Displaying publications 61 - 80 of 121 in total

Abstract:
Sort:
  1. Liu J, Chen J, Wang S, Xie J, Wang Y, Chai TT, et al.
    Food Chem, 2022 May 30;377:132000.
    PMID: 34999460 DOI: 10.1016/j.foodchem.2021.132000
    The aim of this study was to investigate the digestion and fermentation properties of fish protein fermented by Monascus. Semi-dried fish was fermented by applying Monascus purpureus Went M 3.439. Our results show that the Monascus fermentation of the fish protein enriched the free amino acids and achieved a relatively higher glutamate content than the control group. The Monascus treatment promoted the decomposition of the fish protein during in vitro digestion, reduced the ammonia and indole content and tended to increase the propionic acid content during in vitro fermentation. The Monascus treatment considerably changed the gut microbiota composition, and particularly increased the relative abundance of Parabacteroides in the in vitro fermentation model of human distal colon. Consumption of Monascus fermented fish protein could result in positive changes in fermentation metabolites and gut microbiota, which brings potential health benefits.
  2. Iyaswamy A, Lu K, Guan XJ, Kan Y, Su C, Liu J, et al.
    Biomedicines, 2023 Jul 21;11(7).
    PMID: 37509695 DOI: 10.3390/biomedicines11072056
    Bacterial Extracellular Vesicles (BEVs) possess the capability of intracellular interactions with other cells, and, hence, can be utilized as an efficient cargo for worldwide delivery of therapeutic substances such as monoclonal antibodies, proteins, plasmids, siRNA, and small molecules for the treatment of neurodegenerative diseases (NDs). BEVs additionally possess a remarkable capacity for delivering these therapeutics across the blood-brain barrier to treat Alzheimer's disease (AD). This review summarizes the role and advancement of BEVs for NDs, AD, and their treatment. Additionally, it investigates the critical BEV networks in the microbiome-gut-brain axis, their defensive and offensive roles in NDs, and their interaction with NDs. Furthermore, the part of BEVs in the neuroimmune system and their interference with ND, as well as the risk factors made by BEVs in the autophagy-lysosomal pathway and their potential outcomes on ND, are all discussed. To conclude, this review aims to gain a better understanding of the credentials of BEVs in NDs and possibly discover new therapeutic strategies.
  3. Tong M, Liu P, Li C, Zhang Z, Sun W, Dong P, et al.
    J Chem Inf Model, 2024 Feb 12;64(3):785-798.
    PMID: 38262973 DOI: 10.1021/acs.jcim.3c01584
    The allosteric modulation of the homodimeric H10-03-6 protein to glycan ligands L1 and L2, and the STAB19 protein to glycan ligands L3 and L4, respectively, has been studied by molecular dynamics simulations and free energy calculations. The results revealed that the STAB19 protein has a significantly higher affinity for L3 (-11.38 ± 2.32 kcal/mol) than that for L4 (-5.51 ± 1.92 kcal/mol). However, the combination of the H10-03-6 protein with glycan L2 (1.23 ± 6.19 kcal/mol) is energetically unfavorable compared with that of L1 (-13.96 ± 0.35 kcal/mol). Further, the binding of glycan ligands L3 and L4 to STAB19 would result in the significant closure of the two CH2 domains of the STAB19 conformation with the decrease of the centroid distances between the two CH2 domains compared with the H10-03-6/L1/L2 complex. The CH2 domain closure of STAB19 relates directly to the formation of new hydrogen bonds and hydrophobic interactions between the residues Ser239, Val240, Asp265, Glu293, Asn297, Thr299, Ser337, Asp376, Thr393, Pro395, and Pro396 in STAB19 and glycan ligands L3 and L4, which suggests that these key residues would contribute to the specific regulation of STAB19 to L3 and L4. In addition, the distance analysis revealed that the EF loop in the H10-03-6/L1/L2 model presents a high flexibility and partial disorder compared with the stabilized STAB19/L3/L4 complex. These results will be helpful in understanding the specific regulation through the asymmetric structural characteristics in the CH2 and CH3 domains of the H10-03-6 and STAB19 proteins.
  4. Huang Y, Xu Y, Li J, Xu W, Zhang G, Cheng Z, et al.
    Environ Sci Technol, 2013;47(23):13395-403.
    PMID: 24251554 DOI: 10.1021/es403138p
    Nineteen pairs of gaseous and surface seawater samples were collected along the cruise from Malaysia to the south of Bay of Bengal passing by Sri Lanka between April 12 and May 4, 2011 on the Chinese research vessel Shiyan I to investigate the latest OCP pollution status over the equatorial Indian Ocean. Significant decrease of α-HCH and γ-HCH was found in the air and dissolved water phase owing to global restriction for decades. Substantially high levels of p,p'-DDT, o,p'-DDT, trans-chlordane (TC), and cis-chlordane (CC) were observed in the water samples collected near Sri Lanka, indicating fresh continental riverine input of these compounds. Fugacity fractions suggest equilibrium of α-HCH at most sampling sites, while net volatilization for DDT isomers, TC and CC in most cases. Enantiomer fractions (EFs) of α-HCH and o,p'-DDT in the air and water samples were determined to trace the source of these compounds in the air. Racemic or close to racemic composition was found for atmospheric α-HCH and o,p'-DDT, while significant depletion of (+) enantiomer was found in the water phase, especially for o,p'-DDT (EFs = 0.310 ± 0.178). 24% of α-HCH in the lower air over the open sea of the equatorial Indian Ocean is estimated to be volatilized from local seawater, indicating that long-range transport is the main source.
  5. Hu LF, Li SP, Cao H, Liu JJ, Gao JL, Yang FQ, et al.
    J Pharm Biomed Anal, 2006 Sep 18;42(2):200-6.
    PMID: 16242880
    Pogostemon cablin, originating in Malaysia and India, is cultivated in southern China including Guangdong and Hainan Province, which was called GuangHuoXiang to differentiate it from the HuoXiang of the north, the species Agastache rugosa, that it resembles. Essential oil of P. cablin mainly contributes to the pharmacological activities and the therapeutic properties of the essential oils are directly correlated with their qualitative and quantitative composition. For controlling the quality, standard fingerprint of P. cablin collected from different regions was developed by using GC-MS. Nine compounds including beta-patchoulene, caryophyllene, alpha-guaiene, seychellene, beta-guaiene, delta-guaiene, spathulenol, patchouli alcohol and pogostone were identified among 10 main peaks in P. cablin. Hierarchical clustering analysis based on characteristics of 10 investigated peaks in GC profiles showed that 18 samples were divided into three main clusters, patchouliol-type, pogostone-type and an interim-type, which was the one between the two chemotypes. The simulative mean chromatogram for the three types P. cablin was generated using the Computer Aided Similarity Evaluation System. The fingerprint can help to distinguish the substitute or adulterant, and further assess the differences of P. cablin grown in various areas of China.
  6. Yu Z, Liu J, Tan CSY, Scherman OA, Abell C
    Angew Chem Int Ed Engl, 2018 03 12;57(12):3079-3083.
    PMID: 29377541 DOI: 10.1002/anie.201711522
    The ability to construct self-healing scaffolds that are injectable and capable of forming a designed morphology offers the possibility to engineer sustainable materials. Herein, we introduce supramolecular nested microbeads that can be used as building blocks to construct macroscopic self-healing scaffolds. The core-shell microbeads remain in an "inert" state owing to the isolation of a pair of complementary polymers in a form that can be stored as an aqueous suspension. An annealing process after injection effectively induces the re-construction of the microbead units, leading to supramolecular gelation in a preconfigured shape. The resulting macroscopic scaffold is dynamically stable, displaying self-recovery in a self-healing electronic conductor. This strategy of using the supramolecular assembled nested microbeads as building blocks represents an alternative to injectable hydrogel systems, and shows promise in the field of structural biomaterials and flexible electronics.
  7. Wang Z, Huang S, Jia C, Liu J, Zhang J, Xu B, et al.
    Plant Cell Rep, 2013 Sep;32(9):1373-80.
    PMID: 23652818 DOI: 10.1007/s00299-013-1449-7
    KEY MESSAGE: Three tau class MaGSTs responded to abiotic stress, MaGSTF1 and MaGSTL1 responded to signaling molecules, they may play an important role in the growth of banana plantlet. Glutathione S-transferases (GST) are multifunctional detoxification enzymes that participate in a variety of cellular processes, including stress responses. In this study, we report the molecular characteristics of five GST genes (MaGSTU1, MaGSTU2, MaGSTU3, MaGSTF1 and MaGSTL1) cloned from banana (Musa acuminate L. AAA group, cv. Cavendish) using a RACE-PCR-based strategy. The predicted molecular masses of these GSTs range from 23.4 to 27.7 kDa and their pIs are acidic. At the amino acid level, they share high sequence similarity with GSTs in the banana DH-Pahang (AA group) genome. Phylogenetic analysis showed that the deduced amino acid sequences of MaGSTs also have high similarity to GSTs of other plant species. Expression analysis by semi-quantitative RT-PCR revealed that these genes are differentially expressed in various tissues. In addition, their expression is regulated by various stress conditions, including exposure to signaling molecules, cold, salinity, drought and Fusarium oxysporum f specialis(f. Sp) cubense Tropical Race 4 (Foc TR4) infection. The expression of the tau class MaGSTs (MaGSTU1, MaGSTU2 and MaGSTU3) mainly responded to cold, salinity and drought while MaGSTF1 and MaGSTL1 expressions were upregulated by signaling molecules. Our findings suggest that MaGSTs play a key role in both development and abiotic stress responses.
  8. Ling WC, Liu J, Lau CW, Murugan DD, Mustafa MR, Huang Y
    Biochem Pharmacol, 2017 Jul 15;136:76-85.
    PMID: 28396195 DOI: 10.1016/j.bcp.2017.04.007
    Salvianolic acid B (Sal B) is one of the most abundant phenolic acids derived from the root of Danshen with potent anti-oxidative properties. The present study examined the vasoprotective effect of Sal B in hypertensive mice induced by angiotensin II (Ang II). Sal B (25mg/kg/day) was administered via oral gavage for 11days to Ang II (1.2mg/kg/day)-infused C57BL/6J mice (8-10weeks old). The vascular reactivity (both endothelium-dependent relaxations and contractions) in mouse arteries was examined by wire myography. The production of reactive oxygen species (ROS), protein level and localization of angiotensin AT1 receptors and the proteins involved in ROS formation were evaluated using dihydroethidium (DHE) fluorescence, lucigenin-enhanced chemiluminescence, immunohistochemistry and Western blotting, respectively. The changes of ROS generating proteins were also assessed in vitro in human umbilical vein endothelial cells (HUVECs) exposed to Ang II with and without co-treatment with Sal B (0.1-10nM). Oral administration of Sal B reversed the Ang II-induced elevation of arterial systolic blood pressure in mice, augmented the impaired endothelium-dependent relaxations and attenuated the exaggerated endothelium-dependent contractions in both aortas and renal arteries of Ang II-infused mice. In addition, Sal B treatment normalized the elevated levels of AT1 receptors, NADPH oxidase subunits (NOx-2 and NOx-4) and nitrotyrosine in arteries of Ang II-infused mice or in Ang II-treated HUVECs. In summary, the present study provided additional evidence demonstrating that Sal B treatment for 11days reverses the impaired endothelial function and with a marked inhibition of AT1 receptor-dependent vascular oxidative stress. This vasoprotective and anti-oxidative action of Sal B most likely contributes to the anti-hypertensive action of the plant-derived compound.
  9. Li Y, Ren J, Li N, Liu J, Tan SC, Low TY, et al.
    Exp Gerontol, 2020 11;141:111110.
    PMID: 33045358 DOI: 10.1016/j.exger.2020.111110
    BACKGROUND: Dehydroepiandrosterone (DHEA) has been aggressively sold as a dietary supplement to boost testosterone levels although the impact of DHEA supplementation on testosterone levels has not been fully established. Therefore, we performed a systematic review and meta-analysis of RCTs to investigate the effect of oral DHEA supplementation on testosterone levels.

    METHODS: A systematic literature search was performed in Scopus, Embase, Web of Science, and PubMed databases up to February 2020 for RCTs that investigated the effect of DHEA supplementation on testosterone levels. The estimated effect of the data was calculated using the weighted mean difference (WMD). Subgroup analysis was performed to identify the source of heterogeneity among studies.

    RESULTS: Overall results from 42 publications (comprising 55 arms) demonstrated that testosterone level was significantly increased after DHEA administration (WMD: 28.02 ng/dl, 95% CI: 21.44-34.60, p = 0.00). Subgroup analyses revealed that DHEA increased testosterone level in all subgroups, but the magnitude of increment was higher in females compared to men (WMD: 30.98 ng/dl vs. 21.36 ng/dl); DHEA dosage of ˃50 mg/d compared to ≤50 mg/d (WMD: 57.96 ng/dl vs. 19.43 ng/dl); intervention duration of ≤12 weeks compared to ˃12 weeks (WMD: 44.64 ng/dl vs. 19 ng/dl); healthy participants compared to postmenopausal women, pregnant women, non-healthy participants and androgen-deficient patients (WMD: 52.17 ng/dl vs. 25.04 ng/dl, 16.44 ng/dl and 16.47 ng/dl); and participants below 60 years old compared to above 60 years old (WMD: 31.42 ng/dl vs. 23.93 ng/dl).

    CONCLUSION: DHEA supplementation is effective for increasing testosterone levels, although the magnitude varies among different subgroups. More study needed on pregnant women and miscarriage.

  10. Liu J, Niu YF, Ni SB, Liu ZY, Zheng C, Shi C
    Mitochondrial DNA B Resour, 2017 Dec 12;3(1):13-14.
    PMID: 33474051 DOI: 10.1080/23802359.2017.1413317
    The Artocarpus heterophyllus, native to Western Ghats of India, Malaysia and south-eastern Asia, is a tree member of the mulberry family (Moraceae). Chloroplast genome sequences play a significant role in the development of molecular markers in plant phylogenetic and population genetic studies. In this study, we report the complete chloroplast genome sequence of A. heterophyllus for the first time. The chloroplast genome is 160,387 bp long and includes 113 genes. Its LSC, SSC and IR regions are 88,422, 18,869 and 26,548 bp long, respectively. Phylogenetic tree analysis exhibited that A. heterophyllus was clustered with other Moraceae species with high bootstrap values.
  11. George M, Farooq M, Dang T, Cortes B, Liu J, Maranga L
    Biotechnol Bioeng, 2010 Aug 15;106(6):906-17.
    PMID: 20589670 DOI: 10.1002/bit.22753
    The majority of influenza vaccines are manufactured using embryonated hens' eggs. The potential occurrence of a pandemic outbreak of avian influenza might reduce or even eliminate the supply of eggs, leaving the human population at risk. Also, the egg-based production technology is intrinsically cumbersome and not easily scalable to provide a rapid worldwide supply of vaccine. In this communication, the production of a cell culture (Madin-Darby canine kidney (MDCK)) derived live attenuated influenza vaccine (LAIV) in a fully disposable platform process using a novel Single Use Bioreactor (SUB) is presented. The cell culture and virus infection was maintained in a disposable stirred tank reactor with PID control of pH, DO, agitation, and temperature, similar to traditional glass or stainless steel bioreactors. The application of this technology was tested using MDCK cells grown on microcarriers in proprietary serum free medium and infection with 2006/2007 seasonal LAIV strains at 25-30 L scale. The MDCK cell growth was optimal at the agitation rate of 100 rpm. Optimization of this parameter allowed the cells to grow at a rate similar to that achieved in the conventional 3 L glass stirred tank bioreactors. Influenza vaccine virus strains, A/New Caledonia/20/99 (H1N1 strain), A/Wisconsin/67/05 (H3N2 strain), and B/Malaysia/2506/04 (B strain) were all successfully produced in SUB with peak virus titers > or =8.6 log(10) FFU/mL. This result demonstrated that more than 1 million doses of vaccine can be produced through one single run of a small bioreactor at the scale of 30 L and thus provided an alternative to the current vaccine production platform with fast turn-around and low upfront facility investment, features that are particularly useful for emerging and developing countries and clinical trial material production.
  12. Niu YF, Ni SB, Liu ZY, Zheng C, Mao CL, Shi C, et al.
    Mitochondrial DNA B Resour, 2018 Apr 03;3(1):440-441.
    PMID: 33490512 DOI: 10.1080/23802359.2018.1457995
    The Lucuma nervosa, native to Western Ghats of India, Malaysia and south-eastern Asia, is a tree member of the mulberry family (Sapotaceae). Chloroplast genome sequences play an significant role in the development of molecular markers in plant phylogenetic and population genetic studies. In this study, we report the complete chloroplast genome sequence of L. nervosa for the first time. The chloroplast genome is 157,920 bp long and includes 113 genes. Its LSC, SSC, and IR regions are 88,123, 18,861, and 25,468 bp long, respectively. Phylogenetic tree analysis exhibited that L. nervosa was clustered with other Sapotaceae species with high bootstrap values.
  13. Yang FC, Huang W, Yang W, Liu J, Ai G, Luo N, et al.
    Gynecol Minim Invasive Ther, 2021 04 30;10(2):75-83.
    PMID: 34040965 DOI: 10.4103/GMIT.GMIT_81_20
    Cervical cancer surgery has a history of more than 100-years whereby it has transitioned from the open approach to minimally invasive surgery (MIS). From the era of clinical exploration and practice, minimally invasive gynecologic surgeons have never ceased to explore new frontiers in the field of gynecologic surgery. MIS has fewer postoperative complications, including reduction of treatment-related morbidity and length of hospital stay than laparotomy; this forms the mainstay of treatment for early-stage cervical cancer. However, in November 2018, the New England Journal of Medicine had published two clinical studies on cervical cancer surgery (Laparoscopic Approach to Cervical Cancer [LACC]). Following these publications, laparoscopic surgery for early-stage cervical cancer has come under intense scrutiny and negative perceptions. Many studies began to explore the concept of standardized surgery for early-stage cervical cancer. In this article, we performed a review of the history of cervical cancer surgery, outlined the standardization of cervical cancer surgery, and analyzed the current state of affairs revolving around cervical cancer surgery in the post-LACC era.
  14. Han H, Chou CC, Li R, Liu J, Zhang L, Zhu W, et al.
    Sci Rep, 2018 06 22;8(1):9566.
    PMID: 29934599 DOI: 10.1038/s41598-018-27724-3
    Chalocomoracin (CMR), one of the major secondary metabolites found in fungus-infected mulberry leaves, is a potent anticancer agent. However, its anticancer mechanism remains elusive. Here, we demonstrated the potent anti-tumor activity and molecular mechanism of CMR both in vitro and in vivo. We showed for the first time that CMR treatment markedly promoted paraptosis along with extensive cytoplasmic vacuolation derived from the endoplasmic reticulum, rather than apoptosis, in PC-3 and MDA-MB-231cell lines. Additional studies revealed that ectopic expression of Myc-PINK1 (PTEN-induced kinase 1), a key regulator of mitophagy, rendered LNCap cells susceptible to CMR-induced paraptosis, suggesting that the mitophagy-dependent pathway plays a crucial role in inducing paraptosis by activating PINK1. CMR treatment directly upregulated PINK1 and downregulated Alix genes in MDA-MB-231 and PC-3 cell lines. Furthermore, mitophagy signaling and paraptosis with cytoplasmic vacuolation could be blocked by antioxidant N-acetylcysteine (NAC), indicating the novel pathway was triggered by reactive oxygen species (ROS) production. An in vivo MDA-MB-231 xenograft tumor model revealed that CMR suppressed tumor growth by inducing vacuolation production through the same signal changes as those observed in vitro. These data suggest that CMR is a potential therapeutic entity for cancer treatment through a non-apoptotic pathway.
  15. You R, Liu J, Wu DB, Qian X, Lyu B, Zhang Y, et al.
    Cancer Manag Res, 2019;11:10239-10248.
    PMID: 31824194 DOI: 10.2147/CMAR.S219722
    Objective: The purpose of this study was to evaluate the cost-effectiveness of the combined use of afatinib and epidermal growth factor receptor (EGFR) testing versus gemcitabine-cisplatin as the first-line treatment for patients with non-small cell lung cancer (NSCLC) in China.

    Methods: A decision-analytic model, based on clinical phase III trials, was developed to simulate patient transitions. Direct costs were estimated from the perspective of the Chinese healthcare system. Quality-adjusted life-years (QALYs) and incremental cost-effectiveness ratios (ICER) were calculated over a 5-year lifetime horizon. Model robustness was conducted in sensitivity analyses.

    Results: For the base case, EGFR mutation testing followed by afatinib treatment for advanced NSCLC increased 0.15 QALYs compared with standard chemotherapy at an additional cost of $5069.12. The ICER for afatinib maintenance was $33,416.39 per QALY gained. The utility of PFS and the cost of afatinib had the most important impact on the ICER. Scenario analyses suggested that when a patient assistance program (PAP) was available, ICER decreased to $22,972.52/QALY lower than the willingness-to-pay (WTP) threshold of China ($26,508/QALY).

    Conclusion: Our results suggest that gene-guided maintenance therapy with afatinib with the PAP might be a cost-effective treatment option compared with gemcitabine - cisplatin in China.

  16. Li F, Ao M, Pham GH, Sunarso J, Chen Y, Liu J, et al.
    Small, 2020 Apr;16(14):e1906276.
    PMID: 32130789 DOI: 10.1002/smll.201906276
    Direct conversion of syngas to dimethyl ether (DME) through the intermediate of methanol allows more efficient DME production in a simpler reactor design relative to the conventional indirect route. Although Cu/ZnO-based multicomponent catalysts are highly active for methanol synthesis in this process, the sintering issue of Cu during the prolonged reaction generally deteriorates their performance. In this work, Cu/ZnO catalysts in a novel octahedron structure are prepared by a two-step pyrolysis of Zn-doped Cu-BTC metal-organic framework (MOF) in N2 and air. The catalyst CZ-350/A, hybrid of MOF-derived Cu/ZnO sample CZ-350 and γ-Al2 O3 for methanol dehydration, displays the best activity for DME formation (7.74% CO conversion and 70.05% DME selectivity) with the lowest deterioration rate over 40 h continuous reaction. Such performance is superior to its counterpart CZ-CP/A made via the conventional coprecipitation method. This is mainly due to the confinement of Cu nanoparticles within the octahedron matrix hindering their migration and aggregation. Besides, partial reduction of ZnO in the activated CZ-350 prompts the formation of Cu+ -O-Zn, further facilitating the DME production with the highest selectivity compared to literature results. The results clearly indicate that Cu and ZnO distribution in the catalyst architecture plays an important role in DME formation.
  17. You R, Zhang Y, Wu DB, Liu J, Qian X, Luo N, et al.
    Front Pharmacol, 2020;11:456.
    PMID: 32425768 DOI: 10.3389/fphar.2020.00456
    Objective: This study aims to estimate the cost-effectiveness of yearly intravenous zoledronic acid treatment versus weekly oral alendronate for postmenopausal osteoporotic women in China.

    Methods: We used a Markov microsimulation model to compare the cost-effectiveness of zoledronic acid with alendronate in Chinese postmenopausal osteoporotic women with no fracture history at various ages of therapy initiation from health care payer perspective.

    Results: The incremental cost-effectiveness ratios (ICERs) for the zoledronic acid versus alendronate were $23,581/QALY at age 65 years, $17,367/QALY at age 70 years, $14,714/QALY at age 75 years, and $12,169/QALY at age 80 years, respectively. In deterministic sensitivity analyses, the study demonstrated that the two most impactful parameters were the annual cost of zoledronic acid and the relative risk of hip fracture with zoledronic acid. In probabilistic sensitivity analyses, the probabilities of zoledronic acid being cost-effective compared with alendronate were 70-100% at a willingness-to-pay of $29,340 per QALY.

    Conclusions: Among postmenopausal osteoporotic women in China, zoledronic acid therapy is cost-effective at all ages examined from health care payer perspective, compared with weekly oral alendronate. In addition, alendronate treatment is shown to be dominant for patients at ages 65 and 70 with full persistence. This study will help clinicians and policymakers make better decisions about the relative economic value of osteoporosis treatments in China.

  18. Liu J, Xuan D, Chai J, Guo D, Huang Y, Liu S, et al.
    ACS Omega, 2020 May 05;5(17):10011-10020.
    PMID: 32391489 DOI: 10.1021/acsomega.0c00365
    A mild and effective synthesis of resorcinol-furfural (RF) thermosetting resin was proposed with ethanol as a distinctive solvent, which, as a usually neglected factor, was shown to not only help form a homogeneous reaction system but also observably reduce the energy barriers between the early intermediates and transition states in addition reactions by explicit solvent effects, drawn from theoretical calculation conclusions. Besides, the para-additions on aromatic rings were more dominant than ortho-additions with the same reactants, which affected the final link types of monomers verified by Fourier transform infrared spectroscopy and two-dimensional nuclear magnetic resonance tests. The prepared resin can be assigned to a relatively fast gel speed and a high residual mass (65.25%) after pyrolysis in a N2 atmosphere by adjusting the molar ratios of F to R, and the curing of that was a complex reaction, with a curing temperature around 149 °C and an activation energy of about 49.11 kJ mol-1 obtained by the Kissinger method.
  19. Tayebi N, Ke T, Foo JN, Friedlander Y, Liu J, Heng CK
    Clin Biochem, 2013 Jun;46(9):755-9.
    PMID: 23337689 DOI: 10.1016/j.clinbiochem.2013.01.004
    A recent genome wide association study in the Chinese population has implicated rs6903956 within the ADTRP gene on chromosome 6p24.1 as a novel susceptibility locus for coronary artery disease (CAD). In this study, we evaluated the association of rs6903956 with CAD in the different ethnic groups of Singaporean population comprising Chinese, Malays and Asian Indians.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links