Displaying publications 41 - 60 of 124 in total

Abstract:
Sort:
  1. Alizadeh F, Abdullah SN, Khodavandi A, Abdullah F, Yusuf UK, Chong PP
    J Plant Physiol, 2011 Jul 01;168(10):1106-13.
    PMID: 21333381 DOI: 10.1016/j.jplph.2010.12.007
    The expression profiles of Δ9 stearoyl-acyl carrier protein desaturase (SAD1 and SAD2) and type 3 metallothionein (MT3-A and MT3-B) were investigated in seedlings of oil palm (Elaeis guineensis) artificially inoculated with the pathogenic fungus Ganoderma boninense and the symbiotic fungus Trichoderma harzianum. Expression of SAD1 and MT3-A in roots and SAD2 in leaves were significantly up-regulated in G. boninense inoculated seedlings at 21 d after treatment when physical symptoms had not yet appeared and thereafter decreased to basal levels when symptoms became visible. Our finding demonstrated that the SAD1 expression in leaves was significantly down-regulated to negligible levels at 42 and 63 d after treatment. The transcripts of MT3 genes were synthesized in G. boninense inoculated leaves at 42 d after treatment, and the analyses did not show detectable expression of these genes before 42 d after treatment. In T. harzianum inoculated seedlings, the expression levels of SAD1 and SAD2 increased gradually and were stronger in roots than leaves, while for MT3-A and MT3-B, the expression levels were induced in leaves at 3d after treatment and subsequently maintained at same levels until 63d after treatment. The MT3-A expression was significantly up-regulated in roots at 3d after treatment and thereafter were maintained at this level. Both SAD and MT3 expression were maintained at maximum levels or at levels higher than basal. This study demonstrates that oil palm was able to distinguish between pathogenic and symbiotic fungal interactions, thus resulting in different transcriptional activation profiles of SAD and MT3 genes. Increases in expression levels of SAD and MT3 would lead to enhanced resistance against G. boninense and down-regulation of genes confer potential for invasive growth of the pathogen. Differences in expression profiles of SAD and MT3 relate to plant resistance mechanisms while supporting growth enhancing effects of symbiotic T. harzianum.
    Matched MeSH terms: Host-Pathogen Interactions
  2. Nor Rashid N, Yusof R, Watson RJ
    J Gen Virol, 2011 Nov;92(Pt 11):2620-2627.
    PMID: 21813705 DOI: 10.1099/vir.0.035352-0
    Human papillomaviruses (HPVs) with tropism for mucosal epithelia are the major aetiological factors in cervical cancer. Most cancers are associated with so-called high-risk HPV types, in particular HPV16, and constitutive expression of the HPV16 E6 and E7 oncoproteins is critical for malignant transformation in infected keratinocytes. E6 and E7 bind to and inactivate the cellular tumour suppressors p53 and Rb, respectively, thus delaying differentiation and inducing proliferation in suprabasal keratinocytes to enable HPV replication. One member of the Rb family, p130, appears to be a particularly important target for E7 in promoting S-phase entry. Recent evidence indicates that p130 regulates cell-cycle progression as part of a large protein complex termed DREAM. The composition of DREAM is cell cycle-regulated, associating with E2F4 and p130 in G0/G1 and with the B-myb transcription factor in S/G2. In this study, we addressed whether p130-DREAM is disrupted in HPV16-transformed cervical cancer cells and whether this is a critical function for E6/E7. We found that p130-DREAM was greatly diminished in HPV16-transformed cervical carcinoma cells (CaSki and SiHa) compared with control cell lines; however, when E6/E7 expression was targeted by specific small hairpin RNAs, p130-DREAM was reformed and the cell cycle was arrested. We further demonstrated that the profound G1 arrest in E7-depleted CaSki cells was dependent on p130-DREAM reformation by also targeting the expression of the DREAM component Lin-54 and p130. The results show that continued HPV16 E6/E7 expression is necessary in cervical cancer cells to prevent cell-cycle arrest by a repressive p130-DREAM complex.
    Matched MeSH terms: Host-Pathogen Interactions*
  3. Chin VK, Lee TY, Rusliza B, Chong PP
    Int J Mol Sci, 2016 Oct 18;17(10).
    PMID: 27763544
    Candida bloodstream infections remain the most frequent life-threatening fungal disease, with Candida albicans accounting for 70% to 80% of the Candida isolates recovered from infected patients. In nature, Candida species are part of the normal commensal flora in mammalian hosts. However, they can transform into pathogens once the host immune system is weakened or breached. More recently, mortality attributed to Candida infections has continued to increase due to both inherent and acquired drug resistance in Candida, the inefficacy of the available antifungal drugs, tedious diagnostic procedures, and a rising number of immunocompromised patients. Adoption of animal models, viz. minihosts, mice, and zebrafish, has brought us closer to unraveling the pathogenesis and complexity of Candida infection in human hosts, leading towards the discovery of biomarkers and identification of potential therapeutic agents. In addition, the advancement of omics technologies offers a holistic view of the Candida-host interaction in a non-targeted and non-biased manner. Hence, in this review, we seek to summarize past and present milestone findings on C. albicans virulence, adoption of animal models in the study of C. albicans infection, and the application of omics technologies in the study of Candida-host interaction. A profound understanding of the interaction between host defense and pathogenesis is imperative for better design of novel immunotherapeutic strategies in future.
    Matched MeSH terms: Host-Pathogen Interactions*
  4. Cheong HC, Yap PSX, Chong CW, Cheok YY, Lee CYQ, Tan GMY, et al.
    PLoS One, 2019;14(11):e0224658.
    PMID: 31738795 DOI: 10.1371/journal.pone.0224658
    The cervical microbiota constitutes an important protective barrier against the invasion of pathogenic microorganisms. A disruption of microbiota within the cervical milieu has been suggested to be a driving factor of sexually transmitted infections. These include Chlamydia trachomatis which frequently causes serious reproductive sequelae such as infertility in women. In this study, we profiled the cervical microbial composition of a population of 70 reproductive-age Malaysian women; among which 40 (57.1%) were diagnosed with genital C. trachomatis infection, and 30 (42.8%) without C. trachomatis infection. Our findings showed a distinct compositional difference between the cervical microbiota of C. trachomatis-infected subjects and subjects without C. trachomatis infection. Specifically, significant elevations of mostly strict and facultative anaerobes such as Streptococcus, Megasphaera, Prevotella, and Veillonella in the cervical microbiota of C. trachomatis-positive women were detected. The results from the current study highlights an interaction of C. trachomatis with the environmental microbiome in the endocervical region.
    Matched MeSH terms: Host-Pathogen Interactions/immunology
  5. Meldal BH, Bon AH, Prati D, Ayob Y, Allain JP
    J Viral Hepat, 2011 Feb;18(2):91-101.
    PMID: 20196797 DOI: 10.1111/j.1365-2893.2010.01282.x
    Malaysia is a medium endemic country for hepatitis B virus (HBV) infection but little is known about HBV strains circulating in Malaysian blood donors. Viral load, HBsAg concentrations and nested PCR products from 84 HBV surface antigen (HBsAg) positive samples were analysed in detail. Median viral load was 3050 IU/mL and median HBsAg 1150 IU/mL. Fifty-six full genome, 20 pre-S/S, 1 S gene and six basic core promoter/precore-only sequences were obtained. Genotypes B and C were present at a ratio of 2:1, and two genotype D samples were obtained, both from donors of Indian background. Phylogenetically, genotype B was more diverse with subgenotypes B2-5, B7 and B8 present, while most genotype C strains were from subgenotype C1. Genotypes B and C were equally frequent in ethnic Malays, but 80% of strains from Chinese were genotype B. HBsAg concentrations were higher in genotype C than in genotype B, in Chinese than Malays and in donors under the age of 30. HBV vaccine escape substitutions (P120S/T, I126N and G145G) were present in six strains. In the large surface protein, immuno-inactive regions were more mutated than CD8 epitopes and the major hydrophilic region. Strains of genotype B or from ethnic Malays had higher genetic diversity than strains of genotype C or from Chinese donors. Hence HBV strains circulating in Malaysia are phylogenetically diverse reflecting the ethnic mix of its population. Ethnic Malays carry lower HBsAg levels and higher genetic diversity of the surface antigen, possibly resulting in more effective immune control of the infection.
    Matched MeSH terms: Host-Pathogen Interactions*
  6. Lung RW, Hau PM, Yu KH, Yip KY, Tong JH, Chak WP, et al.
    J Pathol, 2018 Apr;244(4):394-407.
    PMID: 29230817 DOI: 10.1002/path.5018
    Nasopharyngeal carcinoma (NPC) is a highly invasive epithelial malignancy that is prevalent in southern China and Southeast Asia. It is consistently associated with latent Epstein-Barr virus (EBV) infection. In NPC, miR-BARTs, the EBV-encoded miRNAs derived from BamH1-A rightward transcripts, are abundantly expressed and contribute to cancer development by targeting various cellular and viral genes. In this study, we establish a comprehensive transcriptional profile of EBV-encoded miRNAs in a panel of NPC patient-derived xenografts and an EBV-positive NPC cell line by small RNA sequencing. Among the 40 miR-BARTs, predominant expression of 22 miRNAs was consistently detected in these tumors. Among the abundantly expressed EBV-miRNAs, BART5-5p, BART7-3p, BART9-3p, and BART14-3p could negatively regulate the expression of a key DNA double-strand break (DSB) repair gene, ataxia telangiectasia mutated (ATM), by binding to multiple sites on its 3'-UTR. Notably, the expression of these four miR-BARTs represented more than 10% of all EBV-encoded miRNAs in tumor cells, while downregulation of ATM expression was commonly detected in all of our tested sequenced samples. In addition, downregulation of ATM was also observed in primary NPC tissues in both qRT-PCR (16 NP and 45 NPC cases) and immunohistochemical staining (35 NP and 46 NPC cases) analysis. Modulation of ATM expression by BART5-5p, BART7-3p, BART9-3p, and BART14-3p was demonstrated in the transient transfection assays. These findings suggest that EBV uses miRNA machinery as a key mechanism to control the ATM signaling pathway in NPC cells. By suppressing these endogenous miR-BARTs in EBV-positive NPC cells, we further demonstrated the novel function of miR-BARTs in inhibiting Zta-induced lytic reactivation. These findings imply that the four viral miRNAs work co-operatively to modulate ATM activity in response to DNA damage and to maintain viral latency, contributing to the tumorigenesis of NPC. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
    Matched MeSH terms: Host-Pathogen Interactions
  7. Rouffaer LO, Strubbe D, Teyssier A, Salleh Hudin N, Van den Abeele AM, Cox I, et al.
    PLoS One, 2017;12(12):e0189509.
    PMID: 29281672 DOI: 10.1371/journal.pone.0189509
    Urbanization strongly affects biodiversity, altering natural communities and often leading to a reduced species richness. Yet, despite its increasingly recognized importance, how urbanization impacts on the health of individual animals, wildlife populations and on disease ecology remains poorly understood. To test whether, and how, urbanization-driven ecosystem alterations influence pathogen dynamics and avian health, we use house sparrows (Passer domesticus) and Yersinia spp. (pathogenic for passerines) as a case study. Sparrows are granivorous urban exploiters, whose western European populations have declined over the past decades, especially in highly urbanized areas. We sampled 329 house sparrows originating from 36 populations along an urbanization gradient across Flanders (Belgium), and used isolation combined with 'matrix-assisted laser desorption ionization- time of flight mass spectrometry' (MALDI-TOF MS) and PCR methods for detecting the presence of different Yersinia species. Yersinia spp. were recovered from 57.43% of the sampled house sparrows, of which 4.06%, 53.30% and 69.54% were identified as Y. pseudotuberculosis, Y. enterocolitica and other Yersinia species, respectively. Presence of Yersinia was related to the degree of urbanization, average daily temperatures and the community of granivorous birds present at sparrow capture locations. Body condition of suburban house sparrows was found to be higher compared to urban and rural house sparrows, but no relationships between sparrows' body condition and presence of Yersinia spp. were found. We conclude that two determinants of pathogen infection dynamics, body condition and pathogen occurrence, vary along an urbanization gradient, potentially mediating the impact of urbanization on avian health.
    Matched MeSH terms: Host-Pathogen Interactions*
  8. Sakeh NM, Abdullah SNA, Bahari MNA, Azzeme AM, Shaharuddin NA, Idris AS
    BMC Plant Biol, 2021 Jan 22;21(1):59.
    PMID: 33482731 DOI: 10.1186/s12870-020-02812-7
    BACKGROUND: Hemibiotrophic pathogen such as the fungal pathogen Ganoderma boninense that is destructive to oil palm, manipulates host defense mechanism by strategically switching from biotrophic to necrotrophic phase. Our previous study revealed two distinguishable expression profiles of oil palm genes that formed the basis in deducing biotrophic phase at early interaction which switched to necrotrophic phase at a later stage of infection.

    RESULTS: The present report is a continuing study from our previous published transcriptomic profiling of oil palm seedlings against G. boninense. We focused on identifying differentially expressed genes (DEGs) encoding transcription factors (TFs) from the same RNA-seq data; resulting in 106 upregulated and 108 downregulated TFs being identified. The DEGs are involved in four established defense-related pathways responsible for cell wall modification, reactive oxygen species (ROS)-mediated signaling, programmed cell death (PCD) and plant innate immunity. We discovered upregulation of JUNGBRUNNEN 1 (EgJUB1) during the fungal biotrophic phase while Ethylene Responsive Factor 113 (EgERF113) demonstrated prominent upregulation when the palm switches to defense against necrotrophic phase. EgJUB1 was shown to have a binding activity to a 19 bp palindromic SNBE1 element, WNNYBTNNNNNNNAMGNHW found in the promoter region of co-expressing EgHSFC-2b. Further in silico analysis of promoter regions revealed co-expression of EgJUB1 with TFs containing SNBE1 element with single nucleotide change at either the 5th or 18th position. Meanwhile, EgERF113 binds to both GCC and DRE/CRT elements promoting plasticity in upregulating the downstream defense-related genes. Both TFs were proven to be nuclear-localized based on subcellular localization experiment using onion epidermal cells.

    CONCLUSION: Our findings demonstrated unprecedented transcriptional reprogramming of specific TFs potentially to enable regulation of a specific set of genes during different infection phases of this hemibiotrophic fungal pathogen. The results propose the intricacy of oil palm defense response in orchestrating EgJUB1 during biotrophic and EgERF113 during the subsequent transition to the necrotrophic phase. Binding of EgJUB1 to SNBE motif instead of NACBS while EgERF113 to GCC-box and DRE/CRT motifs is unconventional and not normally associated with pathogen infection. Identification of these phase-specific oil palm TFs is important in designing strategies to tackle or attenuate the progress of infection.

    Matched MeSH terms: Host-Pathogen Interactions
  9. Tee HK, Tan CW, Yogarajah T, Lee MHP, Chai HJ, Hanapi NA, et al.
    PLoS Pathog, 2019 11;15(11):e1007863.
    PMID: 31730673 DOI: 10.1371/journal.ppat.1007863
    Enterovirus A71 (EV-A71) causes hand, foot and mouth disease epidemics with neurological complications and fatalities. However, the neuropathogenesis of EV-A71 remains poorly understood. In mice, adaptation and virulence determinants have been mapped to mutations at VP2-149, VP1-145 and VP1-244. We investigate how these amino acids alter heparin-binding phenotype and shapes EV-A71 virulence in one-day old mice. We constructed six viruses with varying residues at VP1-98, VP1-145 (which are both heparin-binding determinants) and VP2-149 (based on the wild type 149K/98E/145Q, termed KEQ) to generate KKQ, KKE, KEE, IEE and IEQ variants. We demonstrated that the weak heparin-binder IEE was highly lethal in mice. The initially strong heparin-binding IEQ variant acquired an additional mutation VP1-K244E, which confers weak heparin-binding phenotype resulting in elevated viremia and increased virus antigens in mice brain, with subsequent high virulence. IEE and IEQ-244E variants inoculated into mice disseminated efficiently and displayed high viremia. Increasing polymerase fidelity and impairing recombination of IEQ attenuated the virulence, suggesting the importance of population diversity in EV-A71 pathogenesis in vivo. Combining in silico docking and deep sequencing approaches, we inferred that virus population diversity is shaped by electrostatic interactions at the five-fold axis of the virus surface. Electrostatic surface charges facilitate virus adaptation by generating poor heparin-binding variants for better in vivo dissemination in mice, likely due to reduced adsorption to heparin-rich peripheral tissues, which ultimately results in increased neurovirulence. The dynamic switching between heparin-binding and weak heparin-binding phenotype in vivo explained the neurovirulence of EV-A71.
    Matched MeSH terms: Host-Pathogen Interactions
  10. Wong CL, Sieo CC, Tan WS, Abdullah N, Hair-Bejo M, Abu J, et al.
    Int J Food Microbiol, 2014 Feb 17;172:92-101.
    PMID: 24361838 DOI: 10.1016/j.ijfoodmicro.2013.11.034
    In this study, a Salmonella Typhimurium lytic bacteriophage, Φ st1, which was isolated from chicken faecal material, was evaluated as a candidate for biocontrol of Salmonella in chickens. The morphology of Φ st1 showed strong resemblance to members of the Siphoviridae family. Φ st1 was observed to be a DNA phage with an estimated genome size of 121 kbp. It was found to be able to infect S. Typhimurium and S. Hadar, with a stronger lytic activity against the former. Subsequent characterisation of Φ st1 against S. Typhimurium showed that Φ st1 has a latent period of 40 min with an average burst size of 22 particles per infective centre. Approximately 86.1% of the phage adsorbed to the host cells within the initial 5 min of infection. At the optimum multiplicity of infection (MOI) (0.1), the highest reduction rate of S. Typhimurium (6.6 log₁₀ CFU/ml) and increment in phage titre (3.8 log₁₀ PFU/ml) was observed. Φ st1 produced adsorption rates of 88.4-92.2% at pH7-9 and demonstrated the highest bacteria reduction (6.6 log₁₀ CFU/ml) at pH9. Φ st1 also showed an insignificant different (P>0.05) reduction rate of host cells at 37 °C (6.4 log₁₀ CFU/ml) and 42 °C (6.0 log₁₀ CFU/ml). The in vivo study using Φ st1 showed that intracloacal inoculation of ~10¹² PFU/ml of the phage in the chickens challenged with ~10¹⁰ CFU/ml of S. Typhimurium was able to reduce (P<0.05) the S. Typhimurium more rapidly than the untreated group. The Salmonella count reduced to 2.9 log₁₀ CFU/ml within 6h of post-challenge and S. Typhimurium was not detected at and after 24h of post-challenge. Reduction of Salmonella count in visceral organs was also observed at 6h post-challenge. Approximately 1.6 log₁₀ FU/ml Φ st1 was found to persist in the caecal wall of the chicks at 72 h of post-challenge. The present study indicated that Φ st1 may serve as a potential biocontrol agent to reduce the Salmonella count in caecal content of chickens.
    Matched MeSH terms: Host-Pathogen Interactions
  11. Young ND, Chan KG, Korhonen PK, Min Chong T, Ee R, Mohandas N, et al.
    Sci Rep, 2015;5:17345.
    PMID: 26621075 DOI: 10.1038/srep17345
    Schistosomiasis is a neglected tropical disease that affects more than 200 million people worldwide. The main disease-causing agents, Schistosoma japonicum, S. mansoni and S. haematobium, are blood flukes that have complex life cycles involving a snail intermediate host. In Asia, S. japonicum causes hepatointestinal disease (schistosomiasis japonica) and is challenging to control due to a broad distribution of its snail hosts and range of animal reservoir hosts. In China, extensive efforts have been underway to control this parasite, but genetic variability in S. japonicum populations could represent an obstacle to eliminating schistosomiasis japonica. Although a draft genome sequence is available for S. japonicum, there has been no previous study of molecular variation in this parasite on a genome-wide scale. In this study, we conducted the first deep genomic exploration of seven S. japonicum populations from mainland China, constructed phylogenies using mitochondrial and nuclear genomic data sets, and established considerable variation between some of the populations in genes inferred to be linked to key cellular processes and/or pathogen-host interactions. Based on the findings from this study, we propose that verifying intraspecific conservation in vaccine or drug target candidates is an important first step toward developing effective vaccines and chemotherapies against schistosomiasis.
    Matched MeSH terms: Host-Pathogen Interactions
  12. Mohd-Shaharuddin N, Mohd-Adnan A, Kua BC, Nathan S
    Fish Shellfish Immunol, 2013 Mar;34(3):762-9.
    PMID: 23296118 DOI: 10.1016/j.fsi.2012.11.052
    Cryptocaryon irritans causes Cyptocaryonosis or white spot disease in a wide range of marine fish including Lates calcarifer (Asian seabass). However, the immune response of this fish to the parasite is still poorly understood. In this study, quantitative polymerase chain reaction (qPCR) was performed to assess the expression profile of immune-related genes in L. calcarifer infected by C. irritans. A total of 21 immune-related genes encoding various functions in the fish immune system were utilized for the qPCR analysis. The experiment was initiated with the infection of juvenile fish by exposure to theronts from 200 C. irritans cysts, and non-infected juvenile fish were used as controls. Spleen, liver, gills and kidney tissues were harvested at three days post-infection from control and infected fish. In addition, organs were also harvested on day-10 post-infection from fish that had been allowed to recover from day-4 up to day-10 post-infection. L. calcarifer exhibited pathological changes on day-3 post-infection with the characteristic presence of white spots on the entire fish body, excessive mucus production and formation of a flap over the fish eye. High quality total RNA was extracted from all tissues and qPCR was performed. The qPCR analysis on the cohort of 21 immune-related genes of the various organs harvested on day-3 post-infection demonstrated that most genes were induced significantly (p 
    Matched MeSH terms: Host-Pathogen Interactions
  13. Sangappillai V, Nadarajah K
    Int J Mol Sci, 2020 Sep 30;21(19).
    PMID: 33007862 DOI: 10.3390/ijms21197224
    Lipid biosynthesis produces glycerol, which is important in fueling turgor pressure necessary for germination and penetration of plant host by fungi. As the relationship between pathogenicity and the lipid biosynthetic pathway is not fully understood, we have elucidated the role of the fatty acid synthase beta subunit dehydratase (FAS1) gene in lipid biosynthesis. The FAS1 gene was silenced through homologous double crossover in Magnaporthe oryzae strain S6 to study the effect on lipid biosynthesis. The vegetative growth of Δfas1 mutants show the highest drop on oleic acid (between 10 and 50%), while the mycelial dry weight of mutants dropped significantly on all media. Conidiation of FAS1 mutants show a ~10- and ~5-fold reduction on oatmeal and Potato Dextrose Agar (PDA), respectively. Mutants formed mycelium that were mildly pigmented, indicating that the deletion of FAS1 may have affected melanin biosynthesis. Biochemical and gene expression studies concluded that the fatty acid degradation pathway might have been interrupted by FAS1 deletion. FAS1 mutants showed no enzyme activity on glucose or olive oil, suggesting that the mutants may lack functional peroxisomes and be defective in β-oxidation of fatty acids, hence explaining the reduced lipid deposits in the spores.
    Matched MeSH terms: Host-Pathogen Interactions/genetics
  14. Yun SI, Song BH, Frank JC, Julander JG, Olsen AL, Polejaeva IA, et al.
    Viruses, 2018 08 11;10(8).
    PMID: 30103523 DOI: 10.3390/v10080422
    Zika virus (ZIKV) causes no-to-mild symptoms or severe neurological disorders. To investigate the importance of viral and host genetic variations in determining ZIKV infection outcomes, we created three full-length infectious cDNA clones as bacterial artificial chromosomes for each of three spatiotemporally distinct and genetically divergent ZIKVs: MR-766 (Uganda, 1947), P6-740 (Malaysia, 1966), and PRVABC-59 (Puerto Rico, 2015). Using the three molecularly cloned ZIKVs, together with 13 ZIKV region-specific polyclonal antibodies covering nearly the entire viral protein-coding region, we made three conceptual advances: (i) We created a comprehensive genome-wide portrait of ZIKV gene products and their related species, with several previously undescribed gene products identified in the case of all three molecularly cloned ZIKVs. (ii) We found that ZIKV has a broad cell tropism in vitro, being capable of establishing productive infection in 16 of 17 animal cell lines from 12 different species, although its growth kinetics varied depending on both the specific virus strain and host cell line. More importantly, we identified one ZIKV-non-susceptible bovine cell line that has a block in viral entry but fully supports the subsequent post-entry steps. (iii) We showed that in mice, the three molecularly cloned ZIKVs differ in their neuropathogenicity, depending on the particular combination of viral and host genetic backgrounds, as well as in the presence or absence of type I/II interferon signaling. Overall, our findings demonstrate the impact of viral and host genetic variations on the replication kinetics and neuropathogenicity of ZIKV and provide multiple avenues for developing and testing medical countermeasures against ZIKV.
    Matched MeSH terms: Host-Pathogen Interactions/genetics*
  15. Arockiaraj J, Vanaraja P, Easwvaran S, Singh A, Othman RY, Bhassu S
    Mol Biol Rep, 2012 Jun;39(6):6671-82.
    PMID: 22290288 DOI: 10.1007/s11033-012-1473-7
    In this study, we have reported a full length of small heat shock protein 37 (designated MrHSP37) gene, identified from the transcriptome database of freshwater prawn Macrobrachium rosenbergii. The complete gene sequence of the MrHSP37 is 2,425 base pairs in length, and encodes 338 amino acids. MrHSP37 contains a long heat shock protein family profile in the amino acid sequence between 205 and 288. The mRNA expressions of MrHSP37 in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) challenged M. rosenbergii were examined using quantitative real time polymerase chain reaction (qRT-PCR). MrHSP37 is highly expressed in hepatopancreas and all the other tissues (walking leg, gills, muscle, stomach, haemocyte, intestine, pleopods, brain and eye stalk) of M. rosenbergii taken for analysis. The expression is strongly up-regulated after IHHNV challenge. To understand its biological activity, the recombinant MrHSP37 gene was constructed and expressed in Escherichia coli BL21 (DE3). The results of ATPase assay showed that the recombinant MrHSP37 protein exhibited apparent ATPase activity which increased with the concentration of the protein. And also the purified recombinant MrHSP37 protein was used for thermal aggregation assay (chaperone activity). It showed that the recombinant MrHSP37 protein is an active chaperone in this assay. Taken together, these results suggest that MrHSP37 is potentially involved in the immune responses against IHHNV challenge in M. rosenbergii.
    Matched MeSH terms: Host-Pathogen Interactions
  16. Chan CL, Yew SM, Ngeow YF, Na SL, Lee KW, Hoh CC, et al.
    BMC Genomics, 2015 Nov 18;16:966.
    PMID: 26581579 DOI: 10.1186/s12864-015-2200-2
    BACKGROUND: Daldinia eschscholtzii is a wood-inhabiting fungus that causes wood decay under certain conditions. It has a broad host range and produces a large repertoire of potentially bioactive compounds. However, there is no extensive genome analysis on this fungal species.

    RESULTS: Two fungal isolates (UM 1400 and UM 1020) from human specimens were identified as Daldinia eschscholtzii by morphological features and ITS-based phylogenetic analysis. Both genomes were similar in size with 10,822 predicted genes in UM 1400 (35.8 Mb) and 11,120 predicted genes in UM 1020 (35.5 Mb). A total of 751 gene families were shared among both UM isolates, including gene families associated with fungus-host interactions. In the CAZyme comparative analysis, both genomes were found to contain arrays of CAZyme related to plant cell wall degradation. Genes encoding secreted peptidases were found in the genomes, which encode for the peptidases involved in the degradation of structural proteins in plant cell wall. In addition, arrays of secondary metabolite backbone genes were identified in both genomes, indicating of their potential to produce bioactive secondary metabolites. Both genomes also contained an abundance of gene encoding signaling components, with three proposed MAPK cascades involved in cell wall integrity, osmoregulation, and mating/filamentation. Besides genomic evidence for degrading capability, both isolates also harbored an array of genes encoding stress response proteins that are potentially significant for adaptation to living in the hostile environments.

    CONCLUSIONS: Our genomic studies provide further information for the biological understanding of the D. eschscholtzii and suggest that these wood-decaying fungi are also equipped for adaptation to adverse environments in the human host.

    Matched MeSH terms: Host-Pathogen Interactions
  17. Chin CY, Monack DM, Nathan S
    BMC Genomics, 2010;11:672.
    PMID: 21110886 DOI: 10.1186/1471-2164-11-672
    At present, very little is known about how Burkholderia pseudomallei (B. pseudomallei) interacts with its host to elicit melioidosis symptoms. We established a murine acute-phase melioidosis model and used DNA microarray technology to investigate the global host/pathogen interaction. We compared the transcriptome of infected liver and spleen with uninfected tissues over an infection period of 42 hr to identify genes whose expression is altered in response to an acute infection.
    Matched MeSH terms: Host-Pathogen Interactions/genetics*
  18. Danjuma L, Ling MP, Hamat RA, Higuchi A, Alarfaj AA, Marlina, et al.
    Tuberculosis (Edinb), 2017 12;107:38-47.
    PMID: 29050770 DOI: 10.1016/j.tube.2017.03.006
    Mycobacterium tuberculosis has a remarkable ability of long-term persistence despite vigorous host immunity and prolonged therapy. The bacteria persist in secure niches such as the mesenchymal stem cells in the bone marrow and reactivate the disease, leading to therapeutic failure. Many bacterial cells can remain latent within a diseased tissue so that their genetic material can be incorporated into the genetic material of the host tissue. This incorporated genetic material reproduces in a manner similar to that of cellular DNA. After the cell division, the incorporated gene is reproduced normally and distributed proportionately between the two progeny. This inherent adoption of long-term persistence and incorporating the bacterial genetic material into that of the host tissue remains and is considered imperative for microbial advancement and chemotherapeutic resistance; moreover, new evidence indicates that the bacteria might pass on genetic material to the host DNA sequence. Several studies focused on the survival mechanism of M. tuberculosis in the host immune system with the aim of helping the efforts to discover new drugs and vaccines against tuberculosis. This review explored the mechanisms through which this bacterium affects the expression of human genes. The first part of the review summarizes the current knowledge about the interactions between microbes and host microenvironment, with special reference to the M. tuberculosis neglected persistence in immune cells and stem cells. Then, we focused on how bacteria can affect human genes and their expression. Furthermore, we analyzed the literature base on the process of cell death during tuberculosis infection, giving particular emphasis to gene methylation as an inherited process in the neutralization of possibly injurious gene components in the genome. The final section discusses recent advances related to the M. tuberculosis interaction with host epigenetic circuitry.
    Matched MeSH terms: Host-Pathogen Interactions
  19. Akbar N, Khan NA, Sagathevan K, Iqbal M, Tawab A, Siddiqui R
    Sci Rep, 2019 11 18;9(1):17012.
    PMID: 31740685 DOI: 10.1038/s41598-019-52738-w
    Antimicrobial resistance is a major threat to human health, hence there is an urgent need to discover antibacterial molecule(s). Previously, we hypothesized that microbial gut flora of animals are a potential source of antibacterial molecules. Among various animals, Cuora amboinensis (turtle) represents an important reptile species living in diverse ecological environments and feed on organic waste and terrestrial organisms and have been used in folk medicine. The purpose of this study was to mine turtle's gut bacteria for potential antibacterial molecule(s). Several bacteria were isolated from the turtle gut and their conditioned media were prepared. Conditioned media showed potent antibacterial activity against several Gram-positive (Bacillus cereus, Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus) and Gram-negative (neuropathogenic Escherichia coli K1, Serratia marcescens, Pseudomonas aeruginosa, Salmonella enterica and Klebsiella pneumoniae) pathogenic bacteria. Conditioned media-mediated bactericidal activity was heat-resistant when treated at 95°C for 10 min. By measuring Lactate dehydrogenase release, the results showed that conditioned media had no effect on human cell viability. Tandem Mass Spectrometric analysis revealed the presence of various secondary metabolites, i.e., a series of known as well as novel N-acyl-homoserine lactones, several homologues of 4-hydroxy-2-alkylquinolines, and rhamnolipids, which are the signature metabolites of Pseudomonas species. These findings are significant and provide the basis for rational development of therapeutic interventions against bacterial infections.
    Matched MeSH terms: Host-Pathogen Interactions/drug effects
  20. Khosravi Y, Seow SW, Amoyo AA, Chiow KH, Tan TL, Wong WY, et al.
    Sci Rep, 2015;5:8731.
    PMID: 25736205 DOI: 10.1038/srep08731
    Helicobacter pylori, is an invariably commensal resident of the gut microbiome associated with gastric ulcer in adults. In addition, these patients also suffered from a low grade inflammation that activates the immune system and thus increased shunting of energy to host defense mechanisms. To assess whether a H. pylori infection could affect growth in early life, we determined the expression levels of selected metabolic gut hormones in germ free (GF) and specific pathogen-free (SPF) mice with and without the presence of H. pylori. Despite H. pylori-infected (SPFH) mice display alteration in host metabolism (elevated levels of leptin, insulin and peptide YY) compared to non-infected SPF mice, their growth curves remained the same. SPFH mice also displayed increased level of eotaxin-1. Interestingly, GF mice infected with H. pylori (GFH) also displayed increased levels of ghrelin and PYY. However, in contrast to SPFH mice, GFH showed reduced weight gain and malnutrition. These preliminary findings show that exposure to H. pylori alters host metabolism early in life; but the commensal microbiota in SPF mice can attenuate the growth retarding effect from H. pylori observed in GF mice. Further investigations of possible additional side effects of H. pylori are highly warranted.
    Matched MeSH terms: Host-Pathogen Interactions
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links