Displaying publications 41 - 48 of 48 in total

Abstract:
Sort:
  1. Shazmeen Daniar Shamsuddin, Nurlyana Omar, Koh, Meng-Hock
    MATEMATIKA, 2017;33(2):149-157.
    MyJurnal
    It has come to attention that Malaysia have been aiming to build its own
    nuclear power plant (NPP) for electricity generation in 2030 to diversify the national
    energy supply and resources. As part of the regulation to build a NPP, environmental
    risk assessment analysis which includes the atmospheric dispersion assessment has to
    be performed as required by the Malaysian Atomic Energy Licensing Board (AELB)
    prior to the commissioning process. The assessment is to investigate the dispersion of
    radioactive effluent from the NPP in the event of nuclear accident. This article will focus
    on current development of locally developed atmospheric dispersion modeling code
    based on Gaussian Plume model. The code is written in Fortran computer language
    and has been benchmarked to a readily available HotSpot software. The radionuclide
    release rate entering the Gaussian equation is approximated to the value found in the
    Fukushima NPP accident in 2011. Meteorological data of Mersing District, Johor of
    year 2013 is utilized for the calculations. The results show that the dispersion of radionuclide
    effluent can potentially affect areas around Johor Bahru district, Singapore
    and some parts of Riau when the wind direction blows from the North-northeast direction.
    The results from our code was found to be in good agreement with the one
    obtained from HotSpot, with less than 1% discrepancy between the two.
    Matched MeSH terms: Nuclear Power Plants
  2. Wan Mansor WN, Abdullah S, Che Wan Othman CWMN, Jarkoni MNK, Chao HR, Lin SL
    Data Brief, 2020 Jun;30:105440.
    PMID: 32300616 DOI: 10.1016/j.dib.2020.105440
    Energy has a significant influence on Malaysia's industry. It is used in electricity generation, refineries, gas processing plants and end-user applications such as transportation, residential, agriculture and fishing. These burning fossil fuel activities produce greenhouse gases (GHG) emissions. This article presents the emissions data of fuel used in power plants in Malaysia during the year of 1990 until 2017. The fuel used in power plants is coal and coke, natural gas, diesel oil and residual fuel oil. The energy data used in power plants were gathered from the Malaysia Energy Information Hub, published by the Malaysian Energy Commission. The GHG emissions data were calculated using the emission factors method. The climate impact of different GHGs in terms of CO2-equivalent (CO2-e) was also calculated using global warming potentials. The article also presents population data in Malaysia during the year. A correlation between the fuels, GHG emission and the population is also investigated using statistical analysis. The data presented here may facilitate the Malaysian government to identify the source of the pollutants and undertake a climate change mitigation plan.
    Matched MeSH terms: Power Plants
  3. Siraz MMM, Roy D, Dewan MJ, Alam MS, A M J, Rashid MB, et al.
    Environ Monit Assess, 2023 Feb 10;195(3):382.
    PMID: 36759352 DOI: 10.1007/s10661-023-10921-7
    This is the first attempt in the world to depict the vertical distribution of radionuclides in the soil samples along several heights (900 feet, 1550 feet, and 1650 feet) of Marayon Tong hill in the Chittagong Hill Tracts, Bandarban by HPGe gamma-ray spectrometry. The average activity concentrations of 232Th, 226Ra, and 40K were found to be 37.15 ± 3.76 Bqkg-1, 19.69 ± 2.15 Bqkg-1, and 347.82 ± 24.50 Bqkg-1, respectively, where in most cases, 232Th exceeded the world average value of 30 Bqkg-1. According to soil characterization, soils ranged from slightly acidic to moderately acidic, with low soluble salts. The radium equivalent activity, outdoor and indoor absorbed dose rate, external and internal hazard indices, external and internal effective dose rates, gamma level index, and excess lifetime cancer risk were evaluated and found to be below the recommended or world average values; but a measurable activity of 137Cs was found at soils collected from ground level and at an altitude of 1550 feet, which possibly arises from the nuclear fallout. The evaluation of cumulative radiation doses to the inhabitants via periodic measurement is recommended due to the elevated levels of 232Th.This pioneering work in mapping the vertical distribution of naturally occurring radioactive materials (NORMs) can be an essential factual baseline data for the scientific community that may be used to evaluate the variation in NORMs in the future, especially after the commissioning of the Rooppur Nuclear Power Plant in Bangladesh in 2024.
    Matched MeSH terms: Nuclear Power Plants
  4. Islam MS, Al Bakky A, Ahmed S, Islam MT, Antu UB, Saikat MSM, et al.
    Food Chem Toxicol, 2024 Nov;193:115005.
    PMID: 39284411 DOI: 10.1016/j.fct.2024.115005
    As a cereal crop, maize ranked third place after wheat and rice in terms of land area coverage for its cultivation, and in Bangladesh, it ranked second place after rice in its production. As the substitution of wheat products, maize has been used widely in baking for human consumption and animal fodder. However, maize grown in this soil around the coal-burning power plant may cause heavy metals uptake that poses a risk to humans. The study was conducted at the maize fields in the Ganges delta floodplain soils of Bangladesh to know the concentration of eight heavy metals (Ni, Cr, Cd, Mn, As, Cu, Zn, and Pb) in soil and maize samples using an inductively coupled plasma mass spectrometer (ICP-MS) and to estimate the risk of heavy metals in maize grains. Mean concentrations of heavy metals (mg/kg) in soil were in decreasing order of Zn (10.12) > Cu (10.02) > Mn (5.48) > Ni (4.95) > Cr (3.72) > As (0.51) > Pb (0.27) > Cd (0.23). The plant tissues showed the descending order of heavy metal concentration as roots > grains > stems > leaves. BCF values for As, Cd, Pb, and Mn in roots were higher than 1.0, indicating considerable accumulation of these elements in maize via roots. Total hazard quotient (ƩTHQ) of heavy metals through maize grain consumption was 3.7E+00 and 3.9E+00 for adults and children, respectively, indicating non-cancer risk to the consumers. Anthropogenic influences contributed to the heavy metals enrichment in the Ganges delta floodplain soils around the thermal plant, and potential risks (non-carcinogenic and carcinogenic) were observed due to the consumption of maize grain cultivated in the study area.
    Matched MeSH terms: Power Plants
  5. Chew LL, Chong VC, Wong RCS, Lehette P, Ng CC, Loh KH
    Mar Pollut Bull, 2015 Dec 15;101(1):69-84.
    PMID: 26581817 DOI: 10.1016/j.marpolbul.2015.11.022
    Zooplankton samples collected before (1985-86) and after (2013-14) the establishment of Kapar power station (KPS) were examined to test the hypothesis that increased sea surface temperature (SST) and other water quality changes have altered the zooplankton community structure. Elevated SST and reduced pH were detected between before and after impact pairs, with the greatest impact at the station closest to KPS. Present PAHs and heavy metal concentrations are unlikely causal factors. Water parameter changes did not affect diversity but community structure of the zooplankton. Tolerant small crustaceans, salps and larvaceans likely benefited from elevated temperature, reduced pH and shift to a more significant microbial loop exacerbated by eutrophication, while large crustaceans were more vulnerable to such changes. It is predicted that any further rise in SST will remove more large-bodied crustacean zooplankton, the preferred food for fish larvae and other meroplankton, with grave consequences to fishery production.
    Matched MeSH terms: Power Plants*
  6. Mokhtar MM, Taib RM, Hassim MH
    J Air Waste Manag Assoc, 2014 Aug;64(8):867-78.
    PMID: 25185389
    The Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft), which replaces the Malaysia Environmental Quality (Clean Air) 1978, specifies limits to additional pollutants from power generation using fossil fuel. The new pollutants include Hg, HCl, and HF with limits of 0.03, 100, and 15 mg/N-m3 at 6% O2, respectively. These pollutants are normally present in very small concentrations (known as trace elements [TEs]), and hence are often neglected in environmental air quality monitoring in Malaysia. Following the enactment of the new regulation, it is now imperative to understand the TEs behavior and to assess the capability of the existing abatement technologies to comply with the new emission limits. This paper presents the comparison of TEs behavior of the most volatile (Hg, Cl, F) and less volatile (As, Be, Cd, Cr, Ni, Se, Pb) elements in subbituminous and bituminous coal and coal combustion products (CCP) (i.e., fly ash and bottom ash) from separate firing of subbituminous and bituminous coal in a coal-fired power plant in Malaysia. The effect of air pollution control devices configuration in removal of TEs was also investigated to evaluate the effectiveness of abatement technologies used in the plant. This study showed that subbituminous and bituminous coals and their CCPs have different TEs behavior. It is speculated that ash content could be a factor for such diverse behavior In addition, the type of coal and the concentrations of TEs in feed coal were to some extent influenced by the emission of TEs in flue gas. The electrostatic precipitator (ESP) and seawater flue gas desulfurization (FGD) used in the studied coal-fired power plant were found effective in removing TEs in particulate and vapor form, respectively, as well as complying with the new specified emission limits. Implications: Coals used by power plants in Peninsular Malaysia come from the same supplier (Tenaga Nasional Berhad Fuel Services), which is a subsidiary of the Malaysia electricity provider (Tenaga Nasional Berhad). Therefore, this study on trace elements behavior in a coal-fired power plant in Malaysia could represent emission from other plants in Peninsular Malaysia. By adhering to the current coal specifications and installation of electrostatic precipitator (ESP) and flue gas desulfurization, the plants could comply with the limits specified in the Malaysian Department of Environment (DOE) Scheduled Waste Guideline for bottom ash and fly ash and the Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft).
    Matched MeSH terms: Power Plants
  7. Yahya L, Harun R, Abdullah LC
    Sci Rep, 2020 12 18;10(1):22355.
    PMID: 33339883 DOI: 10.1038/s41598-020-79316-9
    Global warming has become a serious issue nowadays as the trend of CO2 emission is increasing by years. In Malaysia, the electricity and energy sector contributed a significant amount to the nation's CO2 emission due to fossil fuel use. Many research works have been carried out to mitigate this issue, including carbon capture and utilization (CCUS) technology and biological carbon fixation by microalgae. This study makes a preliminary effort to screen native microalgae species in the Malaysian coal-fired power plant's surrounding towards carbon fixation ability. Three dominant species, including Nannochloropsis sp., Tetraselmis sp., and Isochrysis sp. were identified and tested in the laboratory under ambient and pure CO2 condition to assess their growth and CO2 fixation ability. The results indicate Isochrysis sp. as the superior carbon fixer against other species. In continuation, the optimization study using Response Surface Methodology (RSM) was carried out to optimize the operating conditions of Isochrysis sp. using a customized lab-scale photobioreactor under simulated flue gas exposure. This species was further acclimatized and tested under actual flue gas generated by the power plant. Isochrysis sp. had shown its capability as a carbon fixer with CO2 fixation rate of 0.35 gCO2/L day under actual coal-fired flue gas exposure after cycles of acclimatization phase. This work is the first to demonstrate indigenous microalgae species' ability as a carbon fixer under Malaysian coal-fired flue gas exposure. Thus, the findings shall be useful in exploring the microalgae potential as a biological agent for carbon emission mitigation from power plants more sustainably.
    Matched MeSH terms: Power Plants
  8. Alam L, Mohamed CA
    Environ Health, 2011 May 20;10:43.
    PMID: 21595985 DOI: 10.1186/1476-069X-10-43
    BACKGROUND: Po²¹⁰ can be accumulated in various environmental materials, including marine organisms, and contributes to the dose of natural radiation in seafood. The concentration of this radionuclide in the marine environment can be influenced by the operation of a coal burning power plant but existing studies regarding this issue are not well documented. Therefore, the aim of this study was to estimate the Po²¹⁰ concentration level in marine organisms from the coastal area of Kapar, Malaysia which is very near to a coal burning power plant station and to assess its impact on seafood consumers.

    METHODS: Concentration of Po²¹⁰ was determined in the edible muscle of seafood and water from the coastal area of Kapar, Malaysia using radiochemical separation and the Alpha Spectrometry technique.

    RESULTS: The activities of Po²¹⁰ in the dissolved phase of water samples ranged between 0.51 ± 0.21 and 0.71 ± 0.24 mBql⁻¹ whereas the particulate phase registered a range of 50.34 ± 11.40 to 72.07 ± 21.20 Bqkg⁻¹. The ranges of Po²¹⁰ activities in the organism samples were 4.4 ± 0.12 to 6.4 ± 0.95 Bqkg⁻¹ dry wt in fish (Arius maculatus), 45.7 ± 0.86 to 54.4 ± 1.58 Bqkg⁻¹ dry wt in shrimp (Penaeus merguiensis) and 104.3 ± 3.44 to 293.8 ± 10.04 Bqkg⁻¹ dry wt in cockle (Anadara granosa). The variation of Po²¹⁰ in organisms is dependent on the mode of their life style, ambient water concentration and seasonal changes. The concentration factors calculated for fish and molluscs were higher than the recommended values by the IAEA. An assessment of daily intake and received dose due to the consumption of seafood was also carried out and found to be 2083.85 mBqday⁻¹person⁻¹ and 249.30 μSvyr⁻¹ respectively. These values are comparatively higher than reported values in other countries. Moreover, the transformation of Po²¹⁰ in the human body was calculated and revealed that a considerable amount of Po²¹⁰ can be absorbed in the internal organs. The calculated values of life time mortality and morbidity cancer risks were 24.8 × 10⁻⁴ and 34 × 10⁻⁴ respectively which also exceeded the recommended limits set by the ICRP.

    CONCLUSIONS: The findings of this present study can be used to evaluate the safety dose uptake level of seafood as well as to monitor environmental health. However, as the calculated dose and cancer risks were found to cross the limit of safety, finding a realistic way to moderate the risk is imperative.

    Matched MeSH terms: Power Plants
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links