Displaying publications 41 - 60 of 289 in total

Abstract:
Sort:
  1. Arashi M, Roozbeh M, Hamzah NA, Gasparini M
    PLoS One, 2021;16(4):e0245376.
    PMID: 33831027 DOI: 10.1371/journal.pone.0245376
    With the advancement of technology, analysis of large-scale data of gene expression is feasible and has become very popular in the era of machine learning. This paper develops an improved ridge approach for the genome regression modeling. When multicollinearity exists in the data set with outliers, we consider a robust ridge estimator, namely the rank ridge regression estimator, for parameter estimation and prediction. On the other hand, the efficiency of the rank ridge regression estimator is highly dependent on the ridge parameter. In general, it is difficult to provide a satisfactory answer about the selection for the ridge parameter. Because of the good properties of generalized cross validation (GCV) and its simplicity, we use it to choose the optimum value of the ridge parameter. The GCV function creates a balance between the precision of the estimators and the bias caused by the ridge estimation. It behaves like an improved estimator of risk and can be used when the number of explanatory variables is larger than the sample size in high-dimensional problems. Finally, some numerical illustrations are given to support our findings.
    Matched MeSH terms: Machine Learning*
  2. Lim LWK, Chung HH, Chong YL, Lee NK
    Comput Biol Chem, 2018 Jun;74:132-141.
    PMID: 29602043 DOI: 10.1016/j.compbiolchem.2018.03.019
    The race for the discovery of enhancers at a genome-wide scale has been on since the commencement of next generation sequencing decades after the discovery of the first enhancer, SV40. A few enhancer-predicting features such as chromatin feature, histone modifications and sequence feature had been implemented with varying success rates. However, to date, there is no consensus yet on the single enhancer marker that can be employed to ultimately distinguish and uncover enhancers from the enormous genomic regions. Many supervised, unsupervised and semi-supervised computational approaches had emerged to complement and facilitate experimental approaches in enhancer discovery. In this review, we placed our focus on the recently emerged enhancer predictor tools that work on general enhancer features such as sequences, chromatin states and histone modifications, eRNA and of multiple feature approach. Comparisons of their prediction methods and outcomes were done across their functionally similar counterparts. We provide some recommendations and insights for future development of more comprehensive and robust tools.
    Matched MeSH terms: Machine Learning*
  3. Mustafa HMJ, Ayob M, Nazri MZA, Kendall G
    PLoS One, 2019;14(5):e0216906.
    PMID: 31137034 DOI: 10.1371/journal.pone.0216906
    The performance of data clustering algorithms is mainly dependent on their ability to balance between the exploration and exploitation of the search process. Although some data clustering algorithms have achieved reasonable quality solutions for some datasets, their performance across real-life datasets could be improved. This paper proposes an adaptive memetic differential evolution optimisation algorithm (AMADE) for addressing data clustering problems. The memetic algorithm (MA) employs an adaptive differential evolution (DE) mutation strategy, which can offer superior mutation performance across many combinatorial and continuous problem domains. By hybridising an adaptive DE mutation operator with the MA, we propose that it can lead to faster convergence and better balance the exploration and exploitation of the search. We would also expect that the performance of AMADE to be better than MA and DE if executed separately. Our experimental results, based on several real-life benchmark datasets, shows that AMADE outperformed other compared clustering algorithms when compared using statistical analysis. We conclude that the hybridisation of MA and the adaptive DE is a suitable approach for addressing data clustering problems and can improve the balance between global exploration and local exploitation of the optimisation algorithm.
    Matched MeSH terms: Machine Learning*
  4. Motlagh O, Papageorgiou E, Tang S, Zamberi Jamaludin
    Sains Malaysiana, 2014;43:1781-1790.
    Soft computing is an alternative to hard and classic math models especially when it comes to uncertain and incomplete data. This includes regression and relationship modeling of highly interrelated variables with applications in curve fitting, interpolation, classification, supervised learning, generalization, unsupervised learning and forecast. Fuzzy cognitive map (FCM) is a recurrent neural structure that encompasses all possible connections including relationships among inputs, inputs to outputs and feedbacks. This article examines a new methods for nonlinear multivariate regression using fuzzy cognitive map. The main contribution is the application of nested FCM structure to define edge weights in form of meaningful functions rather than crisp values. There are example cases in this article which serve as a platform to modelling even more complex engineering systems. The obtained results, analysis and comparison with similar techniques are included to show the robustness and accuracy of the developed method in multivariate regression, along with future lines of research.
    Matched MeSH terms: Supervised Machine Learning; Unsupervised Machine Learning
  5. Mohamad Arif J, Ab Razak MF, Awang S, Tuan Mat SR, Ismail NSN, Firdaus A
    PLoS One, 2021;16(9):e0257968.
    PMID: 34591930 DOI: 10.1371/journal.pone.0257968
    The evolution of malware is causing mobile devices to crash with increasing frequency. Therefore, adequate security evaluations that detect Android malware are crucial. Two techniques can be used in this regard: Static analysis, which meticulously examines the full codes of applications, and dynamic analysis, which monitors malware behaviour. While both perform security evaluations successfully, there is still room for improvement. The goal of this research is to examine the effectiveness of static analysis to detect Android malware by using permission-based features. This study proposes machine learning with different sets of classifiers was used to evaluate Android malware detection. The feature selection method in this study was applied to determine which features were most capable of distinguishing malware. A total of 5,000 Drebin malware samples and 5,000 Androzoo benign samples were utilised. The performances of the different sets of classifiers were then compared. The results indicated that with a TPR value of 91.6%, the Random Forest algorithm achieved the highest level of accuracy in malware detection.
    Matched MeSH terms: Machine Learning*
  6. Jain P, Chhabra H, Chauhan U, Prakash K, Gupta A, Soliman MS, et al.
    Sci Rep, 2023 Jan 31;13(1):1792.
    PMID: 36720922 DOI: 10.1038/s41598-023-29024-x
    A hepta-band terahertz metamaterial absorber (MMA) with modified dual T-shaped resonators deposited on polyimide is presented for sensing applications. The proposed polarization sensitive MMA is ultra-thin (0.061 λ) and compact (0.21 λ) at its lowest operational frequency, with multiple absorption peaks at 1.89, 4.15, 5.32, 5.84, 7.04, 8.02, and 8.13 THz. The impedance matching theory and electric field distribution are investigated to understand the physical mechanism of hepta-band absorption. The sensing functionality is evaluated using a surrounding medium with a refractive index between 1 and 1.1, resulting in good Quality factor (Q) value of 117. The proposed sensor has the highest sensitivity of 4.72 THz/RIU for glucose detection. Extreme randomized tree (ERT) model is utilized to predict absorptivities for intermediate frequencies with unit cell dimensions, substrate thickness, angle variation, and refractive index values to reduce simulation time. The effectiveness of the ERT model in predicting absorption values is evaluated using the Adjusted R2 score, which is close to 1.0 for nmin = 2, demonstrating the prediction efficiency in various test cases. The experimental results show that 60% of simulation time and resources can be saved by simulating absorber design using the ERT model. The proposed MMA sensor with an ERT model has potential applications in biomedical fields such as bacterial infections, malaria, and other diseases.
    Matched MeSH terms: Machine Learning*
  7. Dai Z, Por LY, Chen YL, Yang J, Ku CS, Alizadehsani R, et al.
    PLoS One, 2024;19(9):e0308469.
    PMID: 39259729 DOI: 10.1371/journal.pone.0308469
    In an era marked by pervasive digital connectivity, cybersecurity concerns have escalated. The rapid evolution of technology has led to a spectrum of cyber threats, including sophisticated zero-day attacks. This research addresses the challenge of existing intrusion detection systems in identifying zero-day attacks using the CIC-MalMem-2022 dataset and autoencoders for anomaly detection. The trained autoencoder is integrated with XGBoost and Random Forest, resulting in the models XGBoost-AE and Random Forest-AE. The study demonstrates that incorporating an anomaly detector into traditional models significantly enhances performance. The Random Forest-AE model achieved 100% accuracy, precision, recall, F1 score, and Matthews Correlation Coefficient (MCC), outperforming the methods proposed by Balasubramanian et al., Khan, Mezina et al., Smith et al., and Dener et al. When tested on unseen data, the Random Forest-AE model achieved an accuracy of 99.9892%, precision of 100%, recall of 99.9803%, F1 score of 99.9901%, and MCC of 99.8313%. This research highlights the effectiveness of the proposed model in maintaining high accuracy even with previously unseen data.
    Matched MeSH terms: Machine Learning*
  8. Swift RV, Jusoh SA, Offutt TL, Li ES, Amaro RE
    J Chem Inf Model, 2016 05 23;56(5):830-42.
    PMID: 27097522 DOI: 10.1021/acs.jcim.5b00684
    Ensemble docking can be a successful virtual screening technique that addresses the innate conformational heterogeneity of macromolecular drug targets. Yet, lacking a method to identify a subset of conformational states that effectively segregates active and inactive small molecules, ensemble docking may result in the recommendation of a large number of false positives. Here, three knowledge-based methods that construct structural ensembles for virtual screening are presented. Each method selects ensembles by optimizing an objective function calculated using the receiver operating characteristic (ROC) curve: either the area under the ROC curve (AUC) or a ROC enrichment factor (EF). As the number of receptor conformations, N, becomes large, the methods differ in their asymptotic scaling. Given a set of small molecules with known activities and a collection of target conformations, the most resource intense method is guaranteed to find the optimal ensemble but scales as O(2(N)). A recursive approximation to the optimal solution scales as O(N(2)), and a more severe approximation leads to a faster method that scales linearly, O(N). The techniques are generally applicable to any system, and we demonstrate their effectiveness on the androgen nuclear hormone receptor (AR), cyclin-dependent kinase 2 (CDK2), and the peroxisome proliferator-activated receptor δ (PPAR-δ) drug targets. Conformations that consisted of a crystal structure and molecular dynamics simulation cluster centroids were used to form AR and CDK2 ensembles. Multiple available crystal structures were used to form PPAR-δ ensembles. For each target, we show that the three methods perform similarly to one another on both the training and test sets.
    Matched MeSH terms: Machine Learning*
  9. Nhu VH, Mohammadi A, Shahabi H, Ahmad BB, Al-Ansari N, Shirzadi A, et al.
    PMID: 32650595 DOI: 10.3390/ijerph17144933
    We used AdaBoost (AB), alternating decision tree (ADTree), and their combination as an ensemble model (AB-ADTree) to spatially predict landslides in the Cameron Highlands, Malaysia. The models were trained with a database of 152 landslides compiled using Synthetic Aperture Radar Interferometry, Google Earth images, and field surveys, and 17 conditioning factors (slope, aspect, elevation, distance to road, distance to river, proximity to fault, road density, river density, normalized difference vegetation index, rainfall, land cover, lithology, soil types, curvature, profile curvature, stream power index, and topographic wetness index). We carried out the validation process using the area under the receiver operating characteristic curve (AUC) and several parametric and non-parametric performance metrics, including positive predictive value, negative predictive value, sensitivity, specificity, accuracy, root mean square error, and the Friedman and Wilcoxon sign rank tests. The AB model (AUC = 0.96) performed better than the ensemble AB-ADTree model (AUC = 0.94) and successfully outperformed the ADTree model (AUC = 0.59) in predicting landslide susceptibility. Our findings provide insights into the development of more efficient and accurate landslide predictive models that can be used by decision makers and land-use managers to mitigate landslide hazards.
    Matched MeSH terms: Machine Learning*
  10. Pius Owoh N, Mahinderjit Singh M, Zaaba ZF
    Sensors (Basel), 2018 Jul 03;18(7).
    PMID: 29970823 DOI: 10.3390/s18072134
    Automatic data annotation eliminates most of the challenges we faced due to the manual methods of annotating sensor data. It significantly improves users’ experience during sensing activities since their active involvement in the labeling process is reduced. An unsupervised learning technique such as clustering can be used to automatically annotate sensor data. However, the lingering issue with clustering is the validation of generated clusters. In this paper, we adopted the k-means clustering algorithm for annotating unlabeled sensor data for the purpose of detecting sensitive location information of mobile crowd sensing users. Furthermore, we proposed a cluster validation index for the k-means algorithm, which is based on Multiple Pair-Frequency. Thereafter, we trained three classifiers (Support Vector Machine, K-Nearest Neighbor, and Naïve Bayes) using cluster labels generated from the k-means clustering algorithm. The accuracy, precision, and recall of these classifiers were evaluated during the classification of “non-sensitive” and “sensitive” data from motion and location sensors. Very high accuracy scores were recorded from Support Vector Machine and K-Nearest Neighbor classifiers while a fairly high accuracy score was recorded from the Naïve Bayes classifier. With the hybridized machine learning (unsupervised and supervised) technique presented in this paper, unlabeled sensor data was automatically annotated and then classified.
    Matched MeSH terms: Machine Learning; Unsupervised Machine Learning
  11. Nilashi M, Bin Ibrahim O, Mardani A, Ahani A, Jusoh A
    Health Informatics J, 2018 12;24(4):379-393.
    PMID: 30376769 DOI: 10.1177/1460458216675500
    As a chronic disease, diabetes mellitus has emerged as a worldwide epidemic. The aim of this study is to classify diabetes disease by developing an intelligence system using machine learning techniques. Our method is developed through clustering, noise removal and classification approaches. Accordingly, we use expectation maximization, principal component analysis and support vector machine for clustering, noise removal and classification tasks, respectively. We also develop the proposed method for incremental situation by applying the incremental principal component analysis and incremental support vector machine for incremental learning of data. Experimental results on Pima Indian Diabetes dataset show that proposed method remarkably improves the accuracy of prediction and reduces computation time in relation to the non-incremental approaches. The hybrid intelligent system can assist medical practitioners in the healthcare practice as a decision support system.
    Matched MeSH terms: Machine Learning*
  12. Masuyama N, Loo CK, Dawood F
    Neural Netw, 2018 Feb;98:76-86.
    PMID: 29202265 DOI: 10.1016/j.neunet.2017.11.003
    Adaptive Resonance Theory (ART) is one of the successful approaches to resolving "the plasticity-stability dilemma" in neural networks, and its supervised learning model called ARTMAP is a powerful tool for classification. Among several improvements, such as Fuzzy or Gaussian based models, the state of art model is Bayesian based one, while solving the drawbacks of others. However, it is known that the Bayesian approach for the high dimensional and a large number of data requires high computational cost, and the covariance matrix in likelihood becomes unstable. This paper introduces Kernel Bayesian ART (KBA) and ARTMAP (KBAM) by integrating Kernel Bayes' Rule (KBR) and Correntropy Induced Metric (CIM) to Bayesian ART (BA) and ARTMAP (BAM), respectively, while maintaining the properties of BA and BAM. The kernel frameworks in KBA and KBAM are able to avoid the curse of dimensionality. In addition, the covariance-free Bayesian computation by KBR provides the efficient and stable computational capability to KBA and KBAM. Furthermore, Correntropy-based similarity measurement allows improving the noise reduction ability even in the high dimensional space. The simulation experiments show that KBA performs an outstanding self-organizing capability than BA, and KBAM provides the superior classification ability than BAM, respectively.
    Matched MeSH terms: Machine Learning/standards*
  13. Atee HA, Ahmad R, Noor NM, Rahma AM, Aljeroudi Y
    PLoS One, 2017;12(2):e0170329.
    PMID: 28196080 DOI: 10.1371/journal.pone.0170329
    In image steganography, determining the optimum location for embedding the secret message precisely with minimum distortion of the host medium remains a challenging issue. Yet, an effective approach for the selection of the best embedding location with least deformation is far from being achieved. To attain this goal, we propose a novel approach for image steganography with high-performance, where extreme learning machine (ELM) algorithm is modified to create a supervised mathematical model. This ELM is first trained on a part of an image or any host medium before being tested in the regression mode. This allowed us to choose the optimal location for embedding the message with best values of the predicted evaluation metrics. Contrast, homogeneity, and other texture features are used for training on a new metric. Furthermore, the developed ELM is exploited for counter over-fitting while training. The performance of the proposed steganography approach is evaluated by computing the correlation, structural similarity (SSIM) index, fusion matrices, and mean square error (MSE). The modified ELM is found to outperform the existing approaches in terms of imperceptibility. Excellent features of the experimental results demonstrate that the proposed steganographic approach is greatly proficient for preserving the visual information of an image. An improvement in the imperceptibility as much as 28% is achieved compared to the existing state of the art methods.
    Matched MeSH terms: Machine Learning*
  14. Kasaraneni PP, Venkata Pavan Kumar Y, Moganti GLK, Kannan R
    Sensors (Basel), 2022 Nov 30;22(23).
    PMID: 36502025 DOI: 10.3390/s22239323
    Addressing data anomalies (e.g., garbage data, outliers, redundant data, and missing data) plays a vital role in performing accurate analytics (billing, forecasting, load profiling, etc.) on smart homes' energy consumption data. From the literature, it has been identified that the data imputation with machine learning (ML)-based single-classifier approaches are used to address data quality issues. However, these approaches are not effective to address the hidden issues of smart home energy consumption data due to the presence of a variety of anomalies. Hence, this paper proposes ML-based ensemble classifiers using random forest (RF), support vector machine (SVM), decision tree (DT), naive Bayes, K-nearest neighbor, and neural networks to handle all the possible anomalies in smart home energy consumption data. The proposed approach initially identifies all anomalies and removes them, and then imputes this removed/missing information. The entire implementation consists of four parts. Part 1 presents anomaly detection and removal, part 2 presents data imputation, part 3 presents single-classifier approaches, and part 4 presents ensemble classifiers approaches. To assess the classifiers' performance, various metrics, namely, accuracy, precision, recall/sensitivity, specificity, and F1 score are computed. From these metrics, it is identified that the ensemble classifier "RF+SVM+DT" has shown superior performance over the conventional single classifiers as well the other ensemble classifiers for anomaly handling.
    Matched MeSH terms: Machine Learning*
  15. Silitonga AS, Hassan MH, Ong HC, Kusumo F
    Environ Sci Pollut Res Int, 2017 Nov;24(32):25383-25405.
    PMID: 28932948 DOI: 10.1007/s11356-017-0141-9
    The purpose of this study is to investigate the performance, emission and combustion characteristics of a four-cylinder common-rail turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends. A kernel-based extreme learning machine (KELM) model is developed in this study using MATLAB software in order to predict the performance, combustion and emission characteristics of the engine. To acquire the data for training and testing the KELM model, the engine speed was selected as the input parameter, whereas the performance, exhaust emissions and combustion characteristics were chosen as the output parameters of the KELM model. The performance, emissions and combustion characteristics predicted by the KELM model were validated by comparing the predicted data with the experimental data. The results show that the coefficient of determination of the parameters is within a range of 0.9805-0.9991 for both the KELM model and the experimental data. The mean absolute percentage error is within a range of 0.1259-2.3838. This study shows that KELM modelling is a useful technique in biodiesel production since it facilitates scientists and researchers to predict the performance, exhaust emissions and combustion characteristics of internal combustion engines with high accuracy.
    Matched MeSH terms: Machine Learning*
  16. Za'im NAN, Al-Dhief FT, Azman M, Alsemawi MRM, Abdul Latiff NMA, Mat Baki M
    J Otolaryngol Head Neck Surg, 2023 Sep 20;52(1):62.
    PMID: 37730624 DOI: 10.1186/s40463-023-00661-6
    BACKGROUND: A multidimensional voice quality assessment is recommended for all patients with dysphonia, which requires a patient visit to the otolaryngology clinic. The aim of this study was to determine the accuracy of an online artificial intelligence classifier, the Online Sequential Extreme Learning Machine (OSELM), in detecting voice pathology. In this study, a Malaysian Voice Pathology Database (MVPD), which is the first Malaysian voice database, was created and tested.

    METHODS: The study included 382 participants (252 normal voices and 130 dysphonic voices) in the proposed database MVPD. Complete data were obtained for both groups, including voice samples, laryngostroboscopy videos, and acoustic analysis. The diagnoses of patients with dysphonia were obtained. Each voice sample was anonymized using a code that was specific to each individual and stored in the MVPD. These voice samples were used to train and test the proposed OSELM algorithm. The performance of OSELM was evaluated and compared with other classifiers in terms of the accuracy, sensitivity, and specificity of detecting and differentiating dysphonic voices.

    RESULTS: The accuracy, sensitivity, and specificity of OSELM in detecting normal and dysphonic voices were 90%, 98%, and 73%, respectively. The classifier differentiated between structural and non-structural vocal fold pathology with accuracy, sensitivity, and specificity of 84%, 89%, and 88%, respectively, while it differentiated between malignant and benign lesions with an accuracy, sensitivity, and specificity of 92%, 100%, and 58%, respectively. Compared to other classifiers, OSELM showed superior accuracy and sensitivity in detecting dysphonic voices, differentiating structural versus non-structural vocal fold pathology, and between malignant and benign voice pathology.

    CONCLUSION: The OSELM algorithm exhibited the highest accuracy and sensitivity compared to other classifiers in detecting voice pathology, classifying between malignant and benign lesions, and differentiating between structural and non-structural vocal pathology. Hence, it is a promising artificial intelligence that supports an online application to be used as a screening tool to encourage people to seek medical consultation early for a definitive diagnosis of voice pathology.

    Matched MeSH terms: Machine Learning*
  17. Shiammala PN, Duraimutharasan NKB, Vaseeharan B, Alothaim AS, Al-Malki ES, Snekaa B, et al.
    Methods, 2023 Nov;219:82-94.
    PMID: 37778659 DOI: 10.1016/j.ymeth.2023.09.010
    Artificial intelligence (AI), particularly deep learning as a subcategory of AI, provides opportunities to accelerate and improve the process of discovering and developing new drugs. The use of AI in drug discovery is still in its early stages, but it has the potential to revolutionize the way new drugs are discovered and developed. As AI technology continues to evolve, it is likely that AI will play an even greater role in the future of drug discovery. AI is used to identify new drug targets, design new molecules, and predict the efficacy and safety of potential drugs. The inclusion of AI in drug discovery can screen millions of compounds in a matter of hours, identifying potential drug candidates that would have taken years to find using traditional methods. AI is highly utilized in the pharmaceutical industry by optimizing processes, reducing waste, and ensuring quality control. This review covers much-needed topics, including the different types of machine-learning techniques, their applications in drug discovery, and the challenges and limitations of using machine learning in this field. The state-of-the-art of AI-assisted pharmaceutical discovery is described, covering applications in structure and ligand-based virtual screening, de novo drug creation, prediction of physicochemical and pharmacokinetic properties, drug repurposing, and related topics. Finally, many obstacles and limits of present approaches are outlined, with an eye on potential future avenues for AI-assisted drug discovery and design.
    Matched MeSH terms: Machine Learning*
  18. Salih SQ, Alsewari AA, Wahab HA, Mohammed MKA, Rashid TA, Das D, et al.
    PLoS One, 2023;18(7):e0288044.
    PMID: 37406006 DOI: 10.1371/journal.pone.0288044
    The retrieval of important information from a dataset requires applying a special data mining technique known as data clustering (DC). DC classifies similar objects into a groups of similar characteristics. Clustering involves grouping the data around k-cluster centres that typically are selected randomly. Recently, the issues behind DC have called for a search for an alternative solution. Recently, a nature-based optimization algorithm named Black Hole Algorithm (BHA) was developed to address the several well-known optimization problems. The BHA is a metaheuristic (population-based) that mimics the event around the natural phenomena of black holes, whereby an individual star represents the potential solutions revolving around the solution space. The original BHA algorithm showed better performance compared to other algorithms when applied to a benchmark dataset, despite its poor exploration capability. Hence, this paper presents a multi-population version of BHA as a generalization of the BHA called MBHA wherein the performance of the algorithm is not dependent on the best-found solution but a set of generated best solutions. The method formulated was subjected to testing using a set of nine widespread and popular benchmark test functions. The ensuing experimental outcomes indicated the highly precise results generated by the method compared to BHA and comparable algorithms in the study, as well as excellent robustness. Furthermore, the proposed MBHA achieved a high rate of convergence on six real datasets (collected from the UCL machine learning lab), making it suitable for DC problems. Lastly, the evaluations conclusively indicated the appropriateness of the proposed algorithm to resolve DC issues.
    Matched MeSH terms: Machine Learning*
  19. Hameed SS, Hassan R, Hassan WH, Muhammadsharif FF, Latiff LA
    PLoS One, 2021;16(1):e0246039.
    PMID: 33507983 DOI: 10.1371/journal.pone.0246039
    The selection and classification of genes is essential for the identification of related genes to a specific disease. Developing a user-friendly application with combined statistical rigor and machine learning functionality to help the biomedical researchers and end users is of great importance. In this work, a novel stand-alone application, which is based on graphical user interface (GUI), is developed to perform the full functionality of gene selection and classification in high dimensional datasets. The so-called HDG-select application is validated on eleven high dimensional datasets of the format CSV and GEO soft. The proposed tool uses the efficient algorithm of combined filter-GBPSO-SVM and it was made freely available to users. It was found that the proposed HDG-select outperformed other tools reported in literature and presented a competitive performance, accessibility, and functionality.
    Matched MeSH terms: Machine Learning*
  20. Thiagarajan JD, Kulkarni SV, Jadhav SA, Waghe AA, Raja SP, Rajagopal S, et al.
    Sci Rep, 2024 Jul 01;14(1):15041.
    PMID: 38951552 DOI: 10.1038/s41598-024-63930-y
    The Indian economy is greatly influenced by the Banana Industry, necessitating advancements in agricultural farming. Recent research emphasizes the imperative nature of addressing diseases that impact Banana Plants, with a particular focus on early detection to safeguard production. The urgency of early identification is underscored by the fact that diseases predominantly affect banana plant leaves. Automated systems that integrate machine learning and deep learning algorithms have proven to be effective in predicting diseases. This manuscript examines the prediction and detection of diseases in banana leaves, exploring various diseases, machine learning algorithms, and methodologies. The study makes a contribution by proposing two approaches for improved performance and suggesting future research directions. In summary, the objective is to advance understanding and stimulate progress in the prediction and detection of diseases in banana leaves. The need for enhanced disease identification processes is highlighted by the results of the survey. Existing models face a challenge due to their lack of rotation and scale invariance. While algorithms such as random forest and decision trees are less affected, initially convolutional neural networks (CNNs) is considered for disease prediction. Though the Convolutional Neural Network models demonstrated impressive accuracy in many research but it lacks in invariance to scale and rotation. Moreover, it is observed that due its inherent design it cannot be combined with feature extraction methods to identify the banana leaf diseases. Due to this reason two alternative models that combine ANN with scale-invariant Feature transform (SIFT) model or histogram of oriented gradients (HOG) combined with local binary patterns (LBP) model are suggested. The first model ANN with SIFT identify the disease by using the activation functions to process the features extracted by the SIFT by distinguishing the complex patterns. The second integrate the combined features of HOG and LBP to identify the disease thus by representing the local pattern and gradients in an image. This paves a way for the ANN to learn and identify the banana leaf disease. Moving forward, exploring datasets in video formats for disease detection in banana leaves through tailored machine learning algorithms presents a promising avenue for research.
    Matched MeSH terms: Machine Learning*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links