Lipases with unique characteristics are of value in industrial applications, especially those targeting cost-effectiveness and less downstream processes. The aims of this research were to: (i) optimize the fermentation parameters via solid state fermentation (SSF); and (ii) study the performance in hydrolysis and esterification processes of the one-step partially purified Schizophyllum commune UTARA1 lipases. Lipase was produced by cultivating S. commune UTARA1 on sugarcane bagasse (SB) with used cooking oil (UCO) via SSF and its production was optimized using Design-Expert® 7.0.0. Fractions 30% (ScLipA) and 70% (ScLipB) which contained high lipase activity were obtained by stepwise (NH₄)₂SO₄ precipitation. Crude fish oil, coconut oil and butter were used to investigate the lipase hydrolysis capabilities by a free glycerol assay. Results showed that ScLipA has affinities for long, medium and short chain triglycerides, as all the oils investigated were degraded, whereas ScLipB has affinities for long chain triglycerides as it only degrades crude fish oil. During esterification, ScLipA was able to synthesize trilaurin and triacetin. Conversely, ScLipB was specific towards the formation of 2-mono-olein and triacetin. From the results obtained, it was determined that ScLipA and ScLipB are sn-2 regioselective lipases. Hence, the one-step partial purification strategy proved to be feasible for partial purification of S. commune UTARA1 lipases that has potential use in industrial applications.
Osteosarcoma is one of the primary malignant bone tumors that confer low survival rates for patients even with intensive regime treatments. Therefore, discovery of novel anti-osteosarcoma drugs derived from natural products that are not harmful to the normal cells remains crucial. Curcumin is one of the natural substances that have been extensively studied due to its anti-cancer properties and is pharmacologically safe considering its ubiquitous consumption for centuries. However, curcumin suffers from a poor circulating bioavailability, which has led to the development of a chemically synthesized curcuminoid analog, namely (Z)-3-hydroxy-1-(2-hydroxyphenyl)-3-phenylprop-2-en-1-one (DK1). In this study, the cytotoxic effects of the curcumin analog DK1 was investigated in both U-2OS and MG-63 osteosarcoma cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell death was microscopically examined via acridine orange/propidium iodide (AO/PI) double staining. Flow cytometer analysis including Annexin V/Fluorescein isothiocyanate (FITC), cell cycle analysis and JC-1 were adapted to determine the mode of cell death. Subsequently in order to determine the mechanism of cell death, quantitative polymerase chain reaction (qPCR) and proteome profiling was carried out to measure the expression of several apoptotic-related genes and proteins. Results indicated that DK1 induced U-2 OS and MG-63 morphological changes and substantially reduced cell numbers through induction of apoptosis. Several apoptotic genes and proteins were steadily expressed after treatment with DK1; including caspase 3, caspase 9, and BAX, which indicated that apoptosis occurred through a mitochondria-dependent signaling pathway. In conclusion, DK1 could be considered as a potential candidate for an anti-osteosarcoma drug in the near future, contingent upon its ability to induce apoptosis in osteosarcoma cell lines.
Flavokawain B (1) is a natural chalcone extracted from the roots of Piper methysticum, and has been proven to be a potential cytotoxic compound. Using the partial structure of flavokawain B (FKB), about 23 analogs have been synthesized. Among them, compounds 8, 13 and 23 were found in new FKB derivatives. All compounds were evaluated for their cytotoxic properties against two breast cancer cell lines, MCF-7 and MDA-MB-231, thus establishing the structure-activity relationship. The FKB derivatives 16 (IC50 = 6.50 ± 0.40 and 4.12 ± 0.20 μg/mL), 15 (IC50 = 5.50 ± 0.35 and 6.50 ± 1.40 μg/mL) and 13 (IC50 = 7.12 ± 0.80 and 4.04 ± 0.30 μg/mL) exhibited potential cytotoxic effects on the MCF-7 and MDA-MB-231 cell lines. However, the methoxy group substituted in position three and four in compound 2 (IC50 = 8.90 ± 0.60 and 6.80 ± 0.35 μg/mL) and 22 (IC50 = 8.80 ± 0.35 and 14.16 ± 1.10 μg/mL) exhibited good cytotoxicity. The lead compound FKB (1) showed potential cytotoxicity (IC50 = 7.70 ± 0.30 and 5.90 ± 0.30 μg/mL) against two proposed breast cancer cell lines. It is evident that the FKB skeleton is unique for anticancer agents, additionally, the presence of halogens (Cl and F) in position 2 and 3 also improved the cytotoxicity in FKB series. These findings could help to improve the future drug discovery process to treat breast cancer. A molecular dynamics study of active compounds revealed stable interactions within the active site of Janus kinase. The structures of all compounds were determined by ¹H-NMR, EI-MS, IR and UV and X-ray crystallographic spectroscopy techniques.
Actinidin was used to pretreat the bovine hide and ultrasonic wave (53 kHz and 500 W) was used for the time durations of 2, 4 and 6 h at 60 °C to extract gelatin samples (UA2, UA4 and UA6, respectively). Control (UAC) gelatin was extracted using ultrasound for 6 h at 60 °C without enzyme pretreatment. There was significant (p < 0.05) increase in gelatin yield as the time duration of ultrasound treatment increased with UA6 giving the highest yield of 19.65%. Gel strength and viscosity of UAC and UA6 extracted gelatin samples were 627.53 and 502.16 g and 16.33 and 15.60 mPa.s, respectively. Longer duration of ultrasound treatment increased amino acids content of the extracted gelatin and UAC exhibited the highest content of amino acids. Progressive degradation of polypeptide chains was observed in the protein pattern of the extracted gelatin as the time duration of ultrasound extraction increased. Fourier transform infrared (FTIR) spectroscopy depicted loss of molecular order and degradation in UA6. Scanning electron microscopy (SEM) revealed protein aggregation and network formation in the gelatin samples with increasing time of ultrasound treatment. The study indicated that ultrasound assisted gelatin extraction using actinidin exhibited high yield with good quality gelatin.
Alzheimer's disease remains one of the most widespread neurodegenerative reasons for dementia worldwide and is associated with considerable mortality and morbidity. Therefore, it has been considered a priority for research. Indeed, several risk factors are involved in the complexity of the therapeutic ways of this pathology, including age, traumatic brain injury, genetics, exposure to aluminum, infections, diabetes, vascular diseases, hypertension, dyslipidemia, and obesity. The pathophysiology of Alzheimer's disease is mostly associated with hyperphosphorylated protein in the neuronal cytoplasm and extracellular plaques of the insoluble β-amyloid peptide. Therefore, the management of this pathology needs the screening of drugs targeting different pathological levels, such as acetylcholinesterase (AchE), amyloid β formation, and lipoxygenase inhibitors. Among the pharmacological strategies used for the management of Alzheimer's disease, natural drugs are considered a promising therapeutic strategy. Indeed, bioactive compounds isolated from different natural sources exhibit important anti-Alzheimer effects by their effectiveness in promoting neuroplasticity and protecting against neurodegeneration as well as neuroinflammation and oxidative stress in the brain. These effects involve different sub-cellular, cellular, and/or molecular mechanisms, such as the inhibition of acetylcholinesterase (AchE), the modulation of signaling pathways, and the inhibition of oxidative stress. Moreover, some nanoparticles were recently used as phytochemical delivery systems to improve the effects of phytochemical compounds against Alzheimer's disease. Therefore, the present work aims to provide a comprehensive overview of the key advances concerning nano-drug delivery applications of phytochemicals for Alzheimer's disease management.
This study reports on the synthesis of bi-metal compound (BMC) adsorbents based on commercial coconut activated carbon (CAC), surface-modified with metal acetate (ZnAc2), metal oxide (ZnO), and the basic compounds potassium hydroxide (KOH) and sodium hydroxide (NaOH). The adsorbents were then characterized by scanning electron microscopy and elemental analysis, microporosity analysis through Brunauer-Emmett-Teller (BET) analysis, and thermal stability via thermogravimetric analysis. Adsorption-desorption test was conducted to determine the adsorption capacity of H2S via 1 L adsorber and 1000 ppm H2S balanced 49.95% for N2 and CO2. Characterization results revealed that the impregnated solution homogeneously covered the adsorbent surface, morphology, and properties. The adsorption test result reveals that the ZnAc2/ZnO/CAC_B had a higher H2S breakthrough adsorption capacity and performed at larger than 90% capability compared with a single modified adsorbent (ZnAc2/CAC). Therefore, the synthesized BMC adsorbents have a high H2S loading, and the abundance and low cost of CAC may lead to favorable adsorbents in H2S captured.
Diabetes mellitus is a life-threatening disorder affecting people of all ages and adversely disrupts their daily functions. Despite the availability of numerous synthetic-antidiabetic medications and insulin, the demand for the development of novel antidiabetic medications is increasing due to the adverse effects and growth of resistance to commercial drugs in the long-term usage. Hence, antidiabetic phytochemicals isolated from fruit plants can be a very nifty option to develop life-saving novel antidiabetic therapeutics, employing several pathways and MoAs (mechanism of actions). This review focuses on the antidiabetic potential of commonly available Bangladeshi fruits and other plant parts, such as seeds, fruit peals, leaves, and roots, along with isolated phytochemicals from these phytosources based on lab findings and mechanism of actions. Several fruits, such as orange, lemon, amla, tamarind, and others, can produce remarkable antidiabetic actions and can be dietary alternatives to antidiabetic therapies. Besides, isolated phytochemicals from these plants, such as swertisin, quercetin, rutin, naringenin, and other prospective phytochemicals, also demonstrated their candidacy for further exploration to be established as antidiabetic leads. Thus, it can be considered that fruits are one of the most valuable gifts of plants packed with a wide spectrum of bioactive phytochemicals and are widely consumed as dietary items and medicinal therapies in different civilizations and cultures. This review will provide a better understanding of diabetes management by consuming fruits and other plant parts as well as deliver innovative hints for the researchers to develop novel drugs from these plant parts and/or their phytochemicals.
This study concerns the role of activated carbon (AC) from palm raceme as a support material for the enhancement of lipase-catalyzed reactions in an aqueous solution, with deep eutectic solvent (DES) as a co-solvent. The effects of carbonization temperature, impregnation ratio, and carbonization time on lipase activity were studied. The activities of Amano lipase from Burkholderia cepacia (AML) and lipase from the porcine pancreas (PPL) were used to investigate the optimum conditions for AC preparation. The results showed that AC has more interaction with PPL and effectively provides greater enzymatic activity compared with AML. The optimum treatment conditions of AC samples that yield the highest enzymatic activity were 0.5 (NaOH (g)/palm raceme (g)), 150 min, and a carbonization temperature of 400 °C. DES was prepared from alanine/sodium hydroxide and used with AC for the further enhancement of enzymatic activity. Kinetic studies demonstrated that the activity of PPL was enhanced with the immobilization of AC in a DES medium.
Antimicrobial resistance has posed a serious health concern worldwide, which is mainly due to the excessive use of antibiotics. In this study, gold nanoparticles synthesized from the plant Tinospora cordifolia were used against multidrug-resistant Pseudomonas aeruginosa. The active components involved in the reduction and stabilization of gold nanoparticles were revealed by gas chromatography-mass spectrophotometry(GC-MS) of the stem extract of Tinospora cordifolia. Gold nanoparticles (TG-AuNPs) were effective against P. aeruginosa at different concentrations (50,100, and 150 µg/mL). TG-AuNPs effectively reduced the pyocyanin level by 63.1% in PAO1 and by 68.7% in clinical isolates at 150 µg/mL; similarly, swarming and swimming motilities decreased by 53.1% and 53.8% for PAO1 and 66.6% and 52.8% in clinical isolates, respectively. Biofilm production was also reduced, and at a maximum concentration of 150 µg/mL of TG-AuNPs a 59.09% reduction inPAO1 and 64.7% reduction in clinical isolates were observed. Lower concentrations of TG-AuNPs (100 and 50 µg/mL) also reduced the pyocyanin, biofilm, swarming, and swimming. Phenotypically, the downregulation of exopolysaccharide secretion from P. aeruginosa due to TG-AuNPs was observed on Congo red agar plates.
Perovskite solar cells (PSCs) offer advantages over widely deployed silicon solar cells in terms of ease of fabrication; however, the device is still under rigorous materials optimization for cell performance, stability, and cost. In this work, we explore a version of a PSC by replacing the polymeric hole transport layer (HTL) such as Spiro-OMeTAD, P3HT, and PEDOT: PSS with a more air-stable metal oxide, viz., nitrogen-doped titanium dioxide (TiO2:N). Numerical simulations on formamidinium (FA)-based PSCs in the FTO/TiO2/FAPbI3/Ag configuration have been carried out to depict the behaviour of the HTL as well as the effect of absorber layer thickness (∆t) on photovoltaic parameters. The results show that the cell output increases when the HTL bandgap increases from 2.5 to 3.0 eV. By optimizing the absorber layer thickness and the gradient in defect density (Nt), the device structure considered here can deliver a maximum power conversion efficiency of ~21.38% for a lower HTL bandgap (~2.5 eV) and ~26.99% for a higher HTL bandgap of ~3.0 eV. The results are validated by reproducing the performance of PSCs employing commonly used polymeric HTLs, viz. Spiro-OMeTAD, P3HT, and PEDOT: PSS as well as high power conversion efficiency in the highly crystalline perovskite layer. Therefore, the present study provides high-performing, cost-effective PSCs using TiO2:N.
Dipeptidyl peptidase-4 (DPP-IV) inhibitors are known as safe and well-tolerated antidiabetic medicine. Therefore, the aim of the present work was to synthesize some carbohydrazide derivatives (1a-5d) as DPP-IV inhibitors. In addition, this work involves simulations using molecular docking, ADMET analysis, and Lipinski and Veber's guidelines. Wet-lab synthesis was used to make derivatives that met all requirements, and then FTIR, NMR, and mass spectrometry were used to confirm the structures and perform biological assays. In this context, in vitro enzymatic and in vivo antidiabetic activity evaluations were carried out. None of the molecules had broken the majority of the drug-likeness rules. Furthermore, these molecules were put through additional screening using molecular docking. In molecular docking experiments (PDB ID: 2P8S), many molecules displayed more potent interactions than native ligands, exhibiting more hydrogen bonds, especially those with chloro- or fluoro substitutions. Our findings indicated that compounds 5b and 4c have IC50 values of 28.13 and 34.94 µM, respectively, under in vitro enzymatic assays. On the 21st day of administration to animals, compound 5b exhibited a significant reduction in serum blood glucose level (157.33 ± 5.75 mg/dL) compared with the diabetic control (Sitagliptin), which showed 280.00 ± 13.29 mg/dL. The antihyperglycemic activity showed that the synthesized compounds have good hypoglycemic potential in fasting blood glucose in the type 2 diabetes animal model (T2DM). Taken all together, our findings indicate that the synthesized compounds exhibit excellent hypoglycemic potential and could be used as leads in developing novel antidiabetic agents.
Pennywort (Centella asiatica) is a herbaceous vegetable that is usually served in the form of fresh-cut vegetables and consumed raw. Fresh-cut vegetables are in high demand as they offer convenience, have fresh-like quality and are potentially great for therapeutic applications. However, it could be the cause of foodborne outbreaks. Pulsed light is known as a decontamination method for minimally processed products. The aim of this study was to determine the influence of pulsed light in combination with acidic electrolysed water on the sensory, morphological changes and bioactive components in the leaves of pennywort during storage. A combination of soaking with acidic electrolysed water (AEW) at pH 2.5 and pulsed light (PL) treatment (1.5 J/cm2) was tested on the leaves of pennywort. After treatment, these leaves were refrigerated (4 ± 1 °C) for two weeks and evaluated on the basis of sensory acceptance, the visual appearance of the epidermal cell and bioactive compounds. In terms of sensorial properties, samples treated with the combined treatment were preferred over untreated samples. The combination of AEW and PL 1.5 J/cm2 was the most preferred in terms of purchasing and consumption criteria. Observations of the epidermal cells illustrated that PL treatment kept the cell structure intact. The bioactive phytocompounds found in the leaves of pennywort are mainly from the triterpene glycosides (asiaticoside, madecassoside, asiatic acid and madecassic acid) and are efficiently preserved by the combined treatment applied. In conclusion, the combination of acidic electrolysed water and pulsed light treatment is beneficial in retaining the sensory quality and bioactive compounds in the leaves of Pennywort during storage at 4 ± 1 °C.
In this work, ZnO, CrZnO, RuZnO, and BaZnO nanomaterials were synthesized and characterized in order to study their antibacterial activity. The agar well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays were used to determine the antibacterial activity of the fabricated nanomaterials against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC35218, Klebsiella pneumoniae ATCC 7000603, and Pseudomonas aeruginosa ATCC 278533. The well-diffusion test revealed significant antibacterial activity against all investigated bacteria when compared to vancomycin at a concentration of 1 mg/mL. The most susceptible bacteria to BaZnO, RuZnO, and CrZnO were Staphylococcus aureus (15.5 ± 0.5 mm), Pseudomonas aeruginosa (19.2 ± 0.5 mm), and Pseudomonas aeruginosa (19.7 ± 0.5), respectively. The MIC values indicated that they were in the range of 0.02 to 0.2 mg/mL. The MBC values showed that the tested bacteria's growth could be inhibited at concentrations ranging from 0.2 to 2.0 mg/mL. According to the MBC/MIC ratio, BaZnO, RuZnO, and CrZnO exhibit bacteriostatic effects and may target bacterial protein synthesis based on the results of the tolerance test. This study shows the efficacy of the above-mentioned nanoparticles on bacterial growth. Further biotechnological and toxicological studies on the nanoparticles fabricated here are recommended to benefit from these findings.
Adulteration of high-quality meat products using lower-priced meats, such as pork, is a crucial issue that could harm consumers. The consumption of pork is strictly forbidden in certain religions, such as Islam and Judaism. Therefore, the objective of this research was to develop untargeted metabolomics using liquid chromatography-high resolution mass spectrometry (LC-HRMS) combined with chemometrics for analysis of pork in beef meatballs for halal authentication. We investigated the use of non-targeted LC-HRMS as a method to detect such food adulteration. As a proof of concept using six technical replicates of pooled samples from beef and pork meat, we could show that metabolomics using LC-HRMS could be used for high-throughput screening of metabolites in meatballs made from beef and pork. Chemometrics of principal component analysis (PCA) was successfully used to differentiate beef meatballs and pork meatball samples. Partial least square-discriminant analysis (PLS-DA) clearly discriminated between halal and non-halal beef meatball samples with 100% accuracy. Orthogonal projection to latent structures-discriminant analysis (OPLS-DA) perfectly discriminated and classified meatballs made from beef, pork, and a mixture of beef-pork with a good level of fitness (R2X = 0.88, R2Y = 0.71) and good predictivity (Q2 = 0.55). Partial least square (PLS) and orthogonal PLS (OPLS) were successfully applied to predict the concentration of pork present in beef meatballs with high accuracy (R2 = 0.99) and high precision. Thirty-five potential metabolite markers were identified through VIP (variable important for projections) analysis. Metabolites of 1-(1Z-hexadecenyl)-sn-glycero-3-phosphocholine, acetyl-l-carnitine, dl-carnitine, anserine, hypoxanthine, linoleic acid, and prolylleucine had important roles for predicting pork in beef meatballs through S-line plot analysis. It can be concluded that a combination of untargeted metabolomics using LC-HRMS and chemometrics is promising to be developed as a standard analytical method for halal authentication of highly processed meat products.
Point-of-care diagnostic methods for animal species determination are critical for rapid, simple, and accurate enforcement of food labelling. PCR is the most common method for species identification. However, the requirement of using a thermal cycler created drawbacks for the PCR application, particularly in low-resource settings. Hence, in this study, a method for porcine DNA detection using recombinase polymerase amplification (RPA), coupled with nucleic acid lateral flow immunoassay (NALFIA), was developed. Porcine-specific primers targeting pig (Sus scrofa) cytochrome b gene fragments specifically amplify a 197 bp fragment of the mitochondrial gene as being visualized by 2% agarose gel and PCRD NALFIA. The reaction temperature and time were 39 °C and 20 min, respectively. Herein, the specificity of the primers to porcine was confirmed after being assayed against six animal species, namely cow, goat, chicken, duck, dog, and rabbit. The porcine-specific RPA assay shows a high limit of detection of 0.01 ng/µL pork DNA. Based on the preliminary performance data obtained from this study, the potential of this method as a rapid and sensitive tool for porcine DNA detection in meat-based products is foreseen.
The bone morphogenic protein (BMP) family is a member of the TGF-beta superfamily and plays a crucial role during the onset of gut inflammation and arthritis diseases. Recent studies have reported a connection with the gut-joint axis; however, the genetic players are still less explored. Meanwhile, BDMC33 is a newly synthesized anti-inflammatory drug candidate. Therefore, in our present study, we analysed the genome-wide features of the BMP family as well as the role of BMP members in gut-associated arthritis in an inflammatory state and the ability of BDMC33 to attenuate this inflammation. Firstly, genome-wide analyses were performed on the BMP family in the zebrafish genome, employing several in silico techniques. Afterwards, the effects of curcumin analogues on BMP gene expression in zebrafish larvae induced with TNBS (0.78 mg/mL) were determined using real time-qPCR. A total of 38 identified BMP proteins were revealed to be clustered in five major clades and contain TGF beta and TGF beta pro peptide domains. Furthermore, BDMC33 suppressed the expression of four selected BMP genes in the TNBS-induced larvae, where the highest gene suppression was in the BMP2a gene (an eight-fold decrement), followed by BMP7b (four-fold decrement), BMP4 (four-fold decrement), and BMP6 (three-fold decrement). Therefore, this study reveals the role of BMPs in gut-associated arthritis and proves the ability of BDMC33 to act as a potential anti-inflammatory drug for suppressing TNBS-induced BMP genes in zebrafish larvae.
Most researchers focused on developing highly selective membranes for CO2/CH4 separation, but their developed membranes often suffered from low permeance. In this present work, we aimed to develop an ultrahigh permeance membrane using a simple coating technique to overcome the trade-off between membrane permeance and selectivity. A commercial silicone membrane with superior permeance but low CO2/CH4 selectivity (in the range of 2-3) was selected as the host for surface modification. Our results revealed that out of the three silane agents tested, only tetraethyl orthosilicate (TEOS) improved the control membrane's permeance and selectivity. This can be due to its short structural chain and better compatibility with the silicone substrate. Further investigation revealed that higher CO2 permeance and selectivity could be attained by coating the membrane with two layers of TEOS. The surface integrity of the TEOS-coated membrane was further improved when an additional polyether block amide (Pebax) layer was established atop the TEOS layer. This additional layer sealed the pin holes of the TEOS layer and enhanced the resultant membrane's performance, achieving CO2/CH4 selectivity of ~19 at CO2 permeance of ~2.3 × 105 barrer. This performance placed our developed membrane to surpass the 2008 Robeson Upper Boundary.
Detection of sub-ppm acetic acid (CH3COOH) is in demand for environmental gas monitoring. In this article, we propose a CH3COOH gas sensor based on Sn3O4 and reduced graphene oxide (RGO), where the assembly of Sn3O4-RGO nanocomposites is dependent on the synthesis method. Three nanocomposites prepared by three different synthesis methods are investigated. The optimum assembly is by hydrothermal reactions of Sn4+ salts and pre-reduced RGO (designated as RS nanocomposite). Raman spectra verified the fingerprint of RGO in the synthesized RS nanocomposite. The Sn3O4 planes of (111), (210), (130), (13¯2) are observed from the X-ray diffractogram, and its average crystallite size is 3.94 nm. X-ray photoelectron spectroscopy on Sn3d and O1s spectra confirm the stoichiometry of Sn3O4 with Sn:O ratio = 0.76. Sn3O4-RGO-RS exhibits the highest response of 74% and 4% at 2 and 0.3 ppm, respectively. The sensitivity within sub-ppm CH3COOH is 64%/ppm. Its superior sensing performance is owing to the embedded and uniformly wrapped Sn3O4 nanoparticles on RGO sheets. This allows a massive relative change in electron concentration at the Sn3O4-RGO heterojunction during the on/off exposure of CH3COOH. Additionally, the operation is performed at room temperature, possesses good repeatability, and consumes only ~4 µW, and is a step closer to the development of a commercial CH3COOH sensor.
An anti-biofilm that can inhibit the matrix of biofilm formation is necessary to prevent recurrent and chronic Pseudomonas aeruginosa infection. This study aimed to design compounds with a new mechanism through competitive inhibitory activity against phosphomannomutase/phosphoglucomutase (PMM/PGM), using in vitro assessment and a computational (in silico) approach. The active site of PMM/PGM was assessed through molecular redocking using L-tartaric acid as the native ligand and other small molecules, such as glucaric acid, D-sorbitol, and ascorbic acid. The docking program set the small molecules to the active site, showing a stable complex formation. Analysis of structural similarity, bioavailability, absorption, distribution, metabolism, excretion, and toxicity properties proved the potential application of ligands as an anti-biofilm. In vitro assessment with crystal violet showed that the ligands could reach up to 95.87% inhibition at different concentrations. The nitrocellulose membrane and scanning electron microscopic visualization showed that the untreated P. aeruginosa biofilm was denser than the ligand-treated biofilm.
Diabetes mellitus (DM) and its complications are a severe public health concern due to the high incidence, morbidity, and mortality rates. The present study aims to synthesize and characterize silver nanoparticles (AgNPs) using the aqueous leaf extract of Psidium guajava (PGE) for investigating its antidiabetic activity. Psidium guajava silver nanoparticles (PGAg NPs) were prepared and characterized by various parameters. The in vivo study was conducted using PGE and PGAg NPs in Streptozotocin (STZ)-induced diabetic rats to assess their antidiabetic properties. STZ of 55 mg/kg was injected to induce diabetes. The PGE, PGAg NPs at a dose of 200 and 400 mg/kg and standard drug Metformin (100 mg/kg) were administered daily to diabetic rats for 21 days through the oral route. Blood glucose level, body weight changes, lipid profiles, and histopathology of the rats' liver and pancreas were examined. In the diabetic rats, PGE and PGAg NPs produced a drastic decrease in the blood glucose level, preventing subsequent weight loss and ameliorating lipid profile parameters. The histopathological findings revealed the improvements in pancreas and liver cells due to the repercussion of PGE and PGAg NPs. A compelling effect was observed in all doses of PGE and PGAg NPs; however, PGAg NPs exhibited a more promising result. Thus, from the results, it is concluded that the synthesized PGAg NPs has potent antidiabetic activity due to its enhanced surface area and smaller particle size of nanoparticles.