METHODS: OR cells were established via stepwise-dose escalation and limiting single-cell dilution method. We then evaluated Osimertinib resistance potential via cell viability assay. Proteins expression related to EGFR-signalling, epithelial to mesenchymal transition (EMT), and autophagy were analyzed via western blot.
RESULTS: OR cell lines exhibited increased drug resistance potential compared to H1975. Distinguishable mesenchymal-like features were observed in OR cells. Protein expression analysis revealed EGFR-independent signaling involved in the derived OR cells as well as EMT and autophagy activity.
CONCLUSION: We generated OR cell lines in-vitro as evidenced by increased drug resistance potential, increased mesenchymal features, and enhanced autophagy activity. Development of Osimertinib resistance cells may serve as in-vitro model facilitating discovery of molecular aberration present during acquired mechanism of resistance.
METHODS: We carried a review of medical records of breast and lung cancer patients hospitalized in years 2003 and 2009 at Penang General Hospital, a public tertiary care center in Penang Island, north of Malaysia. Patients with hypercalcemia (defined as a calcium level above 10.5 mg/dl) at the time of cancer diagnosis or during cancer treatment had their medical history abstracted, including presence of metastasis, chemotherapy types and doses, calcium levels throughout cancer treatment, and other co-morbidity. The mean calcium levels at first hospitalization before chemotherapy were compared with calcium levels at the end of or at the latest chemotherapy treatment. Statistical analysis was conducted using the Chi-square test for categorical data, logistic regression test for categorical variables, and Spearman correlation test, linear regression and the paired sample t tests for continuous data.
RESULTS: Of a total 1,023 of breast cancer and 814 lung cancer patients identified, 292 had hypercalcemia at first hospitalization or during cancer treatment (174 breast and 118 lung cancer patients). About a quarter of these patients had advanced stage cancers: 26.4% had mild hypercalcemia (10.5-11.9 mg/dl), 55.5% had moderate (12-12.9 mg/dl), and 18.2% severe hypercalcemia (13-13.9; 14-16 mg/dl). Chemotherapy lowered calcium levels significantly both in breast and lung cancer patients with hypercalcemia; in particular with chemotherapy type 5-flurouracil+epirubicin+cyclophosphamide (FEC) for breast cancer, and gemcitabine+cisplatin in lung cancer.
CONCLUSION: Chemotherapy decreases calcium levels in breast and lung cancer cases with hypercalcemia at cancer diagnosis, probably by reducing PTHrP levels.
Materials and Methods: We examined RANKL expression in 39 patients (21 males, 18 females) by immunohistochemistry. Four patients (10%) were presented with tumor recurrence, eight patients (20%) were complicated with lung metastasis, and two patients (5%) were presented with both recurrence and lung metastasis. Positive RANKL expression was assessed according to a scoring system evaluating the percentage of the immunostained epithelial area and the staining intensity. The cumulative score was calculated to determine the final score value. Data were analyzed using PASW version 18.0 and independent t-test between nonrecurrence/recurrence groups, and nonlung metastasis/lung metastasis groups. Significance was set at P < 0.05.
Results: Thirty-two patients (82%) scored 3 in RANKL-staining percentage from whole stromal cell population (>75%), 6 patients scored 2, and 1 patient scored 1. Nine patients (23%) scored 3 in RANKL-staining intensity (most intense), 19 patients (48%) scored 2, and 11 patients (29%) scored 1. Twenty six patients (67%) had strong RANKL expression (total score of 5-6), 12 patients (31%) showed moderate score (3-4) whereas only 1 patient (2%) showed weak RANKL expression. Together, the mean value of RANKL-staining percentage was 2.79, intensity 1.95 and the total score 4.77. The mean RANKL-staining percentage between recurrence and nonrecurrence groups was statistically significant (P = 0.009). There was no significant difference in the mean staining intensity and total score between nonrecurrence and recurrence groups, and staining percentage staining intensity and a total cumulative score of RANKL expression between lung metastasis and nonlung metastasis groups.
Conclusion: RANKL expression is generally high in Stage III GCT and is a reliable prognostic marker in predicting the risk of local recurrence however not in lung metastasis.