Displaying publications 41 - 60 of 118 in total

Abstract:
Sort:
  1. Britton S, Cheng Q, Sutherland CJ, McCarthy JS
    Malar J, 2015;14:335.
    PMID: 26315027 DOI: 10.1186/s12936-015-0848-3
    To detect all malaria infections in elimination settings sensitive, high throughput and field deployable diagnostic tools are required. Loop-mediated isothermal amplification (LAMP) represents a possible field-applicable molecular diagnostic tool. However, current LAMP platforms are limited by their capacity for high throughput.
    Matched MeSH terms: DNA, Protozoan/blood; DNA, Protozoan/genetics
  2. Akter R, Vythilingam I, Khaw LT, Qvist R, Lim YA, Sitam FT, et al.
    Malar J, 2015 Oct 05;14:386.
    PMID: 26437652 DOI: 10.1186/s12936-015-0856-3
    BACKGROUND: Malaria is a vector-borne parasitic disease which is prevalent in many developing countries. Recently, it has been found that Plasmodium knowlesi, a simian malaria parasite can be life-threatening to humans. Long-tailed macaques, which are widely distributed in Malaysia, are the natural hosts for simian malaria, including P. knowlesi. The aim of the present study was to determine the prevalence of simian malaria parasites in long-tailed macaques in the district of Hulu Selangor, Selangor, Malaysia.

    METHODS: A total of 70 blood samples were collected from Macaca fascicularis dwelling in the forest of Hulu Selangor by the Department of Wildlife and National Parks Peninsular Malaysia, Kuala Lumpur, Malaysia. DNA was extracted using PureLink™ Genomic DNA Kits. Conventional and nested PCR were used to detect the genus and species of Plasmodium parasites respectively. In addition, phylogenetic analysis was carried out to confirm the species of Plasmodium parasites.

    RESULTS: Thirty-five (50 %) of the 70 samples were positive for Plasmodium using genus-specific primers. These positive samples were then subjected to nested PCR targeting the 18S ribosomal RNA genes to detect all five simian malaria parasites: namely, P. knowlesi, Plasmodium inui, Plasmodium cynomolgi, Plasmodium fieldi, and Plasmodium coatneyi. All five species of simian malaria parasites were detected. Of these, P. inui was the predominant (65.7 %), followed by P. knowlesi (60 %), P. cynomolgi (51.4 %) P. coatneyi (45.7 %) and P. fieldi (2.9 %). A total of nine macaques had mono-infection with P. knowlesi (four), P. cynomolgi (two), P. coatneyi (two) and P. fieldi (one). Eleven of the macaques had dual infections while 12 had triple infections. Three macaques were infected with four species of Plasmodium. Molecular and phylogenetic analysis confirmed the five species of Plasmodium parasites.

    CONCLUSION: This study has provided evidence to elucidate the presence of transmission of malaria parasites among the local macaques in Hulu Selangor. Since malaria is a zoonosis, it is important to determine the new control strategies for the control of malaria.

    Matched MeSH terms: DNA, Protozoan/genetics; DNA, Protozoan/isolation & purification; DNA, Protozoan/chemistry
  3. Zhang X, Kadir KA, Quintanilla-Zariñan LF, Villano J, Houghton P, Du H, et al.
    Malar J, 2016 09 02;15(1):450.
    PMID: 27590474 DOI: 10.1186/s12936-016-1494-0
    BACKGROUND: Plasmodium knowlesi and Plasmodium cynomolgi are two malaria parasites naturally transmissible between humans and wild macaque through mosquito vectors, while Plasmodium inui can be experimentally transmitted from macaques to humans. One of their major natural hosts, the long-tailed macaque (Macaca fascicularis), is host to two other species of Plasmodium (Plasmodium fieldi and Plasmodium coatneyi) and is widely distributed in Southeast Asia. This study aims to determine the distribution of wild macaques infected with malarial parasites by examining samples derived from seven populations in five countries across Southeast Asia.

    METHODS: Plasmodium knowlesi, P. cynomolgi, P. coatneyi, P. inui and P. fieldi, were detected using nested PCR assays in DNA samples from 276 wild-caught long-tailed macaques. These samples had been derived from macaques captured at seven locations, two each in the Philippines (n = 68) and Indonesia (n = 70), and one each in Cambodia (n = 54), Singapore (n = 40) and Laos (n = 44). The results were compared with previous studies of malaria parasites in long-tailed macaques from other locations in Southeast Asia. Fisher exact test and Chi square test were used to examine the geographic bias of the distribution of Plasmodium species in the macaque populations.

    RESULTS: Out of 276 samples tested, 177 were Plasmodium-positive, with P. cynomolgi being the most common and widely distributed among all long-tailed macaque populations (53.3 %) and occurring in all populations examined, followed by P. coatneyi (20.4 %), P. inui (12.3 %), P. fieldi (3.4 %) and P. knowlesi (0.4 %). One P. knowlesi infection was detected in a macaque from Laos, representing the first documented case of P. knowlesi in wildlife in Laos. Chi square test showed three of the five parasites (P. knowlesi, P. coatneyi, P. cynomolgi) with significant bias in prevalence towards macaques from Malaysian Borneo, Cambodia, and Southern Sumatra, respectively.

    CONCLUSIONS: The prevalence of malaria parasites, including those that are transmissible to humans, varied among all sampled regional populations of long-tailed macaques in Southeast Asia. The new discovery of P. knowlesi infection in Laos, and the high prevalence of P. cynomolgi infections in wild macaques in general, indicate the strong need of public advocacy in related countries.

    Matched MeSH terms: DNA, Protozoan/genetics
  4. Goh XT, Lim YA, Vythilingam I, Chew CH, Lee PC, Ngui R, et al.
    Malar J, 2013 Jul 31;12:264.
    PMID: 23902626 DOI: 10.1186/1475-2875-12-264
    BACKGROUND: Plasmodium knowlesi is a simian malaria parasite that is widespread in humans in Malaysian Borneo. However, little is known about the incidence and distribution of this parasite in the Sandakan division, Malaysian Borneo. Therefore, the aim of the present epidemiological study was to investigate the incidence and distribution of P. knowlesi as well as other Plasmodium species in this division based on a most recent developed hexaplex PCR system (PlasmoNex™).

    METHODS: A total of 189 whole blood samples were collected from Telupid Health Clinic, Sabah, Malaysia, from 2008 to 2011. All patients who participated in the study were microscopically malaria positive before recruitment. Complete demographic details and haematological profiles were obtained from 85 patients (13 females and 72 males). Identification of Plasmodium species was conducted using PlasmoNex™ targeting the 18S ssu rRNA gene.

    RESULTS: A total of 178 samples were positive for Plasmodium species by using PlasmoNex™. Plasmodium falciparum was identified in 68 samples (38.2%) followed by 64 cases (36.0%) of Plasmodium vivax, 42 (23.6%) cases of P. knowlesi, two (1.1%) cases of Plasmodium malariae and two (1.1%) mixed-species infections (i e, P. vivax/P. falciparum). Thirty-five PlasmoNex™ positive P. knowlesi samples were misdiagnosed as P. malariae by microscopy. Plasmodium knowlesi was detected in all four districts of Sandakan division with the highest incidence in the Kinabatangan district. Thrombocytopaenia and anaemia showed to be the most frequent malaria-associated haematological complications in this study.

    CONCLUSIONS: The discovery of P. knowlesi in Sandakan division showed that prospective studies on the epidemiological risk factors and transmission dynamics of P. knowlesi in these areas are crucial in order to develop strategies for effective malaria control. The availability of advanced diagnostic tool PlasmoNex™ enhanced the accuracy and accelerated the speed in the diagnosis of malaria.

    Matched MeSH terms: DNA, Protozoan/genetics
  5. Sugaram R, Suwannasin K, Kunasol C, Mathema VB, Day NPJ, Sudathip P, et al.
    Malar J, 2020 Mar 04;19(1):107.
    PMID: 32127009 DOI: 10.1186/s12936-020-03176-x
    BACKGROUND: Resistance to anti-malarials is a major threat to the control and elimination of malaria. Sulfadoxine-pyrimethamine (SP) anti-malarial treatment was used as a national policy for treatment of uncomplicated falciparum malaria in Thailand from 1973 to 1990. In order to determine whether withdrawal of this antifolate drug has led to restoration of SP sensitivity, the prevalence of genetic markers of SP resistance was assessed in historical Thai samples.

    METHODS: Plasmodium falciparum DNA was collected from the Thailand-Myanmar, Thailand-Malaysia and Thailand-Cambodia borders during 2008-2016 (N = 233). Semi-nested PCR and nucleotide sequencing were used to assess mutations in Plasmodium falciparum dihydrofolate reductase (pfdhfr), P. falciparum dihydropteroate synthase (pfdhps). Gene amplification of Plasmodium falcipaurm GTP cyclohydrolase-1 (pfgch1) was assessed by quantitative real-time PCR. The association between pfdhfr/pfdhps mutations and pfgch1 copy numbers were evaluated.

    RESULTS: Mutations in pfdhfr/pfdhsp and pfgch1 copy number fluctuated overtime through the study period. Altogether, 14 unique pfdhfr-pdfhps haplotypes collectively containing quadruple to octuple mutations were identified. High variation in pfdhfr-pfdhps haplotypes and a high proportion of pfgch1 multiple copy number (51% (73/146)) were observed on the Thailand-Myanmar border compared to other parts of Thailand. Overall, the prevalence of septuple mutations was observed for pfdhfr-pfdhps haplotypes. In particular, the prevalence of pfdhfr-pfdhps, septuple mutation was observed in the Thailand-Myanmar (50%, 73/146) and Thailand-Cambodia (65%, 26/40) border. In Thailand-Malaysia border, majority of the pfdhfr-pfdhps haplotypes transaction from quadruple (90%, 9/10) to quintuple (65%, 24/37) during 2008-2016. Within the pfdhfr-pfdhps haplotypes, during 2008-2013 the pfdhps A/S436F mutation was observed only in Thailand-Myanmar border (9%, 10/107), while it was not identified later. In general, significant correlation was observed between the prevalence of pfdhfr I164L (ϕ = 0.213, p-value = 0.001) or pfdhps K540E/N (ϕ = 0.399, p-value ≤ 0.001) mutations and pfgch1 gene amplification.

    CONCLUSIONS: Despite withdrawal of SP as anti-malarial treatment for 17 years, the border regions of Thailand continue to display high prevalence of antifolate and anti-sulfonamide resistance markers in falciparum malaria. Significant association between pfgch1 amplification and pfdhfr (I164L) or pfdhps (K540E) resistance markers were observed, suggesting a compensatory mutation.

    Matched MeSH terms: DNA, Protozoan/genetics
  6. Divis PC, Shokoples SE, Singh B, Yanow SK
    Malar J, 2010 Nov 30;9:344.
    PMID: 21114872 DOI: 10.1186/1475-2875-9-344
    BACKGROUND: The misdiagnosis of Plasmodium knowlesi by microscopy has prompted a re-evaluation of the geographic distribution, prevalence and pathogenesis of this species using molecular diagnostic tools. In this report, a specific probe for P. knowlesi, that can be used in a previously described TaqMan real-time PCR assay for detection of Plasmodium spp., and Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale, was designed and validated against clinical samples.

    METHODS: A hydrolysis probe for a real-time PCR assay was designed to recognize a specific DNA sequence within the P. knowlesi small subunit ribosomal RNA gene. The sensitivity, linearity and specificity of the assay were determined using plasmids containing P. knowlesi DNA and genomic DNA of P. falciparum, P. knowlesi, P. malariae, P. ovale and P. vivax isolated from clinical samples. DNA samples of the simian malaria parasites Plasmodium cynomolgi and Plasmodium inui that can infect humans under experimental conditions were also examined together with human DNA samples.

    RESULTS: Analytical sensitivity of the P. knowlesi-specific assay was 10 copies/μL and quantitation was linear over a range of 10-106 copies. The sensitivity of the assay is equivalent to nested PCR and P. knowlesi DNA was detected from all 40 clinical P. knowlesi specimens, including one from a patient with a parasitaemia of three parasites/μL of blood. No cross-reactivity was observed with 67 Plasmodium DNA samples (31 P. falciparum, 23 P. vivax, six P. ovale, three P. malariae, one P. malariae/P. ovale, one P. falciparum/P. malariae, one P. inui and one P. cynomolgi) and four samples of human DNA.

    CONCLUSIONS: This test demonstrated excellent sensitivity and specificity, and adds P. knowlesi to the repertoire of Plasmodium targets for the clinical diagnosis of malaria by real-time PCR assays. Furthermore, quantitation of DNA copy number provides a useful advantage over other molecular assays to investigate the correlation between levels of infection and the spectrum of disease.

    Matched MeSH terms: DNA, Protozoan/genetics
  7. Lau YL, Lee WC, Tan LH, Kamarulzaman A, Syed Omar SF, Fong MY, et al.
    Malar J, 2013 Nov 04;12:389.
    PMID: 24180319 DOI: 10.1186/1475-2875-12-389
    BACKGROUND: Plasmodium ovale is one of the causative agents of human malaria. Plasmodium ovale infection has long been thought to be non-fatal. Due to its lower morbidity, P. ovale receives little attention in malaria research.

    METHODS: Two Malaysians went to Nigeria for two weeks. After returning to Malaysia, they fell sick and were admitted to different hospitals. Plasmodium ovale parasites were identified from blood smears of these patients. The species identification was further confirmed with nested PCR. One of them was successfully treated with no incident of relapse within 12-month medical follow-up. The other patient came down with malaria-induced respiratory complication during the course of treatment. Although parasites were cleared off the circulation, the patient's condition worsened. He succumbed to multiple complications including acute respiratory distress syndrome and acute renal failure.

    RESULTS: Sequencing of the malaria parasite DNA from both cases, followed by multiple sequence alignment and phylogenetic tree construction suggested that the causative agent for both malaria cases was P. ovale curtisi.

    DISCUSSION: In this report, the differences between both cases were discussed, and the potential capability of P. ovale in causing severe complications and death as seen in this case report was highlighted.

    CONCLUSION: Plasmodium ovale is potentially capable of causing severe complications, if not death. Complete travel and clinical history of malaria patient are vital for successful diagnoses and treatment. Monitoring of respiratory and renal function of malaria patients, regardless of the species of malaria parasites involved is crucial during the course of hospital admission.

    Matched MeSH terms: DNA, Protozoan/genetics; DNA, Protozoan/chemistry
  8. Goh XT, Lim YAL, Lee PC, Nissapatorn V, Chua KH
    Mol Biochem Parasitol, 2021 07;244:111390.
    PMID: 34087264 DOI: 10.1016/j.molbiopara.2021.111390
    The present study aimed to examine the genetic diversity of human malaria parasites (i.e., P. falciparum, P. vivax and P. knowlesi) in Malaysia and southern Thailand targeting the 19-kDa C-terminal region of Merozoite Surface Protein-1 (MSP-119). This region is essential for the recognition and invasion of erythrocytes and it is considered one of the leading candidates for asexual blood stage vaccines. However, the genetic data of MSP-119 among human malaria parasites in Malaysia is limited and there is also a need to update the current sequence diversity of this gene region among the Thailand isolates. In this study, genomic DNA was extracted from 384 microscopy-positive blood samples collected from patients who attended the hospitals or clinics in Malaysia and malaria clinics in Thailand from the year 2008 to 2016. The MSP-119 was amplified using PCR followed by bidirectional sequencing. DNA sequences identified in the present study were subjected to Median-joining network analysis with sequences of MSP-119 obtained from GenBank. DNA sequence analysis revealed that PfMSP-119 of Malaysian and Thailand isolates was not genetically conserved as high number of haplotypes were detected and positive selection was prevalent in PfMSP-119, hence questioning its suitability to be used as a vaccine candidate. A novel haplotype (Q/TNG/L) was also detected in Thailand P. falciparum isolate. In contrast, PvMSP-119 was highly conserved, however for the first time, a non-synonymous substitution (A1657S) was reported among Malaysian isolates. As for PkMSP-119, the presence of purifying selection and low nucleotide diversity indicated that it might be a potential vaccine target for P. knowlesi.
    Matched MeSH terms: DNA, Protozoan/genetics*
  9. Lim YA, Mahdy MA, Tan TK, Goh XT, Jex AR, Nolan MJ, et al.
    Mol Cell Probes, 2013 Feb;27(1):28-31.
    PMID: 22971518 DOI: 10.1016/j.mcp.2012.08.006
    In the present study, 310 faecal samples from goats from eight different farms in Malaysia were tested for the presence of Giardia using a PCR-coupled approach. The nested PCR for SSU amplified products of the expected size (∼200 bp) from 21 of 310 (6.8%) samples. Sixteen of these 21 products could be sequenced successfully and represented six distinct sequence types. Phylogenetic analysis of the SSU sequence data using Bayesian Inference (BI) identified Giardia assemblages A, B and E. The identification of the 'zoonotic' assemblages A and B suggests that Giardia-infected goats represent a possible reservoir for human giardiasis in Malaysia.
    Matched MeSH terms: DNA, Protozoan/genetics*
  10. Yap NJ, Koehler AV, Ebner J, Tan TK, Lim YA, Gasser RB
    Mol Cell Probes, 2016 Feb;30(1):39-43.
    PMID: 26775614 DOI: 10.1016/j.mcp.2016.01.002
    Despite the importance of the cattle industry in Malaysia, there are very few studies of the diversity and public health significance of bovine cryptosporidiosis in this country. In the present study, we used a PCR-based approach to detect and genetically characterize Cryptosporidium DNA in faecal samples from a cohort of 215 asymptomatic cattle (of different ages) from six farms from five states of Peninsular Malaysia. Cattle on four of the six farms were test-positive for Cryptosporidium, with an overall prevalence of 3.2%. Cryptosporidium bovis and Cryptosporidium ryanae were detected in two (0.9%) and five (2.3%) samples tested; this low prevalence likely relates to the age of the cattle tested, as most (73%) of the samples tested originated from cattle that were ≥2 years of age. Future studies should investigate the zoonotic potential of Cryptosporidium in pre-weaned and weaned calves in rural communities of Malaysia.
    Matched MeSH terms: DNA, Protozoan/genetics*; DNA, Protozoan/chemistry
  11. Divis PCS, Duffy CW, Kadir KA, Singh B, Conway DJ
    Mol Ecol, 2018 02;27(4):860-870.
    PMID: 29292549 DOI: 10.1111/mec.14477
    Plasmodium knowlesi is a significant cause of human malaria transmitted as a zoonosis from macaque reservoir hosts in South-East Asia. Microsatellite genotyping has indicated that human infections in Malaysian Borneo are an admixture of two highly divergent sympatric parasite subpopulations that are, respectively, associated with long-tailed macaques (Cluster 1) and pig-tailed macaques (Cluster 2). Whole-genome sequences of clinical isolates subsequently confirmed the separate clusters, although fewer of the less common Cluster 2 type were sequenced. Here, to analyse population structure and genomic divergence in subpopulation samples of comparable depth, genome sequences were generated from 21 new clinical infections identified as Cluster 2 by microsatellite analysis, yielding a cumulative sample size for this subpopulation similar to that for Cluster 1. Profound heterogeneity in the level of intercluster divergence was distributed across the genome, with long contiguous chromosomal blocks having high or low divergence. Different mitochondrial genome clades were associated with the two major subpopulations, but limited exchange of haplotypes from one to the other was evident, as was also the case for the maternally inherited apicoplast genome. These findings indicate deep divergence of the two sympatric P. knowlesi subpopulations, with introgression likely to have occurred recently. There is no evidence yet of specific adaptation at any introgressed locus, but the recombinant mosaic types offer enhanced diversity on which selection may operate in a currently changing landscape and human environment. Loci responsible for maintaining genetic isolation of the sympatric subpopulations need to be identified in the chromosomal regions showing fixed differences.
    Matched MeSH terms: DNA, Protozoan/genetics
  12. Tay ST, Chai HC, Na SL, Hamimah H, Rohani MY, Soo-Hoo TS
    Mycopathologia, 2005 Jun;159(4):509-13.
    PMID: 15983736
    The occurrence of Cryptococcus neoformans in bird excreta in Klang valley, Malaysia was determined in this study. Of 544 samples of bird excreta collected from a local zoo, pet shops and public areas, 20 strains of C. neoformans were isolated. All C. neoformans strains were serotype A and thus identified as C. neoformans variety grubii. All did not produce color changes on canavanine-glycine-bromothymol blue agar. All were of alpha-mating types, as determined by a pheromone-specific PCR assay. The antifungal susceptibility testing using agar diffusion method Neo-sensitabs showed that all were susceptible to amphotericin B, fluconazole and itraconazole.
    Matched MeSH terms: DNA, Protozoan/genetics; DNA, Protozoan/chemistry
  13. Chua TH, Manin BO, Daim S, Vythilingam I, Drakeley C
    PLoS Negl Trop Dis, 2017 Oct;11(10):e0005991.
    PMID: 28968395 DOI: 10.1371/journal.pntd.0005991
    BACKGROUND: Anopheles balabacensis of the Leucospyrus group has been confirmed as the primary knowlesi malaria vector in Sabah, Malaysian Borneo for some time now. Presently, knowlesi malaria is the only zoonotic simian malaria in Malaysia with a high prevalence recorded in the states of Sabah and Sarawak.

    METHODOLOGY/PRINCIPAL FINDINGS: Anopheles spp. were sampled using human landing catch (HLC) method at Paradason village in Kudat district of Sabah. The collected Anopheles were identified morphologically and then subjected to total DNA extraction and polymerase chain reaction (PCR) to detect Plasmodium parasites in the mosquitoes. Identification of Plasmodium spp. was confirmed by sequencing the SSU rRNA gene with species specific primers. MEGA4 software was then used to analyse the SSU rRNA sequences and bulid the phylogenetic tree for inferring the relationship between simian malaria parasites in Sabah. PCR results showed that only 1.61% (23/1,425) of the screened An. balabacensis were infected with one or two of the five simian Plasmodium spp. found in Sabah, viz. Plasmodium coatneyi, P. inui, P. fieldi, P. cynomolgi and P. knowlesi. Sequence analysis of SSU rRNA of Plasmodium isolates showed high percentage of identity within the same Plasmodium sp. group. The phylogenetic tree based on the consensus sequences of P. knowlesi showed 99.7%-100.0% nucleotide identity among the isolates from An. balabacensis, human patients and a long-tailed macaque from the same locality.

    CONCLUSIONS/SIGNIFICANCE: This is the first study showing high molecular identity between the P. knowlesi isolates from An. balabacensis, human patients and a long-tailed macaque in Sabah. The other common simian Plasmodium spp. found in long-tailed macaques and also detected in An. balabacensis were P. coatneyi, P. inui, P. fieldi and P. cynomolgi. The high percentage identity of nucleotide sequences between the P. knowlesi isolates from the long-tailed macaque, An. balabacensis and human patients suggests a close genetic relationship between the parasites from these hosts.

    Matched MeSH terms: DNA, Protozoan/genetics
  14. Lee KS, Divis PC, Zakaria SK, Matusop A, Julin RA, Conway DJ, et al.
    PLoS Pathog, 2011 Apr;7(4):e1002015.
    PMID: 21490952 DOI: 10.1371/journal.ppat.1002015
    Plasmodium knowlesi, a malaria parasite originally thought to be restricted to macaques in Southeast Asia, has recently been recognized as a significant cause of human malaria. Unlike the benign and morphologically similar P. malariae, these parasites can lead to fatal infections. Malaria parasites, including P. knowlesi, have not yet been detected in macaques of the Kapit Division of Malaysian Borneo, where the majority of human knowlesi malaria cases have been reported. In order to extend our understanding of the epidemiology and evolutionary history of P. knowlesi, we examined 108 wild macaques for malaria parasites and sequenced the circumsporozoite protein (csp) gene and mitochondrial (mt) DNA of P. knowlesi isolates derived from macaques and humans. We detected five species of Plasmodium (P. knowlesi, P. inui, P. cynomolgi, P. fieldi and P. coatneyi) in the long-tailed and pig-tailed macaques, and an extremely high prevalence of P. inui and P. knowlesi. Macaques had a higher number of P. knowlesi genotypes per infection than humans, and some diverse alleles of the P. knowlesi csp gene and certain mtDNA haplotypes were shared between both hosts. Analyses of DNA sequence data indicate that there are no mtDNA lineages associated exclusively with either host. Furthermore, our analyses of the mtDNA data reveal that P. knowlesi is derived from an ancestral parasite population that existed prior to human settlement in Southeast Asia, and underwent significant population expansion approximately 30,000-40,000 years ago. Our results indicate that human infections with P. knowlesi are not newly emergent in Southeast Asia and that knowlesi malaria is primarily a zoonosis with wild macaques as the reservoir hosts. However, ongoing ecological changes resulting from deforestation, with an associated increase in the human population, could enable this pathogenic species of Plasmodium to switch to humans as the preferred host.
    Matched MeSH terms: DNA, Protozoan/genetics
  15. Divis PC, Singh B, Anderios F, Hisam S, Matusop A, Kocken CH, et al.
    PLoS Pathog, 2015 May;11(5):e1004888.
    PMID: 26020959 DOI: 10.1371/journal.ppat.1004888
    Human malaria parasite species were originally acquired from other primate hosts and subsequently became endemic, then spread throughout large parts of the world. A major zoonosis is now occurring with Plasmodium knowlesi from macaques in Southeast Asia, with a recent acceleration in numbers of reported cases particularly in Malaysia. To investigate the parasite population genetics, we developed sensitive and species-specific microsatellite genotyping protocols and applied these to analysis of samples from 10 sites covering a range of >1,600 km within which most cases have occurred. Genotypic analyses of 599 P. knowlesi infections (552 in humans and 47 in wild macaques) at 10 highly polymorphic loci provide radical new insights on the emergence. Parasites from sympatric long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (M. nemestrina) were very highly differentiated (FST = 0.22, and K-means clustering confirmed two host-associated subpopulations). Approximately two thirds of human P. knowlesi infections were of the long-tailed macaque type (Cluster 1), and one third were of the pig-tailed-macaque type (Cluster 2), with relative proportions varying across the different sites. Among the samples from humans, there was significant indication of genetic isolation by geographical distance overall and within Cluster 1 alone. Across the different sites, the level of multi-locus linkage disequilibrium correlated with the degree of local admixture of the two different clusters. The widespread occurrence of both types of P. knowlesi in humans enhances the potential for parasite adaptation in this zoonotic system.
    Matched MeSH terms: DNA, Protozoan/genetics
  16. Chandrasekaran H, Govind SK, Panchadcharam C, Bathmanaban P, Raman K, Thergarajan G
    Parasit Vectors, 2014;7:469.
    PMID: 25358755 DOI: 10.1186/s13071-014-0469-7
    Blastocystis sp., a widely prevalent intestinal protozoan parasite is found in a wide range of animals, including humans. The possibility of zoonotic transmission to human from birds especially ostriches led us to investigate on the cross infectivity of Blastocystis sp. isolated from the ostrich feces as well as the phenotypic and subtype characteristics. There is a need to investigate this especially with the rising number of ostrich farms due to the growing global ostrich industry.
    Matched MeSH terms: DNA, Protozoan/genetics
  17. Lau YL, Chang PY, Subramaniam V, Ng YH, Mahmud R, Ahmad AF, et al.
    Parasit Vectors, 2013 Sep 09;6(1):257.
    PMID: 24010903 DOI: 10.1186/1756-3305-6-257
    BACKGROUND: Sarcocystis species are protozoan parasites with a wide host range including snakes. Although there were several reports of Sarcocytis species in snakes, their distribution and prevalence are still not fully explored.

    METHODS: In this study, fecal specimens of several snake species in Malaysia were examined for the presence of Sarcocystis by PCR of 18S rDNA sequence. Microscopy examination of the fecal specimens for sporocysts was not carried as it was difficult to determine the species of the infecting Sarcocystis.

    RESULTS: Of the 28 snake fecal specimens, 7 were positive by PCR. BLASTn and phylogenetic analyses of the amplified 18S rDNA sequences revealed the snakes were infected with either S. nesbitti, S. singaporensis, S. zuoi or undefined Sarcocystis species.

    CONCLUSION: This study is the first to report Sarcocystis infection in a cobra, and S. nesbitti in a reticulated python.

    Matched MeSH terms: DNA, Protozoan/genetics
  18. Al-Mekhlafi AM, Mahdy MA, Al-Mekhlafi HM, Azazy AA, Fong MY
    Parasit Vectors, 2011;4:94.
    PMID: 21619624 DOI: 10.1186/1756-3305-4-94
    Malaria remains a significant health problem in Yemen with Plasmodium falciparum being the predominant species which is responsible for 90% of the malaria cases. Despite serious concerns regarding increasing drug resistance, chloroquine is still used for the prevention and treatment of malaria in Yemen. This study was carried out to determine the prevalence of choloroquine resistance (CQR) of P. falciparum isolated from Yemen based on the pfcrt T76 mutation.
    Matched MeSH terms: DNA, Protozoan/genetics
  19. Atroosh WM, Al-Mekhlafi HM, Mahdy MA, Saif-Ali R, Al-Mekhlafi AM, Surin J
    Parasit Vectors, 2011;4:233.
    PMID: 22166488 DOI: 10.1186/1756-3305-4-233
    Malaria is still a public health problem in Malaysia especially in the interior parts of Peninsular Malaysia and the states of Sabah and Sarawak (East Malaysia). This is the first study on the genetic diversity and genotype multiplicity of Plasmodium falciparum in Malaysia.
    Matched MeSH terms: DNA, Protozoan/genetics
  20. Freeman MA, Shinn AP
    Parasit Vectors, 2011;4:220.
    PMID: 22115202 DOI: 10.1186/1756-3305-4-220
    Myxosporeans are known from aquatic annelids but parasitism of platyhelminths by myxosporeans has not been widely reported. Hyperparasitism of gill monogeneans by Myxidium giardi has been reported from the European eel and Myxidium-like hyperparasites have also been observed during studies of gill monogeneans from Malaysia and Japan.The present study aimed to collect new hyperparasite material from Malaysia for morphological and molecular descriptions. In addition, PCR screening of host fish was undertaken to determine whether they are also hosts for the myxosporean.
    Matched MeSH terms: DNA, Protozoan/genetics; DNA, Protozoan/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links