatic, prostate cancer and leukaemia. Little is known about the expression and role of Hedgehog signalling in bladder cancer.

    MATERIALS AND METHODS: The purpose of this study was to investigate the immunohistochemical expression of SMO in 112 bladder cancer cases and determine their association with demographic and clinicopathological parameters. Bladder cancer tissues were obtained from the Hospital Kuala Lumpur.

    RESULTS: SMO was expressed in the cytoplasm of all cases of bladder cancer. 6 cases (5.4%) showed low expression, while 106 cases (94.6%) showed high expression. Positive expression of SMO protein was correlated with a few variables which include grade and stage of tumour, lymph node metastasis and distant metastasis. SMO expression showed statistically significant association with higher grade (p=0.001) and higher stage (p=0.042) of bladder cancer. SMO expression also showed borderline association with lymph node metastasis (p=0.056).

    CONCLUSION: These findings indicate that SMO expression may be a poor prognostic marker in bladder cancer.

    Matched MeSH terms: Cytoplasm
  13. Saad Eldeen Bakheet O, Yusof N, Raja Zahratul A, Ithnin A, Abdul Aziz S, Alias H
    Indian J Hematol Blood Transfus, 2016 Jun;32(Suppl 1):262-6.
    PMID: 27408409 DOI: 10.1007/s12288-015-0582-6
    Secondary sea-blue histiocytosis occurs more frequently than the primary form and occurs consequent to a wide range of metabolic and haematologic disorders including thalassaemia. We report an 18-year-old Chinese boy with transfusion-dependent HbE-beta thalassaemia who complained of pain and swelling at the left iliac crest region for 2 months duration. Physical examination revealed pallor with hepatosplenomegaly. Local examination revealed a huge swelling 12 cm × 12 cm in diameter, firm in consistency and tender. Histopathological examination of the mass revealed an osteosarcoma. His bone marrow aspirate showed numerous sea-blue histiocytes, the cytoplasm of which was closely packed with fine granules that stained blue with May-Grunwald-Giemsa. The nuclei were centrally located in some cells and displaced towards the periphery in other cells. There was no malignant cell infiltration in the marrow. The case is reported due to the co-incidental dual pathology in our patient (HbE-beta thalassaemia and osteosarcoma) and the unusual bone marrow finding of numerous sea-blue histiocytes.
    Matched MeSH terms: Cytoplasm
  14. Vijayarathna S, Chen Y, Kanwar JR, Sasidharan S
    Biomed Pharmacother, 2017 Jul;91:366-377.
    PMID: 28463800 DOI: 10.1016/j.biopha.2017.04.112
    Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00μg/mL at 24h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC50 value of 51.07μg/mL at 24h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis.
    Matched MeSH terms: Cytoplasm
  15. Siti Nur Lina Azman, Huzlinda Hussin, Salmiah Md Said, Zanariah Alias, Maizaton Atmadini Abdullah
    MyJurnal
    Introduction: The Hedgehog (Hh) signalling pathway is a developmental signalling pathway involved in normal mammalian developmental and homeostasis of adult renewable tissues. In most adult tissues, this pathway remains silent and previous studies have shown that constitutive activation of Hedgehog signalling pathway leads to various types of malignancies including medulloblastomas, basal cell carcinoma, gastrointestinal, breast and prostate cancer. The purpose of this study was to investigate the immunohistochemical expression of Hedgehog pathway proteins in Diffuse Large B-cell Lymphoma and determine their association with overall survival (OS). Methods: Positive control using normal tonsils were included in each batch of immunohistochemical staining procedure. Results: PTCH1 proteins were highly expressed in DLBCL and showed strong staining intensity in 107 (100%) cases and SMO proteins were expressed in 105 (98.1%) cases. PTCH1 proteins were localised in the nucleus of tumour cells, whereas SMO proteins were mainly localised in the cytoplasm of tumour cells. Positive expression of PTCH1 and SMO proteins and overall survival of DLBCL patients were correlated with age, gender, race and tumour location. There was no significant correlation between the expression of these two proteins with any of the parameters. PTCH1 expression showed significant association with SMO expression (P=0.03). Conclusions: Our findings suggest that high expression of both PTCH1 and SMO may be important in the pathogenesis of DLBCL. However, additional mechanisms that may contribute to the activation of HH signalling in DLBCL needs to be further explored.
    Matched MeSH terms: Cytoplasm
  16. Ling HL, Rahmat Z, Bakar FDA, Murad AMA, Illias RM
    Microbiol Res, 2018 Oct;215:46-54.
    PMID: 30172308 DOI: 10.1016/j.micres.2018.06.006
    Bacillus lehensis G1 is an alkaliphilic bacterium that is capable of surviving in environments up to pH 11. Secretome related to bacterial acclimation in alkaline environment has been less studied compared to cytoplasmic and membrane proteome. The aim of this study was to gain better understanding of bacterial acclimation to alkaline media through analyzing extracellular proteins of B. lehensis. The pH range for B. lehensis growth was conducted, and two-dimensional electrophoresis and MALDI-TOF/TOF MS analysis were conducted to characterize changes in protein profiling in B. lehensis cultured at pH 8 and pH 11 when compared with those cultured at pH 10 (optimal growth pH). B. lehensis could grow well at pH ranging from 8 to 11 in which the bacteria showed to posses thinner flagella at pH 11. Proteomic analyses demonstrated that five proteins were up-regulated and 13 proteins were down-regulated at pH 8, whereas at pH 11, 14 proteins were up-regulated and 8 were down-regulated. Majority of the differentially expressed proteins were involved in the cell wall, main glycolytic pathways, the metabolism of amino acids and related molecules and some proteins of unknown function. A total of 40 differentially expressed protein spots corresponding to 33 proteins were identified; including GlcNAc-binding protein A, chitinase, endopeptidase lytE, flagellar hook-associated proteins and enolase. These proteins may play important roles in acclimation to alkaline media via reallocation of cell wall structure and changes to cell surface glycolytic enzymes, amino acid metabolism, flagellar hook-associated proteins and chaperones to sustain life under pH-stressed conditions.
    Matched MeSH terms: Cytoplasm
  17. Mohideen SK, Mustangin M, Kamaruddin NA, Muhammad R, Jamal ARA, Sukor N, et al.
    PMID: 31636604 DOI: 10.3389/fendo.2019.00666
    Studies on excised adrenals from primary aldosteronism patients have found that somatic mutations in KCNJ5 frequently cause excess aldosterone production in the culprit aldosterone-producing adenoma (APA). KCNJ5 mutant APAs were reported to be peculiarly overrepresented among young females and in Oriental cohorts, compared to their older male, or Caucasian counterparts. These larger APAs were also reported to have similarities with the zona fasciculata (ZF) in the adrenal both from the steroid production profile and the morphology of the cell. We therefore aimed to corroborate these findings by characterizing the APAs from a multi-ethnic Malaysian cohort. The prevalence of KCNJ5 mutations was estimated through targeted DNA sequencing of KCNJ5 in 54 APAs. Confirmation of APA sample acquisition was performed by CYP11B2 immunohistochemistry (IHC) staining. The ZF steroid production profile was based on the ZF enzyme CYP17A1 IHC staining, and ZF cell morphology was based on a high cytoplasm to nucleus ratio. Seventeen (31.5%) APAs studied, harbored a KCNJ5 mutation. No female over-representation was seen in this cohort though females were found to have a higher expression of CYP11B2 than males (p = 0.009; Mann-Whitney U test). Age at adrenalectomy correlated negatively with the percentage of ZF-like cells in the APA (p = 0.01; Spearman's rho) but not with the KCNJ5 genotype. KCNJ5 mutant APAs had a high percentage of ZF-like cells (and high CYP17A1 expression) but so did the wild-type APAs. In summary, prevalence of KCNJ5 mutant APAs in this cohort was similar to other Caucasian cohorts, however, over-representation of females did not occur, which is similar to some studies in Oriental cohorts.
    Matched MeSH terms: Cytoplasm
  18. Ng ZJ, Zarin MA, Lee CK, Phapugrangkul P, Tan JS
    Arch Oral Biol, 2020 Feb;110:104617.
    PMID: 31794906 DOI: 10.1016/j.archoralbio.2019.104617
    Streptococcus mutans and Candida albicans are the main oral pathogens which contribute to dental caries that affects all ages of human being.

    OBJECTIVES: This study focuses on the potential of crude cell free supernatant (CCFS) from lactic acid bacteria (LAB) to inhibit of the growth of S. mutans UKMCC 1019.

    DESIGN: A total of 61 CCFS from LAB strains were screened for their inhibitory ability against S. mutans UKMCC 1019 by broth microdilution method. The selected LAB with highest antimicrobial activity was identified and its CCFS was characterized for pH stability, temperature tolerance, enzyme sensitivity, metabolism of carbohydrates, enzymatic activities and antimicrobial activity against S. mutans UKMCC 1019 and C. albicans UKMCC 3001 by well diffusion assay. The effect of CCFS on cell structure of S. mutans UKMCC 1019 was observed under transmission electron microscopy (TEM).

    RESULTS: The CCFS from isolate CC2 from Kimchi showed the highest inhibition against S. mutans UKMCC 1019, which was 76.46 % or 4406.08 mm2/mL and it was identified to be most closely related to Enterococcus faecium DSM 20477 based on 16 s rRNA sequencing. The CCFS of E. faecium DSM 20477 had high tolerance to acidic and alkaline environment as well as high temperature. It also shows high antifungal activities against C. albicans UKMCC 3001 with 2362.56 mm2/mL. Under TEM, the cell walls and the cytoplasm membrane of S. mutans UKMCC 1019 were disrupted by the antimicrobial substance, causing cell lysis.

    CONCLUSIONS: Hence, the CCFS from E. faecium DSM 20477 is a potential bacteriocin in future for the treatment of dental caries.

    Matched MeSH terms: Cytoplasm
  19. Awang-Junaidi AH, Fayaz MA, Kawamura E, Sobchishin L, MacPhee DJ, Honaramooz A
    Cell Tissue Res, 2020 Aug;381(2):361-377.
    PMID: 32388763 DOI: 10.1007/s00441-020-03218-5
    Gonocytes in the neonatal testis have male germline stem cell potential. The objective of the present study was to examine the behavior and ultrastructure of gonocytes in culture. Neonatal porcine testis cells were cultured for 4 weeks and underwent live-cell imaging to explore real-time interactions among cultured cells. This included imaging every 1 h from day 0 to day 3, every 2 h from day 4 to day 7, and every 1 h for 24 h at days 14, 21, and 28. Samples also underwent scanning electron microscopy, transmission electron microscopy, morphometric evaluations, immunofluorescence, and RT-PCR. Live-cell imaging revealed an active amoeboid-like movement of gonocytes, assisted by the formation of extensive cytoplasmic projections, which, using scanning electron microscopy, were categorized into spike-like filopodia, leaf-like lamellipodia, membrane ruffles, and cytoplasmic blebs. In the first week of culture, gonocytes formed loose attachments on top of a somatic cell monolayer and, in week 2, formed grape-like clusters, which, over time, grew in cell number. Starting at week 3 of culture, some of the gonocyte clusters transformed into large multinucleated embryoid body-like colonies (EBLCs) that expressed both gonocyte- and pluripotent-specific markers. The number and diameter of individual gonocytes, the number and density of organelles within gonocytes, as well as the number and diameter of the EBLCs increased over time (P cytoplasmic projections, propagated, and transformed into EBLCs that increased in size and complexity over time.
    Matched MeSH terms: Cytoplasm
  20. Jindal HM, Zandi K, Ong KC, Velayuthan RD, Rasid SM, Samudi Raju C, et al.
    PeerJ, 2017;5:e3887.
    PMID: 29018620 DOI: 10.7717/peerj.3887
    BACKGROUND: Antimicrobial peptides (AMPs) are of great potential as novel antibiotics for the treatment of broad spectrum of pathogenic microorganisms including resistant bacteria. In this study, the mechanisms of action and the therapeutic efficacy of the hybrid peptides were examined.

    METHODS: TEM, SEM and ATP efflux assay were used to evaluate the effect of hybrid peptides on the integrity of the pneumococcal cell wall/membrane. DNA retardation assay was assessed to measure the impact of hybrid peptides on the migration of genomic DNA through the agarose gel. In vitro synergistic effect was checked using the chequerboard assay. ICR male mice were used to evaluate the in vivo toxicity and antibacterial activity of the hybrid peptides in a standalone form and in combination with ceftriaxone.

    RESULTS: The results obtained from TEM and SEM indicated that the hybrid peptides caused significant morphological alterations in Streptococcus pneumoniae and disrupting the integrity of the cell wall/membrane. The rapid release of ATP from pneumococcal cells after one hour of incubation proposing that the antibacterial action for the hybrid peptides is based on membrane permeabilization and damage. The DNA retardation assay revealed that at 62.5 µg/ml all the hybrid peptides were capable of binding and preventing the pneumococcal genomic DNA from migrating through the agarose gel. In vitro synergy was observed when pneumococcal cells treated with combinations of hybrid peptides with each other and with conventional drugs erythromycin and ceftriaxone. The in vivo therapeutic efficacy results revealed that the hybrid peptide RN7-IN8 at 20 mg/kg could improve the survival rate of pneumococcal bacteremia infected mice, as 50% of the infected mice survived up to seven days post-infection. In vivo antibacterial efficacy of the hybrid peptide RN7-IN8 was signficantly improved when combined with the standard antibiotic ceftriaxone at (20 mg/kg + 20 mg/kg) as 100% of the infected mice survived up to seven days post-infection.

    DISCUSSION: Our results suggest that attacking and breaching the cell wall/membrane is most probably the principal mechanism for the hybrid peptides. In addition, the hybrid peptides could possess another mechanism of action by inhibiting intracellular functions such as DNA synthesis. AMPs could play a great role in combating antibiotic resistance as they can reduce the therapeutic concentrations of standard drugs.

    Matched MeSH terms: Cytoplasm
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links