Displaying publications 641 - 660 of 928 in total

Abstract:
Sort:
  1. Yeoh KA, Othman A, Meon S, Abdullah F, Ho CL
    Mol Biol Rep, 2013 Jan;40(1):147-58.
    PMID: 23065213 DOI: 10.1007/s11033-012-2043-8
    Chitinases are glycosyl hydrolases that cleave the β-1,4-glycosidic linkages between N-acetylglucosamine residues in chitin which is a major component of fungal cell wall. Plant chitinases hydrolyze fungal chitin to chitin oligosaccharides that serve as elicitors of plant defense system against fungal pathogens. However, plants synthesize many chitinase isozymes and some of them are not pathogenesis-related. In this study, three full-length cDNA sequences encoding a putative chitinase (EgChit3-1) and two chitinase-like proteins (EgChit1-1 and EgChit5-1) have been cloned from oil palm (Elaeis guineensis) by polymerase chain reaction (PCR). The abundance of these transcripts in the roots and leaves of oil palm seedlings treated with Ganoderma boninense (a fungal pathogen) or Trichoderma harzianum (an avirulent symbiont), and a combination of both fungi at 3, 6 and 12 weeks post infection were profiled by real time quantitative reverse-transcription (qRT)-PCR. Our findings showed that the gene expression of EgChit3-1 increased significantly in the roots of oil palm seedlings treated with either G. boninense or T. harzianum and a combination of both; whereas the gene expression of EgChit1-1 in the treated roots of oil palm seedlings was not significantly higher compared to those of the untreated oil palm roots. The gene expression of EgChit5-1 was only higher in the roots of oil palm seedlings treated with T. harzianum compared to those of the untreated oil palm roots. In addition, the gene expression of EgChit1-1 and EgChit3-1 showed a significantly higher gene expression in the leaf samples of oil palm seedlings treated with either G. boninense or T. harzianum.
    Matched MeSH terms: Molecular Sequence Data
  2. Ng KT, Ong LY, Takebe Y, Kamarulzaman A, Tee KK
    J Virol, 2012 Oct;86(20):11405-6.
    PMID: 22997423
    We report here the first novel HIV-1 circulating recombinant form (CRF) 54_01B (CRF54_01B) isolated from three epidemiologically unlinked subjects of different risk groups in Malaysia. These recently sampled recombinants showed a complex genome organization composed of parental subtype B' and CRF01_AE, with identical recombination breakpoints observed in the gag, pol, and vif genes. Such a discovery highlights the ongoing active generation and spread of intersubtype recombinants involving the subtype B' and CRF01_AE lineages and indicates the potential of the new CRF in bridging HIV-1 transmission among different risk groups in Southeast Asia.
    Matched MeSH terms: Molecular Sequence Data
  3. Omidvar V, Abdullah SN, Ho CL, Mahmood M, Al-Shanfari AB
    Mol Biol Rep, 2012 Sep;39(9):8907-18.
    PMID: 22722992 DOI: 10.1007/s11033-012-1758-x
    Abscisic acid (ABA) is an important phytohormone involved in the abiotic stress resistance in plants. The ABA-responsive element (ABRE) binding factors play significant roles in the plant development and response to abiotic stresses, but none so far have been isolated and characterized from the oil palm. Two ABA-responsive cDNA clones, named EABF and EABF1, were isolated from the oil palm fruits using yeast one-hybrid system. The EABF had a conserved AP2/EREBP DNA-binding domain (DNA-BD) and a potential nuclear localization sequence (NLS). No previously known DNA-BD was identified from the EABF1 sequence. The EABF and EABF1 proteins were classified as DREB/CBF and bZIP family members based on the multiple sequence alignment and phylogenetic analysis. Both proteins showed ABRE-binding and transcriptional activation properties in yeast. Furthermore, both proteins were able to trans-activate the down-stream expression of the LacZ reporter gene in yeast. An electrophoretic mobility shift assay revealed that in addition to the ABRE sequence, both proteins could bind to the DRE sequence as well. Transcriptional analysis revealed that the expression of EABF was induced in response to the ABA in the oil palm fruits and leaves, but not in roots, while the EABF1 was constitutively induced in all tissues. The expressions of both genes were strongly induced in fruits in response to the ABA, ethylene, methyl jasmonate, drought, cold and high-salinity treatments, indicating that the EABF and EABF1 might act as connectors among different stress signal transduction pathways. Our results indicate that the EABF and EABF1 are novel stress-responsive transcription factors, which are involved in the abiotic stress response and ABA signaling in the oil palm and could be used for production of stress-tolerant transgenic crops.
    Matched MeSH terms: Molecular Sequence Data
  4. Lee LH, Cheah YK, Sidik SM, Xie QY, Tang YL, Lin HP, et al.
    Int J Syst Evol Microbiol, 2013 Jan;63(Pt 1):241-248.
    PMID: 22389286 DOI: 10.1099/ijs.0.038232-0
    Three novel actinobacteria, strains 39(T), 40 and 41, were isolated from soil collected from Barrientos Island in the Antarctic. The taxonomic status of these strains was determined using a polyphasic approach. Comparison of 16S rRNA gene sequences revealed that strain 39(T) represented a novel lineage within the family Dermacoccaceae and was most closely related to members of the genera Demetria (96.9 % 16S rRNA gene sequence similarity), Branchiibius (95.7 %), Dermacoccus (94.4-95.3 %), Calidifontibacter (94.6 %), Luteipulveratus (94.3 %), Yimella (94.2 %) and Kytococcus (93.1 %). Cells were irregular cocci and short rods. The peptidoglycan type was A4α with an L-Lys-L-Ser-D-Asp interpeptide bridge. The cell-wall sugars were galactose and glucose. The major menaquinone was MK-8(H(4)). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphoglycolipid, two glycolipids and one unknown phospholipid. The acyl type of the cell-wall polysaccharide was N-acetyl. The major cellular fatty acids were anteiso-C(17 : 0) (41.97 %), anteiso-C(17 : 1)ω9c (32.16 %) and iso-C(16 : 0) (7.68 %). The DNA G+C content of strain 39(T) was 68.4 mol%. On the basis of phylogenetic and phenotypic differences from other genera of the family Dermacoccaceae, a novel genus and species, Barrientosiimonas humi gen. nov., sp. nov., is proposed; the type strain of the type species is 39(T) (=CGMCC 4.6864(T) = DSM 24617(T)).
    Matched MeSH terms: Molecular Sequence Data
  5. Ang GY, Yu CY, Yean CY
    Biosens Bioelectron, 2012 Oct-Dec;38(1):151-6.
    PMID: 22705404 DOI: 10.1016/j.bios.2012.05.019
    In the field of diagnostics, molecular amplification targeting unique genetic signature sequences has been widely used for rapid identification of infectious agents, which significantly aids physicians in determining the choice of treatment as well as providing important epidemiological data for surveillance and disease control assessment. We report the development of a rapid nucleic acid lateral flow biosensor (NALFB) in a dry-reagent strip format for the sequence-specific detection of single-stranded polymerase chain reaction (PCR) amplicons at ambient temperature (22-25°C). The NALFB was developed in combination with a linear-after-the-exponential PCR assay and the applicability of this biosensor was demonstrated through detection of the cholera toxin gene from diarrheal-causing toxigenic Vibrio cholerae. Amplification using the advanced asymmetric PCR boosts the production of fluorescein-labeled single-stranded amplicons, allowing capture probes immobilized on the NALFB to hybridize specifically with complementary targets in situ on the strip. Subsequent visual formation of red lines is achieved through the binding of conjugated gold nanoparticles to the fluorescein label of the captured amplicons. The visual detection limit observed with synthetic target DNA was 0.3 ng and 1 pg with pure genomic DNA. Evaluation of the NALFB with 164 strains of V. cholerae and non-V. cholerae bacteria recorded 100% for both sensitivity and specificity. The whole procedure of the low-cost NALFB, which is performed at ambient temperature, eliminates the need for preheated buffers or additional equipment, greatly simplifying the protocol for sequence-specific PCR amplicon analysis.
    Matched MeSH terms: Molecular Sequence Data
  6. Snauwaert I, Papalexandratou Z, De Vuyst L, Vandamme P
    Int J Syst Evol Microbiol, 2013 May;63(Pt 5):1709-1716.
    PMID: 22922535 DOI: 10.1099/ijs.0.040311-0
    Six facultatively anaerobic, non-motile lactic acid bacteria were isolated from spontaneous cocoa bean fermentations carried out in Brazil, Ecuador and Malaysia. Phylogenetic analysis revealed that one of these strains, designated M75(T), isolated from a Brazilian cocoa bean fermentation, had the highest 16S rRNA gene sequence similarity towards Weissella fabaria LMG 24289(T) (97.7%), W. ghanensis LMG 24286(T) (93.3%) and W. beninensis LMG 25373(T) (93.4%). The remaining lactic acid bacteria isolates, represented by strain M622, showed the highest 16S rRNA gene sequence similarity towards the type strain of Fructobacillus tropaeoli (99.9%), a recently described species isolated from a flower in South Africa. pheS gene sequence analysis indicated that the former strain represented a novel species, whereas pheS, rpoA and atpA gene sequence analysis indicated that the remaining five strains belonged to F. tropaeoli; these results were confirmed by DNA-DNA hybridization experiments towards their respective nearest phylogenetic neighbours. Additionally, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry proved successful for the identification of species of the genera Weissella and Fructobacillus and for the recognition of the novel species. We propose to classify strain M75(T) ( = LMG 26217(T)  = CCUG 61472(T)) as the type strain of the novel species Weissella fabalis sp. nov.
    Matched MeSH terms: Molecular Sequence Data
  7. Székely C, Shaharom F, Cech G, Mohamed K, Zin NA, Borkhanuddin MH, et al.
    Parasitol Res, 2012 Oct;111(4):1749-56.
    PMID: 22782473
    Tor tambroides, a common and appreciated cyprinid fish of the Tasik Kenyir water reservoir in Malaysia, is one of the species selected for propagation. This fish was first successfully propagated in Malaysia by the Department of Agriculture, Sarawak, Malaysia, and the breeding program continued throughout the country. The gills were frequently infected by a Myxobolus species to be described as Myxobolus tambroides sp. n. The small, 50 to 70 μm, round plasmodia of this species is located intralamellarly. Plasmodia were filled with pyriform myxospores, 9.9 and 7.4 μm wide. In sutural view, the caudal end of the myxospores had a distinctive valvular groove, parallel with the suture. Plasmodia caused deformations on the affected and the neighbouring gill lamellae. The 18S rDNA sequence of M. tambroides sp.n. did not show a close relationship with any other Myxobolus spp., represented in the GenBank. This might be an emerging parasite likely to impact the propagation of this fish.
    Matched MeSH terms: Molecular Sequence Data
  8. Arockiaraj J, Vanaraja P, Easwvaran S, Singh A, Othman RY, Bhassu S
    Fish Shellfish Immunol, 2011 Dec;31(6):1259-67.
    PMID: 21945707 DOI: 10.1016/j.fsi.2011.09.008
    Apoptosis is genetically programmed cellular killing processes that execute unnecessary or infected cells. It plays an important role in embryogenesis, homeostasis, insect metamorphosis and immunity. Apoptosis inhibitor (MrIAP) was sequenced from the freshwater giant prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrIAP consisted of 1753 base pair nucleotides encoded 535 polypeptide with an estimated molecular mass of 60 kDa. MrIAP amino acid sequence contains IAP superfamily domain between 5 and 490. The deduced amino acid sequences of the MrIAP were aligned with the other IAP family members. The highest sequence similarity was observed in IAP-5 from ant Camponotus floridanus (67%) followed by IAP from body louse Pediculus humanus corporis (66%) and the lowest (62%) in IAP-5 isoform-5 from common chimpanzee Pan troglodytes and IAP-5 from Aedes aegypti. The IAP phylogenetic tree showed that MrIAP closely related to other arthropod blacklegged tick Ixodes scapularis, formed a sister group with IAP from a hemichordate acorn worm Saccoglossus kowalevskii and finally clustered together with IAPs from fish groups. The quantitative real time PCR analysis revealed that significantly (P < 0.05) highest expression was noticed in hepatopancreas and significantly (P < 0.05) lowest expression in pleopods. Based on the results of gene expression analysis, MrIAP mRNA transcription in M. rosenbergii challenged to infectious hypodermal and hematopoietic necrosis virus (IHHNV) was highly induced in hepatopancreas. The collective results of this study indicate that the MrIAP is an essential immune gene and influences the immune response against IHHNV infection in M. rosenbergii.
    Matched MeSH terms: Molecular Sequence Data
  9. Olusesan AT, Azura LK, Abubakar F, Mohamed AK, Radu S, Manap MY, et al.
    J. Mol. Microbiol. Biotechnol., 2011 Apr;20(2):105-15.
    PMID: 21422764 DOI: 10.1159/000324535
    Bacillus strain NS 8, a lipase-producing bacterium isolated from a Malaysian hot spring, is able to tolerate a broad range of temperature and pH, which makes it beneficial for this study. It generated PCR products with molecular weight of 1,532 bp, and the 16S rRNA sequence analysis identified it as Bacillus subtilis with accession number AB110598. It showed a 71% similarity index with B. subtilis using Biolog Microstation System. Its lipase production was optimized using a shake flask system by changing the physical (agitation speed, pH and temperature) and nutritional (nitrogen, carbon and minerals) factors. The most suitable combination of the basal medium for lipase production was 2.5% olive oil (carbon), 1.5% peptone (nitrogen), 0.1% MgSO(4) (mineral) at an optimum temperature of 50°C, pH 7.5 and 150 rpm agitation, giving an enzyme yield of 4.23 U/ml. Statistical optimization using response surface methodology was carried out. An optimum lipase production of 5.67 U/ml was achieved when olive oil concentration of 3%, peptone 2%, MgSO(4)·7H(2)O 0.2% and an agitation rate of 200 rpm were combined. Lipase production was further carried out inside a 2-liter bioreactor, which yielded an enzyme activity of 14.5 U/ml after 15 h of incubation.
    Matched MeSH terms: Molecular Sequence Data
  10. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Mol Biol Rep, 2012 Feb;39(2):1377-86.
    PMID: 21614523 DOI: 10.1007/s11033-011-0872-5
    The prophenoloxidase activating system is an important innate immune response against microbial infections in invertebrates. The major enzyme, phenoloxidase, is synthesized as an inactive precursor and its activation to an active enzyme is mediated by a cascade of clip domain serine proteinases. In this study, a cDNA encoding a prophenoloxidase activating enzyme-III from the giant freshwater prawn Macrobrachium rosenbergii, designated as MrProAE-III, was identified and characterized. The full-length cDNA contains an open reading frame of 1110 base pair (bp) encoding a predicted protein of 370 amino acids including an 22 amino acid signal peptide. The MrProAE-III protein exhibits a characteristic sequence structure of a long serine proteases-trypsin domain and an N- and C-terminal serine proteases-trypsin family histidine active sites, respectively, which together are the characteristics of the clip-serin proteases. Sequence analysis showed that MrProAE-III exhibited the highest amino acid sequence similarity (63%) to a ProAE-III from Atlantic blue crab, Callinectes sapidus. MrProAE-III mRNA and enzyme activity of MrProAE-III were detectable in all examined tissues, including hepatopancreas, hemocytes, pleopods, walking legs, eye stalk, gill, stomach, intestine, brain and muscle with the highest level of both in hepatopancreas. This is regulated after systemic infectious hypodermal and hematopoietic necrosis virus infection supporting that it is an immune-responsive gene. These results indicate that MrProAE-III functions in the proPO system and is an important component in the prawn immune system.
    Matched MeSH terms: Molecular Sequence Data
  11. Yee LN, Chuah JA, Chong ML, Phang LY, Raha AR, Sudesh K, et al.
    Microbiol Res, 2012 Oct 12;167(9):550-7.
    PMID: 22281521 DOI: 10.1016/j.micres.2011.12.006
    In this study, PHA biosynthesis operon of Comamonas sp. EB172, an acid-tolerant strain, consisting of three genes encoding acetyl-CoA acetyltransferase (phaA(Co) gene, 1182 bp), acetoacetyl-CoA reductase (phaB(Co) gene, 738 bp) and PHA synthase, class I (phaC(Co) gene, 1694 bp) were identified. Sequence analysis of the phaA(Co), phaB(Co) and phaC(Co) genes revealed that they shared more than 85%, 89% and 69% identity, respectively, with orthologues from Delftia acidovorans SPH-1 and Acidovorax ebreus TPSY. The PHA biosynthesis genes (phaC(Co) and phaAB(Co)) were successfully cloned in a heterologous host, Escherichia coli JM109. E. coli JM109 transformants harbouring pGEM'-phaC(Co)AB(Re) and pGEM'-phaC(Re)AB(Co) were shown to be functionally active synthesising 33 wt.% and 17 wt.% of poly(3-hydroxybutyrate) [P(3HB)]. E. coli JM109 transformant harbouring the three genes from the acid-tolerant Comamonas sp. EB172 (phaCAB(Co)) under the control of native promoter from Cupriavidus necator, in vivo polymerised P(3HB) when fed with glucose and volatile mixed organic acids (acetic acid:propionic acid:n-butyric acid) in ration of 3:1:1, respectively. The E. coli JM109 transformant harbouring phaCAB(Co) could accumulate P(3HB) at 2g/L of propionic acid. P(3HB) contents of 40.9% and 43.6% were achieved by using 1% of glucose and mixed organic acids, respectively.
    Matched MeSH terms: Molecular Sequence Data
  12. Jaganathan S, Toung OP, Yee PL, Yew TD, Yoon CP, Keong LB
    Virol J, 2011;8:437.
    PMID: 21914166 DOI: 10.1186/1743-422X-8-437
    Porcine circovirus type 2 is the primary etiological agent associated with a group of complex multi-factorial diseases classified as Porcine Circovirus Associated Diseases (PCVAD). Sporadic cases reported in Malaysia in 2007 caused major economic losses to the 2.2 billion Malaysian ringgit (MYR) (approximately 0.7 billion US dollar) swine industry. The objective of the present study was to determine the association between the presence of PCV2 and occurrences of PCVAD.
    Matched MeSH terms: Molecular Sequence Data
  13. Intapan PM, Chotmongkol V, Tantrawatpan C, Sanpool O, Morakote N, Maleewong W
    Am J Trop Med Hyg, 2011 Jun;84(6):994-7.
    PMID: 21633039 DOI: 10.4269/ajtmh.2011.10-0675
    Previously, we reported the presence of imported trichinellosis in a Thai worker returning from Malaysia, who presented with progressive generalized muscle hypertrophy and weakness after eating wild boar meat. This work analyzed a partial small subunit of a mitochondrial ribosomal RNA gene of Trichinella larvae isolated from the patient. The results showed complete identity with a mitochondrial RNA gene of Trichinella papuae (GenBank accession no. EF517130). This is the first report of imported trichinellosis in Thailand caused by T. papuae. It is possible that T. papuae is widely distributed in the wildlife of Southeast Asia.
    Matched MeSH terms: Molecular Sequence Data
  14. Wong MM, Cannon CH, Wickneswari R
    BMC Genomics, 2011;12:342.
    PMID: 21729267 DOI: 10.1186/1471-2164-12-342
    Acacia auriculiformis × Acacia mangium hybrids are commercially important trees for the timber and pulp industry in Southeast Asia. Increasing pulp yield while reducing pulping costs are major objectives of tree breeding programs. The general monolignol biosynthesis and secondary cell wall formation pathways are well-characterized but genes in these pathways are poorly characterized in Acacia hybrids. RNA-seq on short-read platforms is a rapid approach for obtaining comprehensive transcriptomic data and to discover informative sequence variants.
    Matched MeSH terms: Molecular Sequence Data
  15. Ramli AN, Mahadi NM, Rabu A, Murad AM, Bakar FD, Illias RM
    Microb Cell Fact, 2011;10:94.
    PMID: 22050784 DOI: 10.1186/1475-2859-10-94
    Cold-adapted enzymes are proteins produced by psychrophilic organisms that display a high catalytic efficiency at extremely low temperatures. Chitin consists of the insoluble homopolysaccharide β-(1, 4)-linked N-acetylglucosamine, which is the second most abundant biopolymer found in nature. Chitinases (EC 3.2.1.14) play an important role in chitin recycling in nature. Biodegradation of chitin by the action of cold-adapted chitinases offers significant advantages in industrial applications such as the treatment of chitin-rich waste at low temperatures, the biocontrol of phytopathogens in cold environments and the biocontrol of microbial spoilage of refrigerated food.
    Matched MeSH terms: Molecular Sequence Data
  16. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Fish Shellfish Immunol, 2012 Jan;32(1):161-9.
    PMID: 22119573 DOI: 10.1016/j.fsi.2011.11.006
    Caspase 3c (MrCasp3c) was sequenced from the freshwater giant prawn Macrobrachium rosenbergii using Illumina Solexa Genome Analyzer Technique. MrCasp3c consisted of 2080 bp nucleotide encoded 521 polypeptide with an estimated molecular mass of 59 kDa. MrCasp3c sequence contains caspase family p20 domain profile and caspase family p10 domain profile at 236-367 and 378-468 respectively. The quantitative real time PCR analysis revealed a broad expression of MrCasp3c with the highest expression in haemocyte and the lowest in stomach. The expression of MrCasp3c after challenge with the infectious hypodermal and haematopoietic necrosis virus (IHHNV) was tested in haemocyte. In addition, MrCasp3c was expressed in Escherichia coli by prokaryotic expression plasmid pMAL-c2x. The enzyme activity of MrCasp3c was also found to be up-regulated by IHHNV in haemocyte and hepatopancreas tissues. This study suggested that MrCasp3c may be an effector caspase associated with the induction of apoptosis which is potentially involved in the immune defence of M. rosenbergii.
    Matched MeSH terms: Molecular Sequence Data
  17. Freeman MA, Shinn AP
    Parasit Vectors, 2011;4:220.
    PMID: 22115202 DOI: 10.1186/1756-3305-4-220
    Myxosporeans are known from aquatic annelids but parasitism of platyhelminths by myxosporeans has not been widely reported. Hyperparasitism of gill monogeneans by Myxidium giardi has been reported from the European eel and Myxidium-like hyperparasites have also been observed during studies of gill monogeneans from Malaysia and Japan.The present study aimed to collect new hyperparasite material from Malaysia for morphological and molecular descriptions. In addition, PCR screening of host fish was undertaken to determine whether they are also hosts for the myxosporean.
    Matched MeSH terms: Molecular Sequence Data
  18. Aliza D, Tey CL, Ismail IS, Kuah MK, Shu-Chien AC, Muhammad TS
    Mol Biol Rep, 2012 Apr;39(4):4823-9.
    PMID: 21956757 DOI: 10.1007/s11033-011-1275-3
    Teleosts are useful vertebrate model species for understanding copper toxicity due to the dual entry route for copper intake via the gills and intestine. In this present study, we utilized the differential display reverse transcription-polymerase chain reaction to isolate potential novel hepatic genes induced by sublethal copper exposure in the freshwater swordtail fish, Xiphophorus helleri. Full length cloning of a cDNA fragment induced by copper exposure to 1 μg/ml during 24 h resulted in the positive identification of a hepatic ribosomal protein L19 (RPL19) gene. Further characterization of this gene revealed that its transcriptional expression was dependent on dosage and time of copper exposure. This study describes for the first time the involvement of RPL19 in copper toxicity, probably as a result of increase in ribosome synthesis rate to support activities such as cellular protein translation, transcriptional activation and mRNA stabilization during sublethal copper exposure.
    Matched MeSH terms: Molecular Sequence Data
  19. Kuan CS, Wong MT, Choi SB, Chang CC, Yee YH, Wahab HA, et al.
    Int J Mol Sci, 2011;12(7):4441-55.
    PMID: 21845088 DOI: 10.3390/ijms12074441
    Klebsiella pneumoniae causes neonatal sepsis and nosocomial infections. One of the strains, K. pneumoniae MGH 78578, shows high level of resistance to multiple microbial agents. In this study, domain family, amino acid sequence and topology analyses were performed on one of its hypothetical protein, YggG (KPN_03358). Structural bioinformatics approaches were used to predict the structure and functionality of YggG protein. The open reading frame (ORF) of yggG, which was a putative metalloprotease gene, was also cloned, expressed and characterized. The ORF was PCR amplified from K. pneumoniae MGH 78578 genomic DNA and cloned into a pET14-b vector for heterologous expression in Escherichia coli. The purified YggG protein was subsequently assayed for casein hydrolysis under different conditions. This protein was classified as peptidase M48 family and subclan gluzincin. It was predicted to contain one transmembrane domain by TMpred. Optimal protein expression was achieved by induction with 0.6 mM isopropyl thiogalactoside (IPTG) at 25 °C for six hours. YggG was purified as soluble protein and confirmed to be proteolytically active under the presence of 1.25 mM zinc acetate and showed optimum activity at 37 °C and pH 7.4. We confirmed for the first time that the yggG gene product is a zinc-dependent metalloprotease.
    Matched MeSH terms: Molecular Sequence Data
  20. Chan KG, Puthucheary SD, Chan XY, Yin WF, Wong CS, Too WS, et al.
    Curr Microbiol, 2011 Jan;62(1):167-72.
    PMID: 20544198 DOI: 10.1007/s00284-010-9689-z
    Bacterial quorum sensing signal molecules called N-acylhomoserine lactone (AHL) controls the expression of virulence determinants in many Gram-negative bacteria. We determined AHL production in 22 Aeromonas strains isolated from various infected sites from patients (bile, blood, peritoneal fluid, pus, stool and urine). All isolates produced the two principal AHLs, N-butanoylhomoserine lactone (C4-HSL) and N-hexanoyl homoserine lactone (C6-HSL). Ten isolates also produced additional AHLs. This report is the first documentation of Aeromonas sobria producing C6-HSL and two additional AHLs with N-acyl side chain longer than C(6). Our data provides a better understanding of the mechanism(s) of this environmental bacterium emerging as a human pathogen.
    Matched MeSH terms: Molecular Sequence Data
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links