Displaying publications 41 - 60 of 169 in total

Abstract:
Sort:
  1. Suriani NS, Hussain A, Zulkifley MA
    Sensors (Basel), 2013 Aug 05;13(8):9966-98.
    PMID: 23921828 DOI: 10.3390/s130809966
    Event recognition is one of the most active research areas in video surveillance fields. Advancement in event recognition systems mainly aims to provide convenience, safety and an efficient lifestyle for humanity. A precise, accurate and robust approach is necessary to enable event recognition systems to respond to sudden changes in various uncontrolled environments, such as the case of an emergency, physical threat and a fire or bomb alert. The performance of sudden event recognition systems depends heavily on the accuracy of low level processing, like detection, recognition, tracking and machine learning algorithms. This survey aims to detect and characterize a sudden event, which is a subset of an abnormal event in several video surveillance applications. This paper discusses the following in detail: (1) the importance of a sudden event over a general anomalous event; (2) frameworks used in sudden event recognition; (3) the requirements and comparative studies of a sudden event recognition system and (4) various decision-making approaches for sudden event recognition. The advantages and drawbacks of using 3D images from multiple cameras for real-time application are also discussed. The paper concludes with suggestions for future research directions in sudden event recognition.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  2. Liu F, Wang H, Liang SN, Jin Z, Wei S, Li X, et al.
    Comput Biol Med, 2023 May;157:106790.
    PMID: 36958239 DOI: 10.1016/j.compbiomed.2023.106790
    Structural magnetic resonance imaging (sMRI) is a popular technique that is widely applied in Alzheimer's disease (AD) diagnosis. However, only a few structural atrophy areas in sMRI scans are highly associated with AD. The degree of atrophy in patients' brain tissues and the distribution of lesion areas differ among patients. Therefore, a key challenge in sMRI-based AD diagnosis is identifying discriminating atrophy features. Hence, we propose a multiplane and multiscale feature-level fusion attention (MPS-FFA) model. The model has three components, (1) A feature encoder uses a multiscale feature extractor with hybrid attention layers to simultaneously capture and fuse multiple pathological features in the sagittal, coronal, and axial planes. (2) A global attention classifier combines clinical scores and two global attention layers to evaluate the feature impact scores and balance the relative contributions of different feature blocks. (3) A feature similarity discriminator minimizes the feature similarities among heterogeneous labels to enhance the ability of the network to discriminate atrophy features. The MPS-FFA model provides improved interpretability for identifying discriminating features using feature visualization. The experimental results on the baseline sMRI scans from two databases confirm the effectiveness (e.g., accuracy and generalizability) of our method in locating pathological locations. The source code is available at https://github.com/LiuFei-AHU/MPSFFA.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods
  3. Ali HH, Sunar MS, Kolivand H
    PLoS One, 2017;12(6):e0178415.
    PMID: 28632740 DOI: 10.1371/journal.pone.0178415
    Volumetric shadows often increase the realism of rendered scenes in computer graphics. Typical volumetric shadows techniques do not provide a smooth transition effect in real-time with conservation on crispness of boundaries. This research presents a new technique for generating high quality volumetric shadows by sampling and interpolation. Contrary to conventional ray marching method, which requires extensive time, this proposed technique adopts downsampling in calculating ray marching. Furthermore, light scattering is computed in High Dynamic Range buffer to generate tone mapping. The bilateral interpolation is used along a view rays to smooth transition of volumetric shadows with respect to preserving-edges. In addition, this technique applied a cube shadow map to create multiple shadows. The contribution of this technique isreducing the number of sample points in evaluating light scattering and then introducing bilateral interpolation to improve volumetric shadows. This contribution is done by removing the inherent deficiencies significantly in shadow maps. This technique allows obtaining soft marvelous volumetric shadows, having a good performance and high quality, which show its potential for interactive applications.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  4. Rasel MA, Abdul Kareem S, Kwan Z, Yong SS, Obaidellah U
    Comput Biol Med, 2024 Aug;178:108758.
    PMID: 38905895 DOI: 10.1016/j.compbiomed.2024.108758
    Melanoma, one of the deadliest types of skin cancer, accounts for thousands of fatalities globally. The bluish, blue-whitish, or blue-white veil (BWV) is a critical feature for diagnosing melanoma, yet research into detecting BWV in dermatological images is limited. This study utilizes a non-annotated skin lesion dataset, which is converted into an annotated dataset using a proposed imaging algorithm (color threshold techniques) on lesion patches based on color palettes. A Deep Convolutional Neural Network (DCNN) is designed and trained separately on three individual and combined dermoscopic datasets, using custom layers instead of standard activation function layers. The model is developed to categorize skin lesions based on the presence of BWV. The proposed DCNN demonstrates superior performance compared to the conventional BWV detection models across different datasets. The model achieves a testing accuracy of 85.71 % on the augmented PH2 dataset, 95.00 % on the augmented ISIC archive dataset, 95.05 % on the combined augmented (PH2+ISIC archive) dataset, and 90.00 % on the Derm7pt dataset. An explainable artificial intelligence (XAI) algorithm is subsequently applied to interpret the DCNN's decision-making process about the BWV detection. The proposed approach, coupled with XAI, significantly improves the detection of BWV in skin lesions, outperforming existing models and providing a robust tool for early melanoma diagnosis.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods
  5. Rasel MA, Kareem SA, Obaidellah U
    Comput Biol Med, 2024 Dec;183:109250.
    PMID: 39395346 DOI: 10.1016/j.compbiomed.2024.109250
    The color of skin lesions is a crucial diagnostic feature for identifying malignant melanoma and other skin diseases. Typical colors associated with melanocytic lesions include tan, brown, black, red, white, and blue-gray. This study introduces a novel feature: the number of colors present in lesions, which can indicate the severity of skin diseases and help distinguish melanomas from benign lesions. We propose a color histogram analysis, a traditional image processing technique, to analyze the pixels of skin lesions from three publicly available datasets: PH2, ISIC2016, and Med-Node, which include dermoscopic and non-dermoscopic images. While the PH2 dataset contains ground truth about skin lesion colors, the ISIC2016 and Med-Node datasets lack such annotations; our algorithm establishes this ground truth using the color histogram analysis based on the PH2 dataset. We then design and train a 19-layer Convolutional Neural Network (CNN) with different skip connections of residual blocks to classify lesions into three categories based on the number of colors present. The DeepDream algorithm is utilized to visualize the learned features of different layers, and multiple configurations of the proposed CNN are tested, achieving the highest weighted F1-score of 75.00 % on the test set. LIME is subsequently applied to identify the most important features influencing the model's decision-making. The findings demonstrate that the number of colors in lesions is a significant feature for describing skin conditions. The proposed CNN, particularly with three skip connections, shows strong potential for clinical application in diagnosing melanoma, supporting its use alongside traditional diagnostic methods.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods
  6. Dey A, Chattopadhyay S, Singh PK, Ahmadian A, Ferrara M, Senu N, et al.
    Sci Rep, 2021 Dec 15;11(1):24065.
    PMID: 34911977 DOI: 10.1038/s41598-021-02731-z
    COVID-19 is a respiratory disease that causes infection in both lungs and the upper respiratory tract. The World Health Organization (WHO) has declared it a global pandemic because of its rapid spread across the globe. The most common way for COVID-19 diagnosis is real-time reverse transcription-polymerase chain reaction (RT-PCR) which takes a significant amount of time to get the result. Computer based medical image analysis is more beneficial for the diagnosis of such disease as it can give better results in less time. Computed Tomography (CT) scans are used to monitor lung diseases including COVID-19. In this work, a hybrid model for COVID-19 detection has developed which has two key stages. In the first stage, we have fine-tuned the parameters of the pre-trained convolutional neural networks (CNNs) to extract some features from the COVID-19 affected lungs. As pre-trained CNNs, we have used two standard CNNs namely, GoogleNet and ResNet18. Then, we have proposed a hybrid meta-heuristic feature selection (FS) algorithm, named as Manta Ray Foraging based Golden Ratio Optimizer (MRFGRO) to select the most significant feature subset. The proposed model is implemented over three publicly available datasets, namely, COVID-CT dataset, SARS-COV-2 dataset, and MOSMED dataset, and attains state-of-the-art classification accuracies of 99.15%, 99.42% and 95.57% respectively. Obtained results confirm that the proposed approach is quite efficient when compared to the local texture descriptors used for COVID-19 detection from chest CT-scan images.
    Matched MeSH terms: Radiographic Image Interpretation, Computer-Assisted/methods*
  7. Lim WX, Chen Z
    Med Biol Eng Comput, 2024 Aug;62(8):2571-2583.
    PMID: 38649629 DOI: 10.1007/s11517-024-03093-0
    Diabetic retinopathy disease contains lesions (e.g., exudates, hemorrhages, and microaneurysms) that are minute to the naked eye. Determining the lesions at pixel level poses a challenge as each pixel does not reflect any semantic entities. Furthermore, the computational cost of inspecting each pixel is expensive because the number of pixels is high even at low resolution. In this work, we propose a hybrid image processing method. Simple Linear Iterative Clustering with Gaussian Filter (SLIC-G) for the purpose of overcoming pixel constraints. The SLIC-G image processing method is divided into two stages: (1) simple linear iterative clustering superpixel segmentation and (2) Gaussian smoothing operation. In such a way, a large number of new transformed datasets are generated and then used for model training. Finally, two performance evaluation metrics that are suitable for imbalanced diabetic retinopathy datasets were used to validate the effectiveness of the proposed SLIC-G. The results indicate that, in comparison to prior published works' results, the proposed SLIC-G shows better performance on image classification of class imbalanced diabetic retinopathy datasets. This research reveals the importance of image processing and how it influences the performance of deep learning networks. The proposed SLIC-G enhances pre-trained network performance by eliminating the local redundancy of an image, which preserves local structures, but avoids over-segmented, noisy clips. It closes the research gap by introducing the use of superpixel segmentation and Gaussian smoothing operation as image processing methods in diabetic retinopathy-related tasks.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods
  8. Tan CC, Eswaran C
    J Med Syst, 2011 Feb;35(1):49-58.
    PMID: 20703586 DOI: 10.1007/s10916-009-9340-3
    This paper presents the results obtained for medical image compression using autoencoder neural networks. Since mammograms (medical images) are usually of big sizes, training of autoencoders becomes extremely tedious and difficult if the whole image is used for training. We show in this paper that the autoencoders can be trained successfully by using image patches instead of the whole image. The compression performances of different types of autoencoders are compared based on two parameters, namely mean square error and structural similarity index. It is found from the experimental results that the autoencoder which does not use Restricted Boltzmann Machine pre-training yields better results than those which use this pre-training method.
    Matched MeSH terms: Radiographic Image Interpretation, Computer-Assisted/instrumentation; Radiographic Image Interpretation, Computer-Assisted/methods*
  9. Idroas M, Rahim RA, Green RG, Ibrahim MN, Rahiman MH
    Sensors (Basel), 2010;10(10):9512-28.
    PMID: 22163423 DOI: 10.3390/s101009512
    This research investigates the use of charge coupled device (abbreviated as CCD) linear image sensors in an optical tomographic instrumentation system used for sizing particles. The measurement system, consisting of four CCD linear image sensors are configured around an octagonal shaped flow pipe for a four projections system is explained. The four linear image sensors provide 2,048 pixel imaging with a pixel size of 14 micron × 14 micron, hence constituting a high-resolution system. Image reconstruction for a four-projection optical tomography system is also discussed, where a simple optical model is used to relate attenuation due to variations in optical density, [R], within the measurement section. Expressed in matrix form this represents the forward problem in tomography [S] [R] = [M]. In practice, measurements [M] are used to estimate the optical density distribution by solving the inverse problem [R] = [S](-1)[M]. Direct inversion of the sensitivity matrix, [S], is not possible and two approximations are considered and compared-the transpose and the pseudo inverse sensitivity matrices.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/instrumentation*; Image Interpretation, Computer-Assisted/methods*
  10. Noor NM, Yunus A, Bakar SA, Hussin A, Rijal OM
    Comput Med Imaging Graph, 2011 Apr;35(3):186-94.
    PMID: 21036539 DOI: 10.1016/j.compmedimag.2010.10.002
    This paper investigates a novel statistical discrimination procedure to detect PTB when the gold standard requirement is taken into consideration. Archived data were used to establish two groups of patients which are the control and test group. The control group was used to develop the statistical discrimination procedure using four vectors of wavelet coefficients as feature vectors for the detection of pulmonary tuberculosis (PTB), lung cancer (LC), and normal lung (NL). This discrimination procedure was investigated using the test group where the number of sputum positive and sputum negative cases that were correctly classified as PTB cases were noted. The proposed statistical discrimination method is able to detect PTB patients and LC with high true positive fraction. The method is also able to detect PTB patients that are sputum negative and therefore may be used as a complement to the gold standard.
    Matched MeSH terms: Radiographic Image Interpretation, Computer-Assisted/methods*; Radiographic Image Interpretation, Computer-Assisted/standards*
  11. Abdullah KA, McEntee MF, Reed W, Kench PL
    J Med Imaging Radiat Oncol, 2016 Aug;60(4):459-68.
    PMID: 27241506 DOI: 10.1111/1754-9485.12473
    The aim of this systematic review is to evaluate the radiation dose reduction achieved using iterative reconstruction (IR) compared to filtered back projection (FBP) in coronary CT angiography (CCTA) and assess the impact on diagnostic image quality. A systematic search of seven electronic databases was performed to identify all studies using a developed keywords strategy. A total of 14 studies met the criteria and were included in a review analysis. The results showed that there was a significant reduction in radiation dose when using IR compared to FBP (P  0.05). The mean ± SD difference of image noise, signal-noise ratio (SNR) and contrast-noise ratio (CNR) were 1.05 ± 1.29 HU, 0.88 ± 0.56 and 0.63 ± 1.83 respectively. The mean ± SD percentages of overall image quality scores were 71.79 ± 12.29% (FBP) and 67.31 ± 22.96% (IR). The mean ± SD percentages of coronary segment analysis were 95.43 ± 2.57% (FBP) and 97.19 ± 2.62% (IR). In conclusion, this review analysis shows that CCTA with the use of IR leads to a significant reduction in radiation dose as compared to the use of FBP. Diagnostic image quality of IR at reduced dose (30-41%) is comparable to FBP at standard dose in the diagnosis of CAD.
    Matched MeSH terms: Radiographic Image Interpretation, Computer-Assisted/methods*
  12. Ng KH, Lau S
    Med Phys, 2015 Dec;42(12):7059-77.
    PMID: 26632060 DOI: 10.1118/1.4935141
    Breast density is a strong predictor of the failure of mammography screening to detect breast cancer and is a strong predictor of the risk of developing breast cancer. The many imaging options that are now available for imaging dense breasts show great promise, but there is still the question of determining which women are "dense" and what imaging modality is suitable for individual women. To date, mammographic breast density has been classified according to the Breast Imaging-Reporting and Data System (BI-RADS) categories from visual assessment, but this is known to be very subjective. Despite many research reports, the authors believe there has been a lack of physics-led and evidence-based arguments about what breast density actually is, how it should be measured, and how it should be used. In this paper, the authors attempt to start correcting this situation by reviewing the history of breast density research and the debates generated by the advocacy movement. The authors review the development of breast density estimation from pattern analysis to area-based analysis, and the current automated volumetric breast density (VBD) analysis. This is followed by a discussion on seeking the ground truth of VBD and mapping volumetric methods to BI-RADS density categories. The authors expect great improvement in VBD measurements that will satisfy the needs of radiologists, epidemiologists, surgeons, and physicists. The authors believe that they are now witnessing a paradigm shift toward personalized breast screening, which is going to see many more cancers being detected early, with the use of automated density measurement tools as an important component.
    Matched MeSH terms: Radiographic Image Interpretation, Computer-Assisted/methods*
  13. Yazdani S, Yusof R, Riazi A, Karimian A
    Diagn Pathol, 2014;9:207.
    PMID: 25540017 DOI: 10.1186/s13000-014-0207-7
    Brain segmentation in magnetic resonance images (MRI) is an important stage in clinical studies for different issues such as diagnosis, analysis, 3-D visualizations for treatment and surgical planning. MR Image segmentation remains a challenging problem in spite of different existing artifacts such as noise, bias field, partial volume effects and complexity of the images. Some of the automatic brain segmentation techniques are complex and some of them are not sufficiently accurate for certain applications. The goal of this paper is proposing an algorithm that is more accurate and less complex).
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  14. Noor NM, Than JC, Rijal OM, Kassim RM, Yunus A, Zeki AA, et al.
    J Med Syst, 2015 Mar;39(3):22.
    PMID: 25666926 DOI: 10.1007/s10916-015-0214-6
    Interstitial Lung Disease (ILD) encompasses a wide array of diseases that share some common radiologic characteristics. When diagnosing such diseases, radiologists can be affected by heavy workload and fatigue thus decreasing diagnostic accuracy. Automatic segmentation is the first step in implementing a Computer Aided Diagnosis (CAD) that will help radiologists to improve diagnostic accuracy thereby reducing manual interpretation. Automatic segmentation proposed uses an initial thresholding and morphology based segmentation coupled with feedback that detects large deviations with a corrective segmentation. This feedback is analogous to a control system which allows detection of abnormal or severe lung disease and provides a feedback to an online segmentation improving the overall performance of the system. This feedback system encompasses a texture paradigm. In this study we studied 48 males and 48 female patients consisting of 15 normal and 81 abnormal patients. A senior radiologist chose the five levels needed for ILD diagnosis. The results of segmentation were displayed by showing the comparison of the automated and ground truth boundaries (courtesy of ImgTracer™ 1.0, AtheroPoint™ LLC, Roseville, CA, USA). The left lung's performance of segmentation was 96.52% for Jaccard Index and 98.21% for Dice Similarity, 0.61 mm for Polyline Distance Metric (PDM), -1.15% for Relative Area Error and 4.09% Area Overlap Error. The right lung's performance of segmentation was 97.24% for Jaccard Index, 98.58% for Dice Similarity, 0.61 mm for PDM, -0.03% for Relative Area Error and 3.53% for Area Overlap Error. The segmentation overall has an overall similarity of 98.4%. The segmentation proposed is an accurate and fully automated system.
    Matched MeSH terms: Radiographic Image Interpretation, Computer-Assisted/methods*
  15. Imran M, Hashim R, Noor Elaiza AK, Irtaza A
    ScientificWorldJournal, 2014;2014:752090.
    PMID: 25121136 DOI: 10.1155/2014/752090
    One of the major challenges for the CBIR is to bridge the gap between low level features and high level semantics according to the need of the user. To overcome this gap, relevance feedback (RF) coupled with support vector machine (SVM) has been applied successfully. However, when the feedback sample is small, the performance of the SVM based RF is often poor. To improve the performance of RF, this paper has proposed a new technique, namely, PSO-SVM-RF, which combines SVM based RF with particle swarm optimization (PSO). The aims of this proposed technique are to enhance the performance of SVM based RF and also to minimize the user interaction with the system by minimizing the RF number. The PSO-SVM-RF was tested on the coral photo gallery containing 10908 images. The results obtained from the experiments showed that the proposed PSO-SVM-RF achieved 100% accuracy in 8 feedback iterations for top 10 retrievals and 80% accuracy in 6 iterations for 100 top retrievals. This implies that with PSO-SVM-RF technique high accuracy rate is achieved at a small number of iterations.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  16. Mookiah MR, Acharya UR, Koh JE, Chandran V, Chua CK, Tan JH, et al.
    Comput Biol Med, 2014 Oct;53:55-64.
    PMID: 25127409 DOI: 10.1016/j.compbiomed.2014.07.015
    Age-related Macular Degeneration (AMD) is one of the major causes of vision loss and blindness in ageing population. Currently, there is no cure for AMD, however early detection and subsequent treatment may prevent the severe vision loss or slow the progression of the disease. AMD can be classified into two types: dry and wet AMDs. The people with macular degeneration are mostly affected by dry AMD. Early symptoms of AMD are formation of drusen and yellow pigmentation. These lesions are identified by manual inspection of fundus images by the ophthalmologists. It is a time consuming, tiresome process, and hence an automated diagnosis of AMD screening tool can aid clinicians in their diagnosis significantly. This study proposes an automated dry AMD detection system using various entropies (Shannon, Kapur, Renyi and Yager), Higher Order Spectra (HOS) bispectra features, Fractional Dimension (FD), and Gabor wavelet features extracted from greyscale fundus images. The features are ranked using t-test, Kullback-Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance (CBBD), Receiver Operating Characteristics (ROC) curve-based and Wilcoxon ranking methods in order to select optimum features and classified into normal and AMD classes using Naive Bayes (NB), k-Nearest Neighbour (k-NN), Probabilistic Neural Network (PNN), Decision Tree (DT) and Support Vector Machine (SVM) classifiers. The performance of the proposed system is evaluated using private (Kasturba Medical Hospital, Manipal, India), Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) datasets. The proposed system yielded the highest average classification accuracies of 90.19%, 95.07% and 95% with 42, 54 and 38 optimal ranked features using SVM classifier for private, ARIA and STARE datasets respectively. This automated AMD detection system can be used for mass fundus image screening and aid clinicians by making better use of their expertise on selected images that require further examination.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  17. Gan HS, Swee TT, Abdul Karim AH, Sayuti KA, Abdul Kadir MR, Tham WK, et al.
    ScientificWorldJournal, 2014;2014:294104.
    PMID: 24977191 DOI: 10.1155/2014/294104
    Well-defined image can assist user to identify region of interest during segmentation. However, complex medical image is usually characterized by poor tissue contrast and low background luminance. The contrast improvement can lift image visual quality, but the fundamental contrast enhancement methods often overlook the sudden jump problem. In this work, the proposed bihistogram Bezier curve contrast enhancement introduces the concept of "adequate contrast enhancement" to overcome sudden jump problem in knee magnetic resonance image. Since every image produces its own intensity distribution, the adequate contrast enhancement checks on the image's maximum intensity distortion and uses intensity discrepancy reduction to generate Bezier transform curve. The proposed method improves tissue contrast and preserves pertinent knee features without compromising natural image appearance. Besides, statistical results from Fisher's Least Significant Difference test and the Duncan test have consistently indicated that the proposed method outperforms fundamental contrast enhancement methods to exalt image visual quality. As the study is limited to relatively small image database, future works will include a larger dataset with osteoarthritic images to assess the clinical effectiveness of the proposed method to facilitate the image inspection.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  18. Rassem TH, Khoo BE
    ScientificWorldJournal, 2014;2014:373254.
    PMID: 24977193 DOI: 10.1155/2014/373254
    Despite the fact that the two texture descriptors, the completed modeling of Local Binary Pattern (CLBP) and the Completed Local Binary Count (CLBC), have achieved a remarkable accuracy for invariant rotation texture classification, they inherit some Local Binary Pattern (LBP) drawbacks. The LBP is sensitive to noise, and different patterns of LBP may be classified into the same class that reduces its discriminating property. Although, the Local Ternary Pattern (LTP) is proposed to be more robust to noise than LBP, however, the latter's weakness may appear with the LTP as well as with LBP. In this paper, a novel completed modeling of the Local Ternary Pattern (LTP) operator is proposed to overcome both LBP drawbacks, and an associated completed Local Ternary Pattern (CLTP) scheme is developed for rotation invariant texture classification. The experimental results using four different texture databases show that the proposed CLTP achieved an impressive classification accuracy as compared to the CLBP and CLBC descriptors.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  19. Acharya UR, Sree SV, Molinari F, Saba L, Nicolaides A, Suri JS
    J Clin Ultrasound, 2015 Jun;43(5):302-11.
    PMID: 24909942 DOI: 10.1002/jcu.22183
    To test a computer-aided diagnostic method for differentiating symptomatic from asymptomatic carotid B-mode ultrasonographic images.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
  20. Sim KS, Chia FK, Nia ME, Tso CP, Chong AK, Abbas SF, et al.
    Comput Biol Med, 2014 Jun;49:46-59.
    PMID: 24736203 DOI: 10.1016/j.compbiomed.2014.03.003
    A computer-aided detection auto-probing (CADAP) system is presented for detecting breast lesions using dynamic contrast enhanced magnetic resonance imaging, through a spatial-based discrete Fourier transform. The stand-alone CADAP system reduces noise, refines region of interest (ROI) automatically, and detects the breast lesion with minimal false positive detection. The lesions are then classified and colourised according to their characteristics, whether benign, suspicious or malignant. To enhance the visualisation, the entire analysed ROI is constructed into a 3-D image, so that the user can diagnose based on multiple views on the ROI. The proposed method has been applied to 101 sets of digital images, and the results compared with the biopsy results done by radiologists. The proposed scheme is able to identify breast cancer regions accurately and efficiently.
    Matched MeSH terms: Image Interpretation, Computer-Assisted/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links