Understanding the pathomechanics involved in rheumatoid arthritis (RA) of the wrist provides valuable information, which will invariably allow various therapeutic possibilities to be explored. The computational modelling of this disease permits the appropriate simulation to be conducted seamlessly. A study that underpins the fundamental concept that produces the biomechanical changes in a rheumatoid wrist was thus conducted through the use of finite element method. The RA model was constructed from computed tomography datasets, taking into account three major characteristics: synovial proliferation, cartilage destruction and ligamentous laxity. As control, a healthy wrist joint model was developed in parallel and compared. Cartilage was modelled based on the shape of the articulation while the ligaments were modelled with linear spring elements. A load-controlled analysis was performed simulating physiological hand grip loading conditions. The results demonstrated that the diseased model produced abnormal wrist extension and stress distribution as compared to the healthy wrist model. Due to the weakening of the ligaments, destruction of the cartilage and lower bone density, the altered biomechanical stresses were particularly evident at the radioscaphoid and capitolunate articulations which correlate to clinical findings. These results demonstrate the robust finding of the developed RA wrist model, which accurately predicted the pathological process.
Infusing the replacement solution before the filter (pre-dilution) and regular flushing have not been accounted for in conventional mathematical equations. Their effects on various continuous renal replacement therapy (CRRT) parameters, such as ultrafiltration fraction and urea clearance, have not been well studied. We incorporated these parameters into mathematical equations to help in understanding and prescribing CRRT.
The aim of this paper is to investigate the effects of the distances between the human head and internal cellular device antenna on the specific absorption rate (SAR). This paper also analyzes the effects of inclination angles between user head and mobile terminal antenna on SAR values. The effects of the metal-glass casing of mobile phone on the SAR values were observed in the vicinity of the human head model. Moreover, the return losses were investigated in all cases to mark antenna performance. This analysis was performed by adopting finite-difference time-domain (FDTD) method on Computer Simulation Technology (CST) Microwave Studio. The results indicate that by increasing the distance between the user head and antenna, SAR values are decreased. But the increase in inclination angle does not reduce SAR values in all cases. Additionally, this investigation provides some useful indication for future design of low SAR mobile terminal antenna.
There is a lack of evidence that either conventional observational rating scale or biomechanical system is a better tremor assessment tool. This work focuses on comparing a biomechanical system and the Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale in terms of test-retest reliability. The Parkinson's disease tremors were quantified by biomechanical system in joint angular displacement and predicted rating, as well as assessed by three raters using observational ratings. Qualitative comparisons of the validity and function are made also. The observational rating captures the overall severity of body parts, whereas the biomechanical system provides motion- and joint-specific tremor severity. The tremor readings of the biomechanical system were previously validated against encoders' readings and doctors' ratings; the observational ratings were validated with previous ratings on assessing the disease and combined motor symptoms rather than on tremor specifically. Analyses show that the predicted rating is significantly more reliable than the average clinical ratings by three raters. The comparison work removes some of the inconsistent impressions of the tools and serves as guideline for selecting a tool that can improve tremor assessment. Nevertheless, further work is required to consider more variabilities that influence the overall judgement.
This paper simulates and predicts the laminar flow inside the 3D aneurysm geometry, since the hemodynamic situation in the blood vessels is difficult to determine and visualize using standard imaging techniques, for example, magnetic resonance imaging (MRI). Three different types of Lattice Boltzmann (LB) models are computed, namely, single relaxation time (SRT), multiple relaxation time (MRT), and regularized BGK models. The results obtained using these different versions of the LB-based code will then be validated with ANSYS FLUENT, a commercially available finite volume- (FV-) based CFD solver. The simulated flow profiles that include velocity, pressure, and wall shear stress (WSS) are then compared between the two solvers. The predicted outcomes show that all the LB models are comparable and in good agreement with the FVM solver for complex blood flow simulation. The findings also show minor differences in their WSS profiles. The performance of the parallel implementation for each solver is also included and discussed in this paper. In terms of parallelization, it was shown that LBM-based code performed better in terms of the computation time required.
In recent years, the popularity of tablets has skyrocketed and there has been an explosive growth in apps designed for children. Howhever, many of these apps are released without tests for their effectiveness. This is worrying given that the factors influencing children's learning from touchscreen devices need to be examined in detail. In particular, it has been suggested that children learn less from passive video viewing relative to equivalent live interaction, which would have implications for learning from such digital tools. However, this so-called video deficit may be reduced by allowing children greater influence over their learning environment. Across two touchscreen-based experiments, we examined whether 2- to 4-year-olds benefit from actively choosing what to learn more about in a digital word learning task. We designed a tablet study in which "active" participants were allowed to choose which objects they were taught the label of, while yoked "passive" participants were presented with the objects chosen by their active peers. We then examined recognition of the learned associations across different tasks. In Experiment 1, children in the passive condition outperformed those in the active condition (n = 130). While Experiment 2 replicated these findings in a new group of Malay-speaking children (n = 32), there were no differences in children's learning or recognition of the novel word-object associations using a more implicit looking time measure. These results suggest that there may be performance costs associated with active tasks designed as in the current study, and at the very least, there may not always be systematic benefits associated with active learning in touchscreen-based word learning tasks. The current studies add to the evidence that educational apps need to be evaluated before release: While children might benefit from interactive apps under certain conditions, task design and requirements need to consider factors that may detract from successful performance.
The aim of this study was to determine the association of the c.894G>T; p.Glu298Asp polymorphism and the variable number tandem repeat (VNTR) polymorphism of the endothelial nitric oxide synthase (eNOS) gene and c.181C>T polymorphism of the bradykinin type 2 receptor gene (B2R) in Malaysian end-stage renal disease (ESRD) subjects. A total of 150 ESRD patients were recruited from the National Kidney Foundation's (NKF)dialysis centers in Malaysia and compared with 150 normal healthy individuals. Genomic DNA was extracted from buccal cells of all the subjects. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was carried out to amplify the products and the restricted fragments were separated by agarose gel electrophoresis. Statistical analyses were carried out using software where a level of p <0.05 was considered to be statistically significant. The genotypic and allelic frequencies of the B2R gene (c.181C>T, 4b/a) and eNOS gene (c.894G>T) polymorphisms were not statistically significant (p >0.05) when compared to the control subjects. The B2R and eNOS gene polymorphisms may not be considered as genetic susceptibility markers for Malaysian ESRD subjects.
The aim of the present study was to analyze the sequence of the VP1 gene in enterovirus 71 (EV71) isolates and to explore their genetic evolution, so as to provide a scientific basis for the clinical prevention and treatment of hand, foot and mouth disease. The fecal samples of 590 patients with suspected hand, foot and mouth disease treated at Yan'an Hospital (Kunming, China) between January 2015 and December 2016 were collected and EV71 nucleic acid was detected by fluorescence PCR. The viral RNA of EV71-positive samples was extracted, the VP1 gene was amplified by PCR and the products were sequenced. The VP1 gene sequence was analyzed using DNAMAN and MEGA (version 4.0) software and homologous modeling was performed using Pymol software. A total of 50 EV71-positive samples were identified and the detection rate was 8.47% (50/590 cases). All of the 50 EV71 strains were of the C4 subtype. The genetic distance between the strains detected in the present study and EV71 strains detected in Beijing, Anhui and Malaysia was 0.01-0.03, while that between the strains detected in the present study and Australian strains was 2.11. Homologous modeling indicated that the amino acid sequence of the VP1 gene of the detected strains had a H144Y mutation. There was no significant genetic variation in the EV71 strain within the 2-year period. In conclusion, the EV71 strains detected in the present study was similar to that detected in Beijing, Anhui and Malaysia but different to that from Australia. A point mutation was present in the amino acid sequence of the VP1 gene.
Southeast Asia houses various culturally and linguistically diverse ethnic groups. In Malaysia, where the Malay, Chinese, and Indian ethnic groups form the majority, there exist minority groups such as the "negritos" who are believed to be descendants of the earliest settlers of Southeast Asia. Here we report patterns of genetic substructure and admixture in two Malaysian negrito populations (Jehai and Kensiu), using ~50,000 genome-wide single-nucleotide polymorphism (SNP) data. We found traces of recent admixture in both the negrito populations, particularly in the Jehai, with the Malay through principal component analysis and STRUCTURE analysis software, which suggested that the admixture was as recent as one generation ago. We also identified significantly differentiated nonsynonymous SNPs and haplotype blocks related to intracellular transport, metabolic processes, and detection of stimulus. These results highlight the different levels of admixture experienced by the two Malaysian negritos. Delineating admixture and differentiated genomic regions should be of importance in designing and interpretation of molecular anthropology and disease association studies.
The incidence of Alzheimer's disease, particularly in developing countries, is expected to increase exponentially as the population ages. Continuing research in this area is essential in order to better understand this disease and develop strategies for treatment and prevention. Genome-wide association studies have identified several loci as genetic risk factors of AD aside from apolipoprotein E such as bridging integrator (BIN1), clusterin (CLU), ATP-binding cassette sub-family A member 7 (ABCA7), complement receptor 1 (CR1) and phosphatidylinositol binding clathrin assembly protein (PICALM). However genetic research in developing countries is often limited by lack of funding and expertise. This study therefore developed and validated a simple, cost effective polymerase chain reaction based technique to determine these single nucleotide polymorphisms.
Human brain generates electromagnetic signals during certain activation inside the brain. The localization of the active sources which are responsible for such activation is termed as brain source localization. This process of source estimation with the help of EEG which is also known as EEG inverse problem is helpful to understand physiological, pathological, mental, functional abnormalities and cognitive behaviour of the brain. This understanding leads for the specification for diagnoses of various brain disorders such as epilepsy and tumour. Different approaches are devised to exactly localize the active sources with minimum localization error, less complexity and more validation which include minimum norm, low resolution brain electromagnetic tomography (LORETA), standardized LORETA, exact LORETA, Multiple Signal classifier, focal under determined system solution etc. This paper discusses and compares the ability of localizing the sources for two low resolution methods i.e., sLORETA and eLORETA respectively. The ERP data with visual stimulus is used for comparison at four different time instants for both methods (sLORETA and eLORETA) and then corresponding activation in terms of scalp map, slice view and cortex map is discussed.
A handful of bioactive compounds from plants have been reported to possess platelet-activating factor (PAF) antagonist activity. However, their mode of action is not well understood. Selected bioactive compounds that exhibit PAF antagonist activity and synthetic PAF antagonists were subjected to docking simulations using the MOE 2007.09 software package. The docking study of PAF antagonists was carried out on the PAF receptor (PAFR) protein which involves in various pathological responses mediated by PAF. The docking results revealed that amentoflavone (3) showed good interactions with the PAFR model where the flavone and phenolic moieties were mostly involved in these interactions. Knowledge on PAF antagonists' interactions with the PAFR model is a useful screening tool of potential PAF antagonists prior to performing PAF inhibitory assay.
Cobalt-60 (Co-60) is a relatively new source for the application of high-dose rate (HDR) brachytherapy. Radiation dose to the rectum is often a limiting factor in achieving the full prescribed dose to the target during brachytherapy of cervical cancer. The aim of this study was to measure radiation doses to the rectum in-vivo during HDR Co-60 brachytherapy. A total of eleven HDR brachytherapy treatments of cervical cancer were recruited in this study. A series of diodes incorporated in a rectal probe was inserted into the patient's rectum during each brachytherapy procedure. Real-time measured rectal doses were compared to calculated doses by the treatment planning system (TPS). The differences between calculated and measured dose ranged from 8.5% to 41.2%. This corresponds to absolute dose differences ranging from 0.3 Gy to 1.5 Gy. A linear relationship was observed between calculated and measured doses with linear regression R(2) value of 0.88, indicating close association between the measured and calculated doses. In general, absorbed doses for the rectum as calculated by TPS were observed to be higher than the doses measured using the diode probe. In-vivo dosimetry is an important quality assurance method for HDR brachytherapy of cervical cancer. It provides information that can contribute to the reduction of errors and discrepancies in dose delivery. Our study has shown that in-vivo dosimetry is feasible and can be performed to estimate the dose to the rectum during HDR brachytherapy using Co-60.
To date, cancer of uterine cervix is still a leading cause of cancer-related deaths in women worldwide. The current methods (i.e., Pap smear and liquid-based cytology (LBC)) to screen for cervical cancer are time-consuming and dependent on the skill of the cytopathologist and thus are rather subjective. Therefore, this paper presents an intelligent computer vision system to assist pathologists in overcoming these problems and, consequently, produce more accurate results. The developed system consists of two stages. In the first stage, the automatic features extraction (AFE) algorithm is performed. In the second stage, a neuro-fuzzy model called multiple adaptive neuro-fuzzy inference system (MANFIS) is proposed for recognition process. The MANFIS contains a set of ANFIS models which are arranged in parallel combination to produce a model with multi-input-multioutput structure. The system is capable of classifying cervical cell image into three groups, namely, normal, low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL). The experimental results prove the capability of the AFE algorithm to be as effective as the manual extraction by human experts, while the proposed MANFIS produces a good classification performance with 94.2% accuracy.
Bone age assessment (BAA) of unknown people is one of the most important topics in clinical procedure for evaluation of biological maturity of children. BAA is performed usually by comparing an X-ray of left hand wrist with an atlas of known sample bones. Recently, BAA has gained remarkable ground from academia and medicine. Manual methods of BAA are time-consuming and prone to observer variability. This is a motivation for developing automated methods of BAA. However, there is considerable research on the automated assessment, much of which are still in the experimental stage. This survey provides taxonomy of automated BAA approaches and discusses the challenges. Finally, we present suggestions for future research.
A stable oral mucosa is crucial for long-term survival and biofunctionality of implants. Most of this evidence is derived from clinical and animal studies based solely on implant-supported prosthesis. Much less is known about the dimensions and relationships of this soft tissue complex investing tooth-implant-supported bridgework (TISB). The aim here was to obtain experimental evidence on the dimensional characteristics of oral mucosa around TISB with two different abutment designs.
The output of state-of-the-art reverse-engineering methods for biological networks is often based on the fitting of a mathematical model to the data. Typically, different datasets do not give single consistent network predictions but rather an ensemble of inconsistent networks inferred under the same reverse-engineering method that are only consistent with the specific experimentally measured data. Here, we focus on an alternative approach for combining the information contained within such an ensemble of inconsistent gene networks called meta-analysis, to make more accurate predictions and to estimate the reliability of these predictions. We review two existing meta-analysis approaches; the Fisher transformation combined coefficient test (FTCCT) and Fisher's inverse combined probability test (FICPT); and compare their performance with five well-known methods, ARACNe, Context Likelihood or Relatedness network (CLR), Maximum Relevance Minimum Redundancy (MRNET), Relevance Network (RN) and Bayesian Network (BN). We conducted in-depth numerical ensemble simulations and demonstrated for biological expression data that the meta-analysis approaches consistently outperformed the best gene regulatory network inference (GRNI) methods in the literature. Furthermore, the meta-analysis approaches have a low computational complexity. We conclude that the meta-analysis approaches are a powerful tool for integrating different datasets to give more accurate and reliable predictions for biological networks.
White tail disease (WTD) is a serious viral disease in the hatcheries and nursery ponds of Macrobrachium rosenbergii in many parts of the world. A new disease similar to WTD was observed in larvae and post larvae of M. rosenbergii cultured in Malaysia. In the present study, RT-PCR assay was used to detect the causative agents of WTD, M. rosenbergii nodavirus (MrNV) and extra small virus (XSV) using specific primers for MrNV RNA2 and XSV. The results showed the presence of MrNV in the samples with or without signs of WTD. However, XSV was only detected in some of the MrNV-positive samples. Phylogenetic analysis showed that the RNA2 of our Malaysian isolates were significantly different from the other isolates. Histopathological studies revealed myofiber degeneration of the tail muscles and liquefactive myopathy in the infected prawns. This was the first report on the occurrence of MrNV in the Malaysian freshwater prawn.