Displaying publications 741 - 760 of 1087 in total

Abstract:
Sort:
  1. Subramaniam B, Arshad NM, Malagobadan S, Misran M, Nyamathulla S, Mun KS, et al.
    Pharmaceutics, 2021 Mar 24;13(4).
    PMID: 33804975 DOI: 10.3390/pharmaceutics13040439
    1'-acetoxychavicol acetate (ACA) extracted from the rhizomes of Alpinia conchigera Griff (Zingiberaceae) has been shown to deregulate the NF-ĸB signaling pathway and induce apoptosis-mediated cell death in many cancer types. However, ACA is a hydrophobic ester, with poor solubility in an aqueous medium, limited bioavailability, and nonspecific targeting in vivo. To address these problems, ACA was encapsulated in a nanostructured lipid carrier (NLC) anchored with plerixafor octahydrochloride (AMD3100) to promote targeted delivery towards C-X-C chemokine receptor type 4 (CXCR4)-expressing prostate cancer cells. The NLC was prepared using the melt and high sheer homogenization method, and it exhibited ideal physico-chemical properties, successful encapsulation and modification, and sustained rate of drug release. Furthermore, it demonstrated time-based and improved cellular uptake, and improved cytotoxic and anti-metastatic properties on PC-3 cells in vitro. Additionally, the in vivo animal tumor model revealed significant anti-tumor efficacy and reduction in pro-tumorigenic markers in comparison to the placebo, without affecting the weight and physiological states of the nude mice. Overall, ACA-loaded NLC with AMD3100 surface modification was successfully prepared with evidence of substantial anti-cancer efficacy. These results suggest the potential use of AMD3100-modified NLCs as a targeting carrier for cytotoxic drugs towards CXCR4-expressing cancer cells.
    Matched MeSH terms: Apoptosis
  2. Ranaei Pirmardan E, Barakat A, Zhang Y, Naseri M, Hafezi-Moghadam A
    FASEB J, 2021 Jun;35(6):e21593.
    PMID: 33991133 DOI: 10.1096/fj.202100353R
    Diabetes is a major risk factor for cataract, the leading cause of blindness worldwide. There is an unmet need for a realistic model of diabetic cataract for mechanistic and longitudinal studies, as existing models do not reflect key aspects of the complex human disease. Here, we introduce and characterize diabetic cataract in the Nile grass rat (NGR, Arvicanthis niloticus), an established model of metabolic syndrome and type 2 diabetes (T2D). We conducted a longitudinal study of cataract in over 88 NGRs in their non-diabetic, pre-diabetic, and diabetic stages of metabolism. Oral glucose tolerance test (OGTT) results distinguished the metabolic stages. Diverse cataract types were observed in the course of diabetes, including cortical, posterior subcapsular (PSC), and anterior subcapsular (ASC), all of which succeeded a characteristic dotted ring stage in all animals. The onset ages of diabetes and cataract were 44 ± 3 vs 29 ± 1 (P 
    Matched MeSH terms: Apoptosis
  3. Almajali B, Al-Jamal HAN, Taib WRW, Ismail I, Johan MF, Doolaanea AA, et al.
    Pharmaceuticals (Basel), 2021 Apr 16;14(4).
    PMID: 33923474 DOI: 10.3390/ph14040369
    To date, natural products are widely used as pharmaceutical agents for many human diseases and cancers. One of the most popular natural products that have been studied for anticancer properties is thymoquinone (TQ). As a bioactive compound of Nigella sativa, TQ has shown anticancer activities through the inhibition of cell proliferation, migration, and invasion. The anticancer efficacy of TQ is being investigated in several human cancers such as pancreatic cancer, breast cancer, colon cancer, hepatic cancer, cervical cancer, and leukemia. Even though TQ induces apoptosis by regulating the expression of pro- apoptotic and anti-apoptotic genes in many cancers, the TQ effect mechanism on such cancers is not yet fully understood. Therefore, the present review has highlighted the TQ effect mechanisms on several signaling pathways and expression of tumor suppressor genes (TSG). Data from relevant published experimental articles on TQ from 2015 to June 2020 were selected by using Google Scholar and PubMed search engines. The present study investigated the effectiveness of TQ alone or in combination with other anticancer therapeutic agents, such as tyrosine kinase inhibitors on cancers, as a future anticancer therapy nominee by using nanotechnology.
    Matched MeSH terms: Apoptosis
  4. Lee YQ, Rajadurai P, Abas F, Othman I, Naidu R
    Front Mol Biosci, 2021;8:645856.
    PMID: 33996900 DOI: 10.3389/fmolb.2021.645856
    Curcumin analogs with excellent biological properties have been synthesized to address and overcome the poor pharmacokinetic profiles of curcumin. This study aims to investigate the cytotoxicity, anti-proliferative, and apoptosis-inducing ability of curcumin analog, MS13 on human glioblastoma U-87 MG, and neuroblastoma SH-SY5Y cells, and to examine the global proteome changes in these cells following treatment. Our current findings showed that MS13 induced potent cytotoxicity and anti-proliferative effects on both cells. Increased caspase-3 activity and decreased bcl-2 concentration upon treatment indicate that MS13 induces apoptosis in these cells in a dose- and time-dependent manner. The label-free shotgun proteomic analysis has defined the protein profiles in both glioblastoma and neuroblastoma cells, whereby a total of nine common DEPs, inclusive of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), alpha-enolase (ENO1), heat shock protein HSP 90-alpha (HSP90AA1), Heat shock protein HSP 90-beta (HSP90AB1), Eukaryotic translation initiation factor 5A-1 (EFI5A), heterogenous nuclear ribonucleoprotein K (HNRNPK), tubulin beta chain (TUBB), histone H2AX (H2AFX), and Protein SET were identified. Pathway analysis further elucidated that MS13 may induce its anti-tumor effects in both cells via the common enriched pathways, "Glycolysis" and "Post-translational protein modification." Conclusively, MS13 demonstrates an anti-cancer effect that may indicate its potential use in the management of brain malignancies.
    Matched MeSH terms: Apoptosis
  5. Haezam FN, Awang N, Kamaludin NF, Mohamad R
    Saudi J Biol Sci, 2021 May;28(5):3160-3168.
    PMID: 34025187 DOI: 10.1016/j.sjbs.2021.02.060
    Context: Diphenyltin(IV) diallyldithiocarbamate compound (Compound 1) and triphenyltin(IV) diallyldithiocarbamate compound (Compound 2) are two newly synthesised compounds of organotin(IV) with diallyldithiocarbamate ligands.

    Objective: To assess the cytotoxic effects of two synthesised compounds against HT-29 human colon adenocarcinoma cells and human CCD-18Co normal colon cells.

    Materials and methods: Two successfully synthesised compounds were characterised using elemental (carbon, hydrogen, nitrogen, and sulphur) analysis, Fourier-Transform Infrared (FTIR), and 1H, 13C 119Sn Nucleus Magnetic Resonance (NMR) spectroscopies. The single-crystal structure of both compounds was determined by X-ray single-crystal analysis. The cytotoxicity of the compounds was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazholium bromide (MTT) assay upon 24 h of treatment. While the mode of cell death was determined based on the externalisation of phosphatidylserine using a flow cytometer.

    Results: The elemental analysis data of the two compounds showed an agreement with the suggested formula of (C6H5)2Sn[S2CN(C3H5)2]2 for Compound 1 and (C6H5)3Sn[S2CN(C3H5)2] for Compound 2. The two major peaks of infrared absorbance, i.e., ν(C = N) and ν(C = S) were detected at the range of 1475-1479 cm-1 and 972-977 cm-1, respectively. The chemical shift of carbon in NCS2 group for Compound 1 and 2 were found at 200.82 and 197.79 ppm. The crystal structure of Compound 1 showed that it is six coordinated and crystallised in monoclinic, P21/c space group. While the crystal structure of Compound 2 is five coordinated and crystallised in monoclinic, P21/c space group. The cytotoxicity (IC50) of the two compounds against HT-29 cell were 2.36 μM and 0.39 μM. Meanwhile, the percentage of cell death modes between 60% and 75% for compound 1 and compound 2 were mainly due to apoptosis, suggesting that both compounds induced growth arrest.

    Conclusion: Our study concluded that the synthesised compounds showed potent cytotoxicity towards HT-29 cell, with the triphenyltin(IV) compound showing the highest effect compared to diphenyltin(IV).

    Matched MeSH terms: Apoptosis
  6. Vellasamy S, Sandrasaigaran P, Vidyadaran S, Abdullah M, George E, Ramasamy R
    Cell Biol Int, 2013 Mar;37(3):250-6.
    PMID: 23364902 DOI: 10.1002/cbin.10033
    Mesenchymal stem cells (MSC) generated from human umbilical cord (UC-MSC) and placenta (PLC-MSC) were assessed and compared for their immunomodulatory function on T cells proliferation by analysis of the cell cycle. Mitogen stimulated or resting T cells were co-cultured in the presence or absence of MSC. T-cell proliferation was assessed by tritiated thymidine ((3) H-TdR) assay and the mechanism of inhibition was examined bycell cycle and apoptosis assay. Both UC-MSC and PLC-MSC profoundly inhibited the proliferation of T-cell, mainly via cell-to-cell contact. MSC-mediated anti-proliferation does not lead to apoptosis,but prevented T cells from entering S phase and they therefore accumulated in the G(0) /G(1) phases. The anti-proliferative activity of MSC was related to this cell cycle arrest of T-cell. UC-MSC produced a greater inhibition than PLC-MSC in all measured parameters.
    Matched MeSH terms: Apoptosis
  7. Noman E, Al-Shaibani MM, Bakhrebah MA, Almoheer R, Al-Sahari M, Al-Gheethi A, et al.
    J Fungi (Basel), 2021 May 30;7(6).
    PMID: 34070936 DOI: 10.3390/jof7060436
    The promising feature of the fungi from the marine environment as a source for anticancer agents belongs to the fungal ability to produce several compounds and enzymes which contribute effectively against the cancer cells growth. L-asparaginase acts by degrading the asparagine which is the main substance of cancer cells. Moreover, the compounds produced during the secondary metabolic process acts by changing the cell morphology and DNA fragmentation leading to apoptosis of the cancer cells. The current review has analyed the available information on the anticancer activity of the fungi based on the data extracted from the Scopus database. The systematic and bibliometric analysis revealed many of the properties available for the fungi to be the best candidate as a source of anticancer drugs. Doxorubicin, actinomycin, and flavonoids are among the primary chemical drug used for cancer treatment. In comparison, the most anticancer compounds producing fungi are Aspergillusniger, A.fumigatusA.oryzae, A.flavus, A. versicolor, A.terreus,Penicilliumcitrinum, P.chrysogenum, and P.polonicum and have been used for investigating the anticancer activity against the uterine cervix, pancreatic cancer, ovary, breast, colon, and colorectal cancer.
    Matched MeSH terms: Apoptosis
  8. Tan CH, Yeap JS, Lim SH, Low YY, Sim KS, Kam TS
    J Nat Prod, 2021 05 28;84(5):1524-1533.
    PMID: 33872002 DOI: 10.1021/acs.jnatprod.1c00013
    A new linearly fused macroline-sarpagine bisindole, angustilongine M (1), was isolated from the methanolic extract of Alstonia penangiana. The structure of the alkaloid was elucidated based on analysis of the spectroscopic data, and its biological activity was evaluated together with another previously reported macroline-akuammiline bisindole from the same plant, angustilongine A (2). Compounds 1 and 2 showed pronounced in vitro growth inhibitory activity against a wide panel of human cancer cell lines. In particular, the two compounds showed potent and selective antiproliferative activity against HT-29 cells, as well as strong growth inhibitory effects against HT-29 spheroids. Cell death mechanistic studies revealed that the compounds induced mitochondrial apoptosis and G0/G1 cell cycle arrest in HT-29 cells in a time-dependent manner, while in vitro tubulin polymerization assays and molecular docking analysis showed that the compounds are microtubule-stabilizing agents, which are predicted to bind at the β-tubulin subunit at the Taxol-binding site.
    Matched MeSH terms: Apoptosis
  9. Nor Hazwani Ahmad, Rohanizah Abdul Rahim, Ishak Mat
    Trop Life Sci Res, 2010;21(2):-.
    MyJurnal
    Research on natural products has been widely used as a strategy to discover new drugs with potential for applications in complementary medicines because they have fewer side effects than conventional drugs. The aim of the present study was to evaluate the in vitro cytotoxic effects of crude aqueous Catharanthus roseus extract on Jurkat cells and normal peripheral blood mononuclear cells (PBMCs). The aqueous extract was
    standardised to vinblastine by high performance liquid chromatography (HPLC) and was used to determine cytotoxicity by the MTS [3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. DNA fragmentation assay was employed to determine if cell death was due to apoptosis. The results showed that the aqueous extract induced cell death of Jurkat cells at 24, 48 and 72 hours posttreatment in a time- and dose-dependent manner. However, cells treated at 48 and 72 hours produced higher cytotoxic effects with half maximal inhibitory concentration (IC50)values of 2.55 µg/ml and 2.38 µg/ml, respectively. In contrast, the extract induced normal PBMC proliferation, especially after 24 hours treatment with 1000 µg/ml. This result indicates that the C. roseus crude aqueous extract showed differential effects of inhibiting the proliferation of the Jurkat cell line and promoting the growth of PBMCs. These data suggest that the extract may be applicable for modulating the normal and transformed immune cells in leukaemia patients.
    Matched MeSH terms: Apoptosis
  10. Soopramanien M, Khan NA, Abdalla SAO, Sagathevan K, Siddiqui R
    Asian Pac J Cancer Prev, 2020 Oct 01;21(10):3011-3018.
    PMID: 33112561 DOI: 10.31557/APJCP.2020.21.10.3011
    OBJECTIVES: It is noteworthy that several animal species are known to withstand high levels of radiation, and are exposed to heavy metals but rarely been reported to develop cancer. For example, the scorpion has been used as folk medicine in ancient civilizations of Iran and China, while amphibian skin is known to possess medicinal properties. Here, we elucidated the anti-tumour activity of the scorpion (Uropygi) and frog (Lithobates catesbeianus).

    MATERIALS AND METHODS: Animals were procured and their organ lysates and sera were prepared and tested against Michigan Cancer Foundation-7 breast cancer (MCF-7), prostate cancer (PC3), Henrietta Lacks cervical cancer (HeLa), and normal human keratinocyte cells. Exoskeleton, appendages and hepatopancreas were dissected from the scorpion, whereas liver, lungs, heart, oviduct, gastrointestinal tract, gall bladder, kidneys, eggs and sera were collected from frog and organ lysates/sera were prepared. Growth inhibition assays and cytotoxicity assays were performed.

    RESULTS: Appendages, exoskeleton lysates, and hepatopancreas from scorpion exhibited potent growth inhibition, and cytotoxic effects. Furthermore, lungs, liver, gastrointestinal tract, heart, oviduct, kidneys, eggs, and sera from frog displayed growth inhibition and cytotoxic effects.

    CONCLUSION: Organ lysates, sera of scorpion, and amphibians possess anti-tumour activities. This is a worthy area of research as the molecular identity of the active molecule(s) together with their mechanism of action will lead to the rational development of novel anticancer agent(s).

    Matched MeSH terms: Apoptosis
  11. El Saftawy EA, Shash RY, Aboulhoda BE, Arsanyos SF, Albadawi EA, Abou-Fandoud SM, et al.
    Trop Biomed, 2021 Jun 01;38(2):53-62.
    PMID: 33973573 DOI: 10.47665/tb.38.2.037
    BACKGROUND: toxoplasmosis is a cosmopolitan protozoan disease with a wide range of neuropathology. Recent studies identified its potential association with several mental disorders e.g. schizophrenia dependable on apoptosis in their pathogenesis. We investigated value of toxoplasmosis to induce apoptosis of the neuronal cells.

    METHODS: per-orally infected C57BL/6 mice with 15-20 cysts of the avirulent T. gondii Beverly strain at 9-11 weeks of age were examined 12 weeks later during parasite establishment. Distributions of the parasite's cysts and the histopathological lesions in the brains were analyzed using Image J software. Relative expression of TNF-α and iNOS of cell-mediated immunity (CMI), Bax (pro-apoptosis) and Bcl-2 (anti-apoptosis) were all assessed using immunohistochemistry.

    RESULTS: higher parasite burden was seen in the forebrain with p value <= 0.05. Dramatically increased TNF-α, iNOS, and Bax expressions with Bax/Bcl-2 ratio 2.42:0.52 were reported (p value <= 0.05). The significant correlation between Bax data and different CMI biomarkers including TNF-α and i-NOS was evaluated. Interestingly, no significant correlation was seen between TNF-α, iNOS, Bax and Bcl-2 expressions and location of the parasite. However, Bax/Bcl-2 ratio was statistically correlated with CMI biomarkers and whole sample mean parasite burden, p value <= 0.05.

    CONCLUSION: Chronic toxoplasmosis exhibits an immense pro-apoptotic signal on the cerebral tissues of experimental mice.

    Matched MeSH terms: Apoptosis
  12. Soo KM, Tham CL, Khalid B, Basir R, Chee HY
    Trop Biomed, 2019 Dec 01;36(4):1027-1037.
    PMID: 33597472
    Dengue is a common infection, caused by dengue virus. There are four different dengue serotypes, with different capacity to cause severe dengue infections. Besides, secondary infections with heterologous serotypes, concurrent infections of multiple dengue serotypes may alter the severity of dengue infection. This study aims to compare the severity of single infection and concurrent infections of different combinations of dengue serotypes in-vitro. Human mast cells (HMC)-1.1 were infected with single and concurrent infections of multiple dengue serotypes. The infected HMC-1.1 supernatant was then added to human umbilical cord vascular endothelial cells (HUVEC) and severity of dengue infections was measured by the percentage of transendothelial electrical resistance (TEER). Levels of IL10, CXCL10 and sTRAIL in HMC-1.1 and IL-8, IL-10 and CXCL10 in HUVEC culture supernatants were measured by the ELISA assays. The result showed that the percentage of TEER values were significantly lower in single infections (p< 0.05), compared to concurrent infections on day 2 and 3, indicating that single infection increase endothelial permeability greater than concurrent infections. IL-8 showed moderate correlation with endothelial permeability (r > 0.4), indicating that IL-8 may be suitable as an in-vitro severity biomarker. In conclusion, this in-vitro model presented few similarities with regards to the conditions in dengue patients, suggesting that it could serve as a severity model to test for severity and levels of severity biomarkers upon different dengue virus infections.
    Matched MeSH terms: TNF-Related Apoptosis-Inducing Ligand
  13. Tan HL, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Lee LH, et al.
    Front Pharmacol, 2016;7:191.
    PMID: 27445824 DOI: 10.3389/fphar.2016.00191
    Epimedium (family Berberidaceae), commonly known as Horny Goat Weed or Yin Yang Huo, is commonly used as a tonic, aphrodisiac, anti-rheumatic and anti-cancer agent in traditional herbal formulations in Asian countries such as China, Japan, and Korea. The major bioactive compounds present within this plant include icariin, icaritin and icariside II. Although it is best known for its aphrodisiac properties, scientific and pharmacological studies suggest it possesses broad therapeutic capabilities, especially for enhancing reproductive function and osteoprotective, neuroprotective, cardioprotective, anti-inflammatory and immunoprotective effects. In recent years, there has been great interest in scientific investigation of the purported anti-cancer properties of icariin and its derivatives. Data from in vitro and in vivo studies suggests these compounds demonstrate anti-cancer activity against a wide range of cancer cells which occurs through various mechanisms such as apoptosis, cell cycle modulation, anti-angiogenesis, anti-metastasis and immunomodulation. Of note, they are efficient at targeting cancer stem cells and drug-resistant cancer cells. These are highly desirable properties to be emulated in the development of novel anti-cancer drugs in combatting the emergence of drug resistance and overcoming the limited efficacy of current standard treatment. This review aims to summarize the anti-cancer mechanisms of icariin and its derivatives with reference to the published literature. The currently utilized applications of icariin and its derivatives in cancer treatment are explored with reference to existing patents. Based on the data compiled, icariin and its derivatives are shown to be compounds with tremendous potential for the development of new anti-cancer drugs.
    Matched MeSH terms: Apoptosis
  14. Vijayarathna S, Chen Y, Kanwar JR, Sasidharan S
    Biomed Pharmacother, 2017 Jul;91:366-377.
    PMID: 28463800 DOI: 10.1016/j.biopha.2017.04.112
    Over the years a number of microscopy methods have been developed to assess the changes in cells. Some non-invasive techniques such as holographic digital microscopy (HDM), which although does not destroy the cells, but helps to monitor the events that leads to initiation of apoptotic cell death. In this study, the apoptogenic property and the cytotoxic effect of P. longifolia leaf methanolic extract (PLME) against the human cervical carcinoma cells (HeLa) was studied using light microscope (LM), holographic digital microscopy (HDM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The average IC50 value of PLME against HeLa cells obtained by MTT and CyQuant assay was 22.00μg/mL at 24h. However, noncancerous Vero cells tested with PLME exhibited no cytotoxicity with the IC50 value of 51.07μg/mL at 24h by using MTT assay. Cytological observations showed nuclear condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, disappearance of microvilli and filopodia, narrowing of lamellipodia, holes, formation of numerous smaller vacuoles, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by HDM, LM, SEM and TEM. In conclusion, PLME was able to produce distinctive morphological features of HeLa cell death that corresponds to apoptosis.
    Matched MeSH terms: Apoptosis
  15. Baharudin R, Ab Mutalib NS, Othman SN, Sagap I, Rose IM, Mohd Mokhtar N, et al.
    Front Pharmacol, 2017;8:47.
    PMID: 28243201 DOI: 10.3389/fphar.2017.00047
    Resistance to 5-Fluorouracil (5-FU) is a major obstacle to the successful treatment of colorectal cancer (CRC) and posed an increased risk of recurrence. DNA methylation has been suggested as one of the underlying mechanisms for recurrent disease and its contribution to the development of drug resistance remains to be clarified. This study aimed to determine the methylation phenotype in CRC for identification of predictive markers for chemotherapy response. We performed DNA methylation profiling on 43 non-recurrent and five recurrent CRC patients using the Illumina Infinium HumanMethylation450 Beadchip assay. In addition, CRC cells with different genetic backgrounds, response to 5-FU and global methylation levels (HT29 and SW48) were treated with 5-FU and DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-azadC). The singular and combined effects of these two drug classes on cell viability and global methylation profiles were investigated. Our genome-wide methylation study on the clinical specimens showed that recurrent CRCs exhibited higher methylation levels compared to non-recurrent CRCs. We identified 4787 significantly differentially methylated genes (P < 0.05); 3112 genes were hyper- while 1675 genes were hypomethylated in the recurrent group compared to the non-recurrent. Fifty eight and 47 of the significantly hypermethylated and hypomethylated genes have an absolute recurrent/non-recurrent methylation difference of ≥20%. Most of the hypermethylated genes were involved in the MAPK signaling pathway which is a key regulator for apoptosis while the hypomethylated genes were involved in the PI3K-AKT signaling pathway and proliferation process. We also demonstrate that 5-azadC treatment enhanced response to 5-FU which resulted in significant growth inhibition compared to 5-FU alone in hypermethylated cell lines SW48. In conclusion, we found the evidence of five potentially biologically important genes in recurrent CRCs that could possibly serve as a new potential therapeutic targets for patients with chemoresistance. We postulate that aberrant methylation of CCNEI, CCNDBP1, PON3, DDX43, and CHL1 in CRC might be associated with the recurrence of CRC and 5-azadC-mediated restoration of 5-FU sensitivity is mediated at least in part by MAPK signaling pathway.
    Matched MeSH terms: Apoptosis
  16. Latifah Saiful Yazan, Faujan Ahmad, Ooi, Choong Li, Raha Abdul Rahim, Hisyam Abdul Hamid, Lee, Pei Sze
    MyJurnal
    Betulinic acid (BA) is a pentacyclic triterpene found in several botanical sources that has been shown to cause apoptosis in a number of cell lines. This study was undertaken to determine the in vitro cytotoxic properties of BA towards the human mammary carcinoma cell line MDA-MB-231 and the human promyelocytic leukaemia cell line HL-60 and the mode of the induced cell death. The cytotoxicity and mode of cell death of BA were determined using the MTT assay and DNA fragmentation analysis, respectively. In our study, the compound was found to be cytotoxic to MDA-MB-231 and HL-60 cells with IC50 values of 58 μg/mL and 134 μg/mL, respectively. Cells treated with high concentrations of BA exhibited features characteristic of apoptosis such as blebbing, shrinking and a number of small cytoplasm body masses when viewed under an inverted light microscope after 24h. The incidence of apoptosis in MDA-MB-231 was further confirmed by the DNA fragmentation analysis, with the formation of DNA fragments of oligonucleosomal size (180-200 base pairs), giving a ladder-like pattern on agarose gel electrophoresis. BA was more cytotoxic towards MDA-MB-231 than HL-60 cells, and induced apoptosis in MDA-MB-231 cells.
    Matched MeSH terms: Apoptosis
  17. Amin, I.M., Sheikh Abdul Kadir, S.H., Isa, M.R., Rosdy. N.M.M.N.M., Hasani NAH
    JUMMEC, 2016;19(1):1-10.
    MyJurnal
    The positive response to tamoxifen in ERa-positive breast cancer patients is usually of a short duration as many
    of the patients eventually develop resistance. Our preliminary results show that aloe emodin extracted from
    the leaves of the Aloe barbadensis Miller demonstrated a cytotoxicity that is selective to ERa-positive breast
    cancer cells (MCF-7), but not to ERa-negative breast cancer cells (MDA-MB-231) and to the control cells (MCF-
    10A). The objective of this study was to test the hypothesis that aloe emodin may enhance the response of
    MCF-7 cells to treatment with tamoxifen. MCF-7 cells were treated with aloe emodin alone, tamoxifen alone
    or a combination of emodin and tamoxifen, at their respective IC50 concentrations and at different time points
    of 24 hours, 48 hours and 72 hours. The respective IC50s were the concentrations of aloe emodin and tamoxifen
    required to achieve 50% inhibition of the cells in the study. Cell viability and apoptosis were determined using
    trypan blue exclusion and DNA fragmentation assays, respectively. The involvement of RAS/MEKs/ERKs genes
    of MAPK signalling pathways with aloe emodin was determined using QuantiGene 2.0 Plex assay. Data was
    evaluated using the one-way ANOVA test. Our findings showed that aloe emodin enhanced the cytotoxicity of
    tamoxifen on MCF-7 cells through apoptosis by downregulation of MEK1/2 genes. Our research may provide a
    rational basis for further in vivo studies to verify the efficacy of a combination of aloe emodin and tamoxifen
    on the viability of ERa-positive-breast cancer cells.
    Matched MeSH terms: Apoptosis
  18. Tang YQ, Lee SH, Sekaran SD
    JUMMEC, 2014;17(2):1-8.
    MyJurnal
    The plants of the genus Phyllanthus (Euphorbiaceae) are distributed in most tropical and subtropical regions of world. This plant has been long used as a traditional medicine to treat problems such as stomach, intestinal infections, kidney and urinary bladder disturbances, diabetes, and hepatitis B. There has been considerable interest in these plants in recent years. This review discusses the antiviral and anticancer aspects of Phyllanthus species. Scientific studies have demonstrated that extracts and purified isolated compounds (flavonoids, lignans, phenols, and terpenes) obtained from these plants possess antiviral effects against herpes simplex (HSV) and dengue virus infections (DENV). These observations are associated with the disruption of essential proteins needed during viral cycle, thus halting the viral replication. In addition, the Phyllanthus species have also been shown to exert inhibitory effects against selected cancers types. In these studies anti-proliferative, anti-metastatic, anti-angiogenic effects and induced apoptosis of human cancers cell lines were observed. These may be explained by the disruption of multiple survival pathways and differential protein expression. CONLCUSION:As a conclusion, tThe Phyllanthus plant possesses multiple medicinal properties, including antiviral and anticancer activities which may potentially be used as a medicinal source for many disease locally.
    Matched MeSH terms: Apoptosis
  19. Kew, Siang-Tong
    MyJurnal
    Melanosis coli denotes brownish discoloration of the colonic mucosa found on endoscopy
    or histopathologic examination. The condition has no specific symptom on its own. It is a fairly frequent incidental finding of colonic biopsies and resection specimens. The pigmentation is caused by apoptotic cells which are ingested by macrophages and subsequently transported into the lamina propria, where lysosomes use them to produce lipofuscin pigment, not melanin as the name suggests. Melanosis coli develops in over 70% of persons who use anthraquinone laxatives (eg cascara sagrada, aloe, senna, rhubarb, and frangula), often within 4 months of use. Long-term use is generally believed to be necessary to cause melanosis coli.The condition is widely regarded as benign and reversible, and disappearance of the pigment generally occurs within a year of stopping laxatives. Although
    often due to prolonged use of anthraquinone, melanosis can probably result from other factors or exposure to other laxatives. It has been reported as a consequence of longstanding inflammatory bowel disease. Some investigators suggested that increase in apoptosis of
    colonic mucosa by anthraquinone laxatives increased the risk of colonic cancer. Recent data, including those from large-scale retrospective, prospective and experimental studies, did not show any increased cancer risk.
    Matched MeSH terms: Apoptosis
  20. Kalyanasundram J, Hamid A, Yusoff K, Chia SL
    Acta Trop, 2018 Jul;183:126-133.
    PMID: 29626432 DOI: 10.1016/j.actatropica.2018.04.007
    The discovery of tumour selective virus-mediated apoptosis marked the birth of an alternative cancer treatment in the form of oncolytic viruses. Even though, its oncolytic efficiency was demonstrated more than 50 years ago, safety concerns which resulted from mild to lethal side effects hampered the progress of oncolytic virus research. Since the classical oncolytic virus studies rely heavily on its natural oncolytic ability, virus manipulation was limited, thereby, restricted efforts to improve its safety. In order to circumvent such restriction, experiments involving non-human viruses such as the avian Newcastle disease virus (NDV) was conducted using cultured cells, animal models and human subjects. The corresponding reports on its significant tumour cytotoxicity along with impressive safety profile initiated immense research interest in the field of oncolytic NDV. The varying degree of oncolytic efficiency and virulency among NDV strains encouraged researchers from all around the world to experiment with their respective local NDV isolates in order to develop an oncolytic virus with desirable characteristics. Such desirable features include high tumour-killing ability, selectivity and low systemic cytotoxicity. The Malaysian field outbreak isolate, NDV strain AF2240, also currently, receives significant research attention. Apart from its high cytotoxicity against tumour cells, this strain also provided fundamental insight into NDV-mediated apoptosis mechanism which involves Bax protein recruitment as well as death receptor engagement. Studies on its ability to selectively induce apoptosis in tumour cells also resulted in a proposed p38 MAPK/NF-κB/IκBα pathway. The immunogenicity of AF2240 was also investigated through PBMC stimulation and macrophage infection. In addition, the enhanced oncolytic ability of this strain under hypoxic condition signifies its dynamic tumour tropism. This review is aimed to introduce and discuss the aforementioned details of the oncolytic AF2240 strain along with its current challenges which outlines the future research direction of this virus.
    Matched MeSH terms: Apoptosis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links