Displaying publications 641 - 660 of 943 in total

Abstract:
Sort:
  1. Ramanathan K, Canaganayagam A, Keat TC, Retnanesan A
    Med J Malaysia, 1973 Mar;27(3):173-81.
    PMID: 4268919
    Matched MeSH terms: Plants, Medicinal*
  2. Singh D, Narayanan S, Vicknasingam B, Corazza O, Santacroce R, Roman-Urrestarazu A
    Hum Psychopharmacol, 2017 05;32(3).
    PMID: 28544011 DOI: 10.1002/hup.2582
    OBJECTIVE: Kratom (Mitragyna speciosa. Korth) is an indigenous medicinal plant of Southeast Asia. This review paper aims to describe the trends of kratom use in Southeast Asia.

    DESIGN: A literature review search was conducted through ScienceDirect, Scopus, ProMed and Google Scholar. Twenty-five articles illustrating kratom use in humans in Southeast Asia were reviewed.

    RESULTS: Kratom has long been used by rural populations in Southeast Asia as a remedy for common ailments, to fight fatigue from hard manual work, as a drink during social interaction among men, and in village religious functions. Studies based on self-reports suggest that prolonged kratom use does not result in serious health risks or impair social functioning. Two recent trends have also emerged: (a) Kratom is reportedly being used to ease withdrawal from opioid dependence in rural settings; whereas (b) in urban areas, adulterated kratom cocktails are being consumed by younger people to induce euphoria.

    CONCLUSIONS: Legal sanctions appear to have preceded serious scientific investigations into the claimed benefits of ketum. More objective-controlled trials and experiments on humans need to be conducted to validate self-report claims by kratom users in the community.

    Matched MeSH terms: Plants, Medicinal/adverse effects
  3. Kumarasingha R, Karpe AV, Preston S, Yeo TC, Lim DSL, Tu CL, et al.
    Int J Parasitol Drugs Drug Resist, 2016 12;6(3):171-178.
    PMID: 27639945 DOI: 10.1016/j.ijpddr.2016.08.002
    Anthelmintic resistance is widespread in gastrointestinal nematode populations, such that there is a consistent need to search for new anthelmintics. However, the cost of screening for new compounds is high and has a very low success rate. Using the knowledge of traditional healers from Borneo Rainforests (Sarawak, Malaysia), we have previously shown that some traditional medicinal plants are a rich source of potential new anthelmintic drug candidates. In this study, Picria fel-terrae Lour. plant extract, which has previously shown promising anthelmintic activities, was fractionated via the use of a solid phase extraction cartridge and each isolated fraction was then tested on free-living nematode Caenorhabditis elegans and the parasitic nematode Haemonchus contortus. We found that a single fraction was enriched for nematocidal activity, killing ≥90% of C. elegans adults and inhibiting the motility of exsheathed L3 of H. contortus, while having minimal cytotoxic activity in mammalian cell culture. Metabolic profiling and chemometric analysis of the effective fraction indicated medium chained fatty acids and phenolic acids were highly represented.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  4. Shipton FN, Khoo TJ, Hossan MS, Wiart C
    J Ethnopharmacol, 2017 Feb 23;198:91-97.
    PMID: 28049063 DOI: 10.1016/j.jep.2016.12.045
    ETHNOPHARMACOLOGICAL RELEVANCE: Pericampylus glaucus is a climbing plant found across Asia and used in traditional medicine to treat a number of conditions including splenomegaly, fever, cough, laryngitis, pulmonary disease, asthma, headache, hair loss, snake bite, boar bite, factures, boils, tumours, tetanus, rheumatic pain, itches and eclampsia.

    AIM OF THE STUDY: To test extracts of P. glaucus in a number of bioassays and determine the legitimacy of its traditional use.

    MATERIALS AND METHODS: The stems, leaves, roots and fruits of P. glaucus were collected and extracted sequentially with hexane, chloroform and ethanol, respectively. The anti-inflammatory activity was assessed by testing the ability of the extracts to inhibit heat induced protein denaturation, stabilise human red blood cells under hypotonic stress and by testing the inhibitory activity of the extracts against cyclooxygenases 1 and 2. Cytotoxicity was tested using the human lung epithelial cell line MRC-5 and nasopharangeal carcinoma cell line HK1 in the MTT assay.

    RESULTS: Many of the samples showed an ability to prevent heat induced protein denaturation, as well as prevent lysis of red blood cells. Most of the extracts demonstrated inhibitory activity towards both of the COX enzymes. The ethanol extracts tended to demonstrate greater toxicity than other extracts, with some of the other extracts significantly enhancing growth and metabolism of the cells.

    CONCLUSION: The benefit of P. glaucus for the treatment of diseases related to inflammation and cancer was supported by the in vitro assays adopted in this study.

    Matched MeSH terms: Plants, Medicinal*
  5. Sabandar CW, Jalil J, Ahmat N, Aladdin NA
    Phytochemistry, 2017 Feb;134:6-25.
    PMID: 27889244 DOI: 10.1016/j.phytochem.2016.11.010
    The genus Dillenia is comprised of about 100 species of evergreen and deciduous trees or shrubs of disjunct distribution in the seasonal tropics of Madagascar through South and South East Asia, Malaysia, North Australia, and Fiji. Species from this genus have been widely used in medicinal folklore to treat cancers, wounds, jaundice, fever, cough, diabetes mellitus, and diarrhea as well as hair tonics. The plants of the genus also produce edible fruits and are cultivated as ornamental plants. Flavonoids, triterpenoids, and miscellaneous compounds have been identified in the genus. Their extracts and pure compounds have been reported for their antimicrobial, anti-inflammatory, cytotoxic, antidiabetes, antioxidant, antidiarrheal, and antiprotozoal activities. Mucilage from their fruits is used in drug formulations.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  6. Loh YC, Tan CS, Ch'ng YS, Ahmad M, Asmawi MZ, Yam MF
    J Med Food, 2017 Mar;20(3):265-278.
    PMID: 28296594 DOI: 10.1089/jmf.2016.3836
    Recently, a new syndromic disease combination theory of traditional Chinese medicine (TCM) for hypertensive treatment has been introduced. In the wake of this new concept, a new science-based TCM formula that counteracts various syndromes is needed. The objective of this study was to develop such a formula. Five of the most clinically prescribed TCM herbs that work on different syndromes, namely Gastrodia elata, Uncaria rhynchophylla, Pueraria thomsonii, Panax notoginseng, and Alisma orientale, were selected for this study. The fingerprints of these five herbs were analyzed by tri-step Fourier transform infrared spectroscopy. Three different solvents, 95% ethanol, 50% ethanol, and distilled water, were used for the maceration of the herbs and their vasodilatory effects were studied using in vitro precontracted aortic ring model. Among these, the 50% ethanolic extracts of G. elata (GE50) and A. orientale (AO50), and 95% ethanolic extracts of U. rhynchophylla (UR95), P. thomsonii (PT95), and P. notoginseng (PN95) were found to be the most effective for eliciting vasodilation. Thus, these five extracts were used for orthogonal stimulus-response compatibility group studies by using L25 (5(5)) formula. The best combination ratio for GE50, UR95, PT95, PN95, and AO50, which was assigned as Formula 1 (F1), was found at EC0, EC25, EC20, EC20, and EC10, respectively. The vasodilatory effect of the extracts prepared from different extraction methods using F1 ratio was also studied. From the results, the EC50 and Rmax of total 50% ethanolic extract of five herbs using F1 ratio (F1-2) were 0.028 ± 0.005 mg/mL and 101.71% ± 3.64%, with better values than F1 (0.104 ± 0.014 mg/mL and 97.80% ± 3.12%, respectively). In conclusion, the optimum ratio and appropriate extraction method (F1-2) for the new TCM formula were revealed.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  7. Shahzad MI, Ashraf H, Aslam A, Parveen S, Kamran Z, Naz N, et al.
    Pak J Pharm Sci, 2019 Nov;32(6):2751-2756.
    PMID: 31969311
    Avian influenza or bird flu is a common problem of domestic and wild birds. Some of its strains are able to cross the species barrier and cause infection in various members of class Mammalia. In view of relatively lesser efficacy of vaccines, antiviral therapies remain the only choice for the sustenance of mammals acquiring this highly devastating infection. This study is based on the evaluation of antiviral potential of methanol extracts of eleven selected Cholistani plants. The methanol extracts were prepared by using dried plants material followed by concentrating in a rotary evaporator and finally air dried before dissolving in nanopure water. The suspension was filter sterilized and subjected to in ovo antiviral assays. The allantoic fluids were harvested and haemagglutinin (HA) titers were determined. Among the eleven plants evaluated all methanol extracts were found effective against AIV H9N2 except S. baryosma extract. The medicinal plants O. compressa, N. procumbens, and S. surattense were found to be more effective than others and they retained HA titers at 0 after challenge. The next in order were extracts of O. esculentum, H. salicornicum and S. fruticosa which kept HA titers at 4, 8 and 16 respectively. The extracts of H. recurvum, P. antidotale, S. icolados and A. aspera were found less effective than above mentioned plant extracts and they kept the HA titers at 32, 64, 128 and 256 respectively. These results led us to conclude that the medicinal plants of Cholistan region are a rich source of antiviral agent(s) against AIV H9N2 and could be a source of cost effective alternate therapeutics.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  8. Meng X, Li J, Li M, Wang H, Ren B, Chen J, et al.
    J Ethnopharmacol, 2021 Aug 10;276:114145.
    PMID: 33932518 DOI: 10.1016/j.jep.2021.114145
    ETHNOPHARMACOLOGICAL RELEVANCE: Gynura cass., belonging to the tribe Senecoineae of the family Compositae, contains more than 40 accepted species as annual or perennial herbs, mainly distributed in Asia, Africa and Australia. Among them, 11 species are distributed in China. Many of the Gynura species have been used as traditional herbal medicines for the treatment of diabetes mellitus, rheumatism, eruptive fever, gastric ulcer, bleeding, abscesses, bruises, burning pains, rashes and herpes zoster infection in tropical Asia countries such as China, Thailand, Indonesia, Malaysia, and Vietnam. Some of the species have been used as vegetables, tea beverage or ornamental plants by the local people.

    AIM OF THE STUDY: A more comprehensive and in-depth review about the geographical distribution, traditional uses, chemical constituents and pharmacological activities as well as safe and toxicity of Gynura species has been summarized, hoping to provide a scientific basis for rational development and utilization as well as to foster further research of these important medicinal plant resources in the future.

    MATERIALS AND METHODS: A review of the literature was performed based on the existing peer-reviewed researches by consulting scientific databases including Web of Science, PubMed, Elsevier, Google Scholar, SciFinder and China National Knowledge Infrastructure.

    RESULTS: Many of the Gynura species have been phytochemically studied, which led to the isolation of more than 338 compounds including phenolics, flavonoids, alkaloids, terpenoids, steroids, cerebrosides, aliphatics and other compounds. Pharmacological studies in vitro and in vivo have also confirmed the various bioactive potentials of extracts or pure compounds from many Gynura plants, based on their claimed ethnomedicinal and anecdotal uses, including antioxidant, anti-inflammation, anticancer, antidiabetic, antihypertension, antibacterial and other activities. However, pyrrolizidine alkaloids (PAs) pose a threat to the medication safety and edible security of Gynura plants because of toxicity issues, requiring the need to pay great attention to this phenomenon.

    CONCLUSION: The traditional uses, phytochemistry and pharmacology of Gynura species described in this review demonstrated that these plants contain a great number of active constituents and display a diversity of pharmacological activities. However, the mechanism of action, structure-activity relationship, potential synergistic effects and pharmacokinetics of these components need to be further elucidated. Moreover, further detailed research is urgently needed to explain the mechanisms of toxicity induced by PAs. In this respect, effective detoxification strategies need to be worked out, so as to support the safe and reasonable utilization of Gynura plant resources in the future.

    Matched MeSH terms: Plants, Medicinal/chemistry*
  9. Al Nasr IS
    Trop Biomed, 2020 Mar 01;37(1):15-23.
    PMID: 33612714
    The organisms of the genus Leishmania are flagellated protozoan parasites and are the causative agents of leishmaniasis. This disease is a major health problem, especially in tropical countries. Currently, cutaneous leishmaniasis is treated by chemotherapy using pentavalent antimonials, but these drugs have serious organo-toxicity, drug resistance on several occasions, and low efficiency in controlling the infection. The present work is carried out to evaluate the in vitro antileishmanial activity of methanolic extracts and phytochemical fractions of two plants ethnobotanically used against leishmaniasis and skin infection, Calotropis procera and Rhazya stricta leaves against Leishmania major promastigote and amastigote stages and cytotoxicity against the Vero cell line. The leaves of C. procera and R. stricta were extracted with methanol and fractionated by petroleum ether, chloroform, ethyl acetate, n-butanol, and water. The methanolic extracts of the leaves of C. procera and R. stricta exhibited antileishmanial activity against L. major promastigotes with IC50 values of 66.8 and 42.4 µg mL-1, respectively. While their CC50 2.3 and 298 µg mL-1 and their SI 0.03 and 7.03 respectively. However, the fractionations of the methanolic extract of C. procera leaves revealed antiparasitic activity against both L. major promastigote and amastigote stages in vitro, which significantly increased with polarity with the exception of n-butanol. Hence the best activity was revealed by the water fraction (IC50 of 26.3 and 29.0 µg mL-1) for the two stages. In conclusion, further phytochemical investigation should be performed for the C. procera water extract in terms of antileishmanial active ingredient isolation that may enhance the possibility of avoiding toxic substances and overcome the low SI (1.1 and 1.01).
    Matched MeSH terms: Plants, Medicinal/chemistry
  10. Shahzad MI, Anwar S, Ashraf H, Manzoor A, Naseer M, Rani U, et al.
    Trop Biomed, 2020 Dec 01;37(4):1129-1140.
    PMID: 33612765 DOI: 10.47665/tb.37.4.1129
    Herbal medicines are becoming more popular and acceptable day by day due to their effectiveness, limited side effects, and cost-effectiveness. Cholistani plants are reported as a rich source of antibacterial, antifungal, antiprotozoal, antioxidant, and anticancer agents. The current study has evaluated antiviral potential of selected Cholistani plants. The whole plants were collected, ground and used in extract formation with n-hexane, ethyl acetate and n-butanol. All the extracts were concentrated by using a rotary evaporator and concentrate was finally dissolved in an appropriate vol of the same solvent. All of the extracts were tested for their antiviral potential by using 9-11 days old chick embryonated eggs. Each extract was tested against the Avian Influenza virus H9N2 strain (AIV), New Castle Disease virus Lasoota strain (NDV), Infectious bronchitis virus (IBV) and an Infectious bursal disease virus (IBDV). Hemagglutination test (HA) and Indirect Hemagglutination (IHA) tests were performed for different viruses. The overall order of the antiviral potential of Cholistani plants against viruses was NDV>IBV>IBDV>AIV. In terms of antiviral activity from extracts, the order of activity was n-butanol>ethyl acetate>n-hexane. The medicinal plants Achyranthes aspera, Neuroda procumbens, Panicum antidotale, Ochthochloa compressa and Suaeda fruticose were very effective against all four poultry viruses through their extracts. The low IC50 values of these extracts confirm the high antiviral potential against these viruses. It is worth to mention that Achyranthes aspera was found positive against IBDV through all its extracts which overcome the problem of unavailability of any known drug against IBDV. In short, the study proved that Cholistani plants are rich source of antiviral agent and their extracts can be used as good source of antiviral drugs both in crude and in purified form.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  11. Mohd Ridzuan MA, Sow A, Noor Rain A, Mohd Ilham A, Zakiah I
    Trop Biomed, 2007 Jun;24(1):111-8.
    PMID: 17568384 MyJurnal
    Eurycoma longifolia, locally known as 'Tongkat Ali' is a popular local medicinal plant that possess a lot of medicinal properties as claimed traditionally, especially in the treatment of malaria. The claims have been proven scientifically on isolated compounds from the plant. The present study is to investigate the anti malaria properties of Eurycoma longifolia standardized extract (root) (TA164) alone and in combination with artemisinin in vivo. Combination treatment of the standardized extract (TA164) with artemisinin suppressed P. yoelii infection in the experimental mice. The 4 day suppressive test showed that TA164 suppressed the parasitemia of P. yoelii-infected mice as dose dependent manner (10, 30 and 60 mg/kg BW) by oral and subcutaneous treatment. By oral administration, combination of TA164 at 10, 30 and 60 mg/kg BW each with artemisinin respectively showed a significant increase in the parasitemia suppression to 63, 67 and 80 percent as compared to artemisinin single treatment (31%). Using subcutaneous administration, at 10 mg/kg BW of TA164 in combination with 1.7 mg/kg BW of artemisinin gave a suppression of 80% of infection. This study showed that combination treatment of TA164 with artemisinin gives a promising potential anti malaria candidate using both oral and subcutaneous route, the later being the most potent.
    Matched MeSH terms: Plants, Medicinal/chemistry
  12. Ang HH, Cheang HS, Yusof AP
    Exp Anim, 2000 Jan;49(1):35-8.
    PMID: 10803359 DOI: 10.1538/expanim.49.35
    We studied the effects of Eurycoma longifolia Jack, commonly known as Tongkat Ali in Malaysia, on the initiation of sexual performance and the weights of sexual accessories in inexperienced castrated male rats. The doses of 200, 400 and 800 mg/kg body weight, which were extracted from E. longifolia Jack, were orally administered to the rats twice daily for 10 days prior to the tests and continued throughout the test period. Testosterone was used as a positive control after injecting 15 mg/kg daily subcutaneously for 32 days. Results showed that E. longifolia Jack produced a dose-dependent increase in sexual performance of the treated animals, but the E. longifolia Jack groups showed lower sexual performance in mounting, intromission and ejaculation than the testosterone group. Further results also showed that E. longifolia Jack promoted the growth of both ventral prostate and seminal vesicles as compared with the control, but the growth of sexual accessories at 800 mg/kg of butanol, methanol, water and chloroform fractions of E. longifolia Jack was less than that of testosterone treated group. The present study therefore gives further evidence of the folkuse of E. longifolia as an aphrodisiac.
    Matched MeSH terms: Plants, Medicinal*
  13. Gnanaraj C, Shah MD, Haque AT, Makki JS, Iqbal M
    PMID: 27279582 DOI: 10.1615/JEnvironPatholToxicolOncol.2016013802
    Synedrella nodiflora is a medicinal plant that is used by the natives of Sabah, Malaysia to treat rheumatism and several other ailments. This study aims to evaluate the ability of the crude aqueous extract of S. nodiflora leaves to protect against carbon tetrachloride (CCl4)-mediated hepatic injury in rats. S. nodiflora aqueous extract was orally administered to adult Sprague Dawley rats once daily for 14 days (150 and 300 mg/kg body weight [b.w.]) before CCl4 oral treatment (1.0 mL/kg b.w.) on the 13th and 14th days. Serum alanine aminotransferase (ALT), serum aspartate aminotransferase (AST), hepatic antioxidant enzymes, and malondialdehyde (MDA) levels were estimated. Immunohistochemistry was performed for oxidative stress markers (4-hydroxynonenal [HNE], 8-hydroxy-deoxyguanosine [8-OHdG]) and proinflammatory markers (tumor necrosis factor-α, interleukin-6, prostaglandin E2). Biochemical, immunohistochemical, histological, and ultrastructural findings were in agreement to support the hepatoprotective effect of S. nodiflora against CCl4-mediated oxidative hepatic damage. Hepatoprotective effects of S. nodiflora might be attributable to the presence of phenolic antioxidants and their free radical scavenging property.
    Matched MeSH terms: Plants, Medicinal/chemistry
  14. Azimahtol Hawariah Lope Pihie, Embun Naim
    Malays J Reprod Health, 1983 Dec;1(2):176-80.
    PMID: 12313336
    Matched MeSH terms: Plants, Medicinal*
  15. Ng KW, Salhimi SM, Majid AM, Chan KL
    Planta Med, 2010 Jun;76(9):935-40.
    PMID: 20112179 DOI: 10.1055/s-0029-1240813
    Angiogenesis plays an important role in tumor formation and proliferation. The development of anti-angiogenic agents to block new blood vessel growth will inhibit metastasis and induce apoptosis of the cancer cells. Nine medicinal plants, Strobilanthes crispus, Phyllanthus niruri, Phyllanthus pulcher, Phyllanthus urinaria, Ailanthus malabarica, Irvingia malayana, Smilax myosotiflora, Tinospora crispa and blumea balsamifera were screened for anti-angiogenic properties using the rat aortic ring assay. Of these, the methanol extracts of Phyllanthus species and Irvingia malayana exhibited the highest activity. At 100 microg/mL, P. pulcher, P. niruri, P. urinaria and I. malayana recorded an inhibition of 78.8 %, 59.5 %, 56.7 % and 46.4 %, respectively, against rat aortic vascular growth. Their activities were further investigated by the tube formation assay involving human umbilical vein endothelial cells (HUVEC) on Matrigel. I. malayana, P. niruri and P. urinaria showed a significant decrease of 45.5, 37.9 and 35.6 %, respectively, whilst P. pulcher showed a much lower decrease of 15.5 % when compared with that of the rat aortic ring assay. All the plant extracts were evaluated for cytotoxicity on a panel of human cancer cell lines using the MTT assay. None of them displayed acute cytotoxicity. The HPLC of P. niruri, P. urinaria and P. pulcher indicated the extracts contained some identical chromatographic peaks of lignans. Further fractionation of I. malayana yielded betulinic acid reported in this plant for the first time and at 100 microg/mL it exhibited a 67.3 % inhibition of vessel outgrowth and 46.5 % inhibition of tube formation.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  16. Moideen SV, Houghton PJ, Rock P, Croft SL, Aboagye-Nyame F
    Planta Med, 1999 Aug;65(6):536-40.
    PMID: 10483374
    Dichloromethane extracts of the root bark and stem bark of Kigelia pinnata collected from Zimbabwe exhibited antitrypanosomal activity against Trypanosoma brucei brucei in vitro. Activity-guided fractionation led to the isolation of four naphthoquinones from both the root and stem bark of the plant. The compounds were identified as 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-quinone (1), isopinnatal (2), kigelinol (3), and isokigelinol (4). Subsequently, the compounds were assessed for antitrypanosomal activity against T. brucei brucei and T. brucei rhodesiense bloodstream form trypomastigotes in vitro. Compound 1 with a furanonaphthoquinone structure was found to possess pronounced activity against both parasites with IC50 values of 0.12 and 0.045 microM, respectively, although it was less active than the standard drug pentamidine. Compounds 2, 3, and 4 also exhibited activity against the parasites, although to a lesser extent. The activities of the compounds were further assessed by comparison with the cytotoxic activities obtained against KB cell lines.
    Matched MeSH terms: Plants, Medicinal*
  17. Toh HT
    Am J Chin Med, 1994;22(3-4):275-84.
    PMID: 7872239
    Heart mitochondria freshly isolated from ginseng treated rats respired higher at ADP-induced, state 3 respiratory rates and with greater respiratory indices. These mitochondria were less susceptible to experimentally-induced functional impairment. Control heart mitochondria incubated with ginseng extract also showed that ginseng prevented mitochondria from incubation induced deterioration with NAD-linked substrates. Comparison of force of contraction of isolated, perfused and electrically paced hearts showed that deterioration of the force of heart contraction was consistently smaller throughout the experiment in hearts from ginseng treated rats. These results indicated that Panax ginseng was able to delay experimentally induced heart mitochondrial impairment and muscle contraction deterioration.
    Matched MeSH terms: Plants, Medicinal*
  18. Tumpang MA, Ramli NA, Hussain Z
    Curr Drug Targets, 2018;19(6):674-700.
    PMID: 28914203 DOI: 10.2174/1389450118666170913162147
    BACKGROUND: Phytomedicines have been well-accepted alternative complementary therapies for the treatment of a wide range of acute and chronic skin inflammatory diseases including chronic herpes, prurigo, psoriasis, and atopic dermatitis (AD). A plethora of in vitro and in vivo studies have evidenced the therapeutic viability of phytomedicines, polyherbal formulations, plant-based materials and their decoctions for the treatment of mild-to-severe AD.

    OBJECTIVE: This review was aimed to summarize and critically discuss the convincing evidence for the therapeutic effectiveness of phytomedicines for the treatment of AD and explore their anti-AD efficacy.

    RESULTS: The critical analysis of a wide algorithm of herbal medicines revealed that their remarkable anti-AD efficacy is attributed to their potential of reducing erythema intensity, oedema, inflammation, transepidermal water loss (TEWL) and a remarkable suppression of mRNA expression of ADassociated inflammatory biomarkers including histamine, immunoglobulin (Ig)-E, prostaglandins, mast cells infiltration and production of cytokines and chemokines in the serum and skin biopsies.

    CONCLUSION: In conclusion, herbal medicines hold great promise as complementary and alternative therapies for the treatment of mild-to-moderate AD when used as monotherapy and for the treatment of moderate-to-severe AD when used in conjunction with other pharmacological agents.

    Matched MeSH terms: Plants, Medicinal/chemistry
  19. Salhi N, Mohammed Saghir SA, Terzi V, Brahmi I, Ghedairi N, Bissati S
    Biomed Res Int, 2017;2017:7526291.
    PMID: 29226147 DOI: 10.1155/2017/7526291
    Aim: This study investigated the antifungal properties of aqueous extracts obtained from indigenous plants that grow spontaneously in the Northern Sahara of Algeria. The activities of these plants in controlling two fungal species that belong to Fusarium genus were evaluated in an in vitro assay.

    Materials and Methods: Fresh aerial parts of four plant species (Artemisia herba alba, Cotula cinerea, Asphodelus tenuifolius, and Euphorbia guyoniana) were collected for the preparation of aqueous extracts. Two levels of dilution (10% and 20%) of the pure extracts were evaluated against Fusarium graminearum and Fusarium sporotrichioides.

    Results: The results of this study revealed that the A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana aqueous extracts are effective at both concentrations of 10% and 20% for the Fusarium mycelia growth inhibition. In particular, A. tenuifolius extract is effective against F. graminearum, whereas F. sporotrichioides mycelium growth is strongly affected by the E. guyoniana 20% extract. The phytochemical characterization of the compositions of the aqueous extracts has revealed that the presence of some chemical compounds (tannins, flavonoids, saponins, steroids, and alkaloids) is likely to be responsible for the antifungal activities sought.

    Conclusion: The antifungal properties of A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana make these plants of potential interest for the control of fungi affecting both wheat yield and safety.

    Matched MeSH terms: Plants, Medicinal/chemistry*
  20. Lee KX, Shameli K, Yew YP, Teow SY, Jahangirian H, Rafiee-Moghaddam R, et al.
    Int J Nanomedicine, 2020;15:275-300.
    PMID: 32021180 DOI: 10.2147/IJN.S233789
    Gold nanoparticles (AuNPs) are extensively studied nanoparticles (NPs) and are known to have profound applications in medicine. There are various methods to synthesize AuNPs which are generally categorized into two main types: chemical and physical synthesis. Continuous efforts have been devoted to search for other more environmental-friendly and economical large-scale methods, such as environmentally friendly biological methods known as green synthesis. Green synthesis is especially important to minimize the harmful chemical and toxic by-products during the conventional synthesis of AuNPs. Green materials such as plants, fungi, microorganisms, enzymes and biopolymers are currently used to synthesize various NPs. Biosynthesized AuNPs are generally safer for use in biomedical applications since they come from natural materials themselves. Multiple surface functionalities of AuNPs allow them to be more robust and flexible when combined with different biological assemblies or modifications for enhanced applications. This review focuses on recent developments of green synthesized AuNPs and discusses their numerous biomedical applications. Sources of green materials with successful examples and other key parameters that determine the functionalities of AuNPs are also discussed in this review.
    Matched MeSH terms: Plants/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links