METHODS: To predict CD while prioritizing patient privacy, our study employed data anonymization involved adding Laplace noise to sensitive features like age and gender. The anonymized dataset underwent analysis using a differential privacy (DP) framework to preserve data privacy. DP ensured confidentiality while extracting insights. Compared with Logistic Regression (LR), Gaussian Naïve Bayes (GNB), and Random Forest (RF), the methodology integrated feature selection, statistical analysis, and SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) for interpretability. This approach facilitates transparent and interpretable AI decision-making, aligning with responsible AI development principles. Overall, it combines privacy preservation, interpretability, and ethical considerations for accurate CD predictions.
RESULTS: Our investigations from the DP framework with LR were promising, with an area under curve (AUC) of 0.848 ± 0.03, an accuracy of 0.797 ± 0.02, precision at 0.789 ± 0.02, recall at 0.797 ± 0.02, and an F1 score of 0.787 ± 0.02, with a comparable performance with the non-privacy framework. The SHAP and LIME based results support clinical findings, show a commitment to transparent and interpretable AI decision-making, and aligns with the principles of responsible AI development.
CONCLUSIONS: Our study endorses a novel approach in predicting CD, amalgamating data anonymization, privacy-preserving methods, interpretability tools SHAP, LIME, and ethical considerations. This responsible AI framework ensures accurate predictions, privacy preservation, and user trust, underscoring the significance of comprehensive and transparent ML models in healthcare. Therefore, this research empowers the ability to forecast CD, providing a vital lifeline to millions of CD patients globally and potentially preventing numerous fatalities.
METHODS AND ANALYSIS: This is a 3-year project in which a survey of 100 000 workers from all 13 states in Malaysia will be conducted using a web-based screening tool that is comprised of two parts: occupational disease screening tool and hazard identification, risk assessment and risk control method. Data will be collected using a multistage stratified sampling method from 500 companies, including seven critical industrial sectors. The independent variables will be sociodemographic characteristics, comorbidities, previous medical history, high-risk behaviour and workplace profile. The dependent variable will be the types of occupational diseases (noise-induced hearing loss, respiratory, musculoskeletal, neurotoxic, skin and mental disorders). Subsequently, suggestions of referral for medium and high-risk workers to occupational health clinics will be attained. The approved occupational health service clinics/providers will make a confirmatory diagnosis of each case as deemed necessary. Subsequently, a walk-through survey to identify workplace hazards and recommend workplace improvement measures to prevent these occupational diseases will be achieved. Both descriptive and inferential statistics will be used in this study. Simple and adjusted binary regression will be used to find the determinants of occupational diseases.
ETHICS AND DISSEMINATION: This study has been approved by the MARA University of Technology Research Ethics Board. Informed, written consent will be obtained from all study participants. Findings will be disseminated to the Department of Occupational Health and Safety, involved industries, and through peer-reviewed publications.
METHODS AND ANALYSIS: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Protocols statement was used as a template for this protocol. A systematic search of Medline, Embase and Global Health from database inception to present will be conducted to identify prospective studies reporting on the associations between major measures of body composition (body mass index, waist circumference, waist-hip ratio, total body fat, visceral adiposity tissue and lean mass) and risk of heart failure. Article screening and selection will be performed by two reviewers independently, and disagreements will be adjudicated by consensus or by a third reviewer. Data from eligible articles will be extracted, and article quality will be assessed using the Newcastle-Ottawa Scale. Relative risks (and 95% CIs) will be pooled in a fixed effect meta-analysis, if there is no prohibitive heterogeneity of studies as assessed using the Cochrane Q statistic and I2 statistic. Subgroup analyses will be by age, sex, ethnicity and heart failure subtypes. Publication bias in the meta-analysis will be assessed using Egger's test and funnel plots.
ETHICS AND DISSEMINATION: This work is secondary analyses on published data and ethical approval is not required. We plan to publish results in an open-access peer-reviewed journal, present it at international and national conferences, and share the findings on social media.
PROSPERO REGISTRATION NUMBER: CRD42020224584.
OBJECTIVES: The GBD (Global Burden of Disease) 2015 study integrated data on disease incidence, prevalence, and mortality to produce consistent, up-to-date estimates for cardiovascular burden.
METHODS: CVD mortality was estimated from vital registration and verbal autopsy data. CVD prevalence was estimated using modeling software and data from health surveys, prospective cohorts, health system administrative data, and registries. Years lived with disability (YLD) were estimated by multiplying prevalence by disability weights. Years of life lost (YLL) were estimated by multiplying age-specific CVD deaths by a reference life expectancy. A sociodemographic index (SDI) was created for each location based on income per capita, educational attainment, and fertility.
RESULTS: In 2015, there were an estimated 422.7 million cases of CVD (95% uncertainty interval: 415.53 to 427.87 million cases) and 17.92 million CVD deaths (95% uncertainty interval: 17.59 to 18.28 million CVD deaths). Declines in the age-standardized CVD death rate occurred between 1990 and 2015 in all high-income and some middle-income countries. Ischemic heart disease was the leading cause of CVD health lost globally, as well as in each world region, followed by stroke. As SDI increased beyond 0.25, the highest CVD mortality shifted from women to men. CVD mortality decreased sharply for both sexes in countries with an SDI >0.75.
CONCLUSIONS: CVDs remain a major cause of health loss for all regions of the world. Sociodemographic change over the past 25 years has been associated with dramatic declines in CVD in regions with very high SDI, but only a gradual decrease or no change in most regions. Future updates of the GBD study can be used to guide policymakers who are focused on reducing the overall burden of noncommunicable disease and achieving specific global health targets for CVD.