Displaying publications 61 - 73 of 73 in total

Abstract:
Sort:
  1. Shokravi H, Shokravi Z, Heidarrezaei M, Ong HC, Rahimian Koloor SS, Petrů M, et al.
    Chemosphere, 2021 Dec;285:131535.
    PMID: 34329137 DOI: 10.1016/j.chemosphere.2021.131535
    Genetic engineering applications in the field of biofuel are rapidly expanding due to their potential to boost biomass productivity while lowering its cost and enhancing its quality. Recently, fourth-generation biofuel (FGB), which is biofuel obtained from genetically modified (GM) algae biomass, has gained considerable attention from academic and industrial communities. However, replacing fossil resources with FGB is still beset with many challenges. Most notably, technical aspects of genetic modification operations need to be more fully articulated and elaborated. However, relatively little attention has been paid to GM algal biomass. There is a limited number of reviews on the progress and challenges faced in the algal genetics of FGB. Therefore, the present review aims to fill this gap in the literature by recapitulating the findings of recent studies and achievements on safe and efficient genetic manipulation in the production of FGB. Then, the essential issues and parameters related to genome editing in algal strains are highlighted. Finally, the main challenges to FGB pertaining to the diffusion risk and regulatory frameworks are addressed. This review concluded that the technical and biosafety aspects of FGB, as well as the complexity and diversity of the related regulations, legitimacy concerns, and health and environmental risks, are among the most important challenges that require a strong commitment at the national/international levels to reach a global consensus.
  2. Tan SX, Andriyana A, Lim S, Ong HC, Pang YL, Ngoh GC
    Polymers (Basel), 2021 Dec 15;13(24).
    PMID: 34960953 DOI: 10.3390/polym13244398
    The present study was conducted to optimize the extraction yield of starch from sago (Metroxylon sagu) pith waste (SPW) with the assistance of ultrasound ensued by the transformation of extracted starch into a higher value-added bioplastic film. Sago starch with extraction yield of 71.4% was successfully obtained using the ultrasound-assisted extraction, with the following conditions: particle size <250 µm, solid loading of 10 wt.%, ultrasonic amplitude of 70% and duty cycle of 83% in 5 min. The rapid ultrasound approach was proven to be more effective than the conventional extraction with 60.9% extraction yield in 30 min. Ultrasound-extracted starch was found to exhibit higher starch purity than the control starch as indicated by the presence of lower protein and ash contents. The starch granules were found to have irregular and disrupted surfaces after ultrasonication. The disrupted starch granules reduced the particle size and increased the swelling power of starch which was beneficial in producing a film-forming solution. The ultrasound-extracted sago starch was subsequently used to prepare a bioplastic film via solution casting method. A brownish bioplastic film with tensile strength of 0.9 ± 0.1 MPa, Young's modulus of 22 ± 0.8 MPa, elongation at break of 13.6 ± 2.0% and water vapour permeability (WVP) of 1.11 ± 0.1 × 10-8 g m-1 s-1 Pa-1 was obtained, suggesting its feasibility as bioplastic material. These findings provide a means of utilization for SPW which is in line with the contemporary trend towards greener and sustainable products and processes.
  3. Ong HC, Ling AC, Ng DS, Ng RX, Wong PL, Omar SFS
    IDCases, 2021;23:e01051.
    PMID: 33532241 DOI: 10.1016/j.idcr.2021.e01051
    Preterm birth is a global concern with considerable morbidity and mortality. Intrapartum infection is a known cause of preterm birth and Actinomyces infection is one of the infections contributing to preterm birth. We report a case of preterm birth of a trisomy-21 neonate to a mother with positive Actinomyces naeslundii from an intra-operative placental swab sample and discussed the relationship of this bacteria and preterm delivery, and the role of postpartum antibiotics use in this case.
  4. Lai NM, Yap AQY, Ong HC, Wai SX, Yeo JHH, Koo CYE, et al.
    Neonatology, 2021;118(3):259-263.
    PMID: 33780936 DOI: 10.1159/000514402
    INTRODUCTION: Composite outcomes are used to increase the power of a study by combining event rates. Many composite outcomes in adult clinical trials have components that differ substantially in patient importance, event rate, and effect size, making interpretation challenging. Little is known about the use of composite outcomes in neonatal randomized controlled trials (RCTs).

    METHODS: We assessed the use of composite outcomes in neonatal RCTs included in Cochrane Neonatal reviews published till November 2017. Two authors reviewed the components of the composite outcomes to compare their patient importance and computed the ratios of effect sizes and event rates between the components, with an a priori threshold of 1.5, indicating a substantial difference. Descriptive statistics were presented.

    RESULTS: We extracted 7,766 outcomes in 2,134 RCTs in 312 systematic reviews. Among them, 55 composite outcomes (0.7%) were identified in 46 RCTs. The vast majority (92.7%) of composite outcomes had 2 components, with death being the most common component (included 51 times [92.7%]). The components in nearly three-quarters of the composite outcomes (n = 40 [72.7%]) had different patient importance, while the effect sizes and event rates differed substantially between the components in 27 (49.1%) and 35 (63.6%) outcomes, respectively, with up to 43-fold difference in the event rates observed.

    CONCLUSIONS: The majority of composite outcomes in neonatal RCTs had different patient importance with contrasting effect sizes and event rates between the components. In patient communication, clinicians should highlight individual components, rather than the composites, with explanation on the relationship between the components, to avoid misleading impression on the effect of the intervention. Future trials should report the estimates of all individual components alongside the composite outcomes presented.

  5. Su G, Ong HC, Gan YY, Chen WH, Chong CT, Ok YS
    Bioresour Technol, 2022 Jan;344(Pt B):126096.
    PMID: 34626763 DOI: 10.1016/j.biortech.2021.126096
    Microalgae are the most prospective raw materials for the production of biofuels, pyrolysis is an effective method to convert biomass into bioenergy. However, biofuels derived from the pyrolysis of microalgae exhibit poor fuel properties due to high content of moisture and protein. Co-pyrolysis is a simple and efficient method to produce high-quality bio-oil from two or more materials. Tires, plastics, and bamboo waste are the optimal co-feedstocks based on the improvement of yield and quality of bio-oil. Moreover, adding catalysts, especially CaO and Cu/HZSM-5, can enhance the quality of bio-oil by increasing aromatics content and decreasing oxygenated and nitrogenous compounds. Consequently, this paper provides a critical review of the production of bio-oil from co-pyrolysis of microalgae with other biomass wastes. Meanwhile, the underlying mechanism of synergistic effects and the catalytic effect on co-pyrolysis are discussed. Finally, the economic viability and prospects of microalgae co-pyrolysis are summarized.
  6. Tan SX, Ong HC, Andriyana A, Lim S, Pang YL, Kusumo F, et al.
    Polymers (Basel), 2022 Jan 11;14(2).
    PMID: 35054685 DOI: 10.3390/polym14020278
    Bioplastic has been perceived as a promising candidate to replace petroleum-based plastics due to its environment-friendly and biodegradable characteristics. This study presents the chitosan reinforced starch-based bioplastic film prepared by the solution casting and evaporation method. The effects of processing parameters, i.e., starch concentration, glycerol loading, process temperature and chitosan loading on mechanical properties were examined. Optimum tensile strength of 5.19 MPa and elongation at break of 44.6% were obtained under the combined reaction conditions of 5 wt.% starch concentration, 40 wt.% glycerol loading, 20 wt.% chitosan loading and at a process temperature of 70 °C. From the artificial neural network (ANN) modeling, the coefficient of determination (R2) for tensile strength and elongation at break were found to be 0.9955 and 0.9859, respectively, which proved the model had good fit with the experimental data. Interaction and miscibility between starch and chitosan were proven through the peaks shifting to a lower wavenumber in FTIR and a reduction of crystallinity in XRD. TGA results suggested the chitosan-reinforced starch-based bioplastic possessed reasonable thermal stability under 290 °C. Enhancement in water resistance of chitosan-incorporated starch-based bioplastic film was evidenced with a water uptake of 251% as compared to a 302% registered by the pure starch-based bioplastic film. In addition, the fact that the chitosan-reinforced starch-based bioplastic film degraded to 52.1% of its initial weight after 28 days suggests it is a more sustainable alternative than the petroleum-based plastics.
  7. Abdullah NHB, Mijan NA, Taufiq-Yap YH, Ong HC, Lee HV
    PMID: 35075565 DOI: 10.1007/s11356-022-18508-4
    Non-edible Ceiba oil has the potential to be a sustainable biofuel resource in tropical countries that can replace a portion of today's fossil fuels. Catalytic deoxygenation of the Ceiba oil (high O/C ratio) was conducted to produce hydrocarbon biofuel (high H/C ratio) over NiO-CaO5/SiO2-Al2O3 catalyst with aims of high diesel selectivity and catalyst reusability. In the present study, response surface methodology (RSM) technique with Box-Behnken experimental designs (BBD) was used to evaluate and optimize liquid hydrocarbon yield by considering the following deoxygenation parameters: catalyst loading (1-9 wt. %), reaction temperature (300-380 °C) and reaction time (30-180 min). According to the RSM results, the maximum yield for liquid hydrocarbon n-(C8-C20) was found to be 77% at 340 °C within 105 min and 5 wt. % catalyst loading. In addition, the deoxygenation model showed that the catalyst loading-reaction time interaction has a major impact on the deoxygenation activity. Based on the product analysis, oxygenated species from Ceiba oil were successfully removed in the form of CO2/CO via decarboxylation/decarbonylation (deCOx) pathways. The NiO-CaO5/SiO2-Al2O3 catalyst rendered stable reusability for five consecutive runs with liquid hydrocarbon yield within the range of 66-75% with n-(C15 + C17) selectivity of 64-72%. Despite this, coke deposition was observed after several times of catalyst usage, which is due to the high deoxygenation temperature (> 300 °C) that resulted in unfavourable polymerization side reaction.
  8. Lee XJ, Ong HC, Ooi J, Yu KL, Tham TC, Chen WH, et al.
    J Hazard Mater, 2022 Feb 05;423(Pt A):126921.
    PMID: 34523506 DOI: 10.1016/j.jhazmat.2021.126921
    Colourants, micropollutants and heavy metals are regarded as the most notorious hazardous contaminants found in rivers, oceans and sewage treatment plants, with detrimental impacts on human health and environment. In recent development, algal biomass showed great potential for the synthesis of engineered algal adsorbents suitable for the adsorptive management of various pollutants. This review presents comprehensive investigations on the engineered synthesis routes focusing mainly on mechanical, thermochemical and activation processes to produce algal adsorbents. The adsorptive performances of engineered algal adsorbents are assessed in accordance with different categories of hazardous pollutants as well as in terms of their experimental and modelled adsorption capacities. Due to the unique physicochemical properties of macroalgae and microalgae in their adsorbent forms, the adsorption of hazardous pollutants was found to be highly effective, which involved different mechanisms such as physisorption, chemisorption, ion-exchange, complexation and others depending on the types of pollutants. Overall, both macroalgae and microalgae not only can be tailored into different forms of adsorbents based on the applications, their adsorption capacities are also far more superior compared to the conventional adsorbents.
  9. Su G, Ong HC, Mofijur M, Mahlia TMI, Ok YS
    J Hazard Mater, 2022 Feb 15;424(Pt B):127396.
    PMID: 34673394 DOI: 10.1016/j.jhazmat.2021.127396
    The application of waste oils as pyrolysis feedstocks to produce high-grade biofuels is receiving extensive attention, which will diversify energy supplies and address environmental challenges caused by waste oils treatment and fossil fuel combustion. Waste oils are the optimal raw materials to produce biofuels due to their high hydrogen and volatile matter content. However, traditional disposal methods such as gasification, transesterification, hydrotreating, solvent extraction, and membrane technology are difficult to achieve satisfactory effects owing to shortcomings like enormous energy demand, long process time, high operational cost, and hazardous material pollution. The usage of clean and safe pyrolysis technology can break through the current predicament. The bio-oil produced by the conventional pyrolysis of waste oils has a high yield and HHV with great potential to replace fossil fuel, but contains a high acid value of about 120 mg KOH/g. Nevertheless, the application of CaO and NaOH can significantly decrease the acid value of bio-oil to close to zero. Additionally, the addition of coexisting bifunctional catalyst, SBA-15@MgO@Zn in particular, can simultaneously reduce the acid value and positively influence the yield and quality of bio-oil. Moreover, co-pyrolysis with plastic waste can effectively save energy and time, and improve bio-oil yield and quality. Consequently, this paper presents a critical and comprehensive review of the production of biofuels using conventional and advanced pyrolysis of waste oils.
  10. Su G, Ong HC, Fattah IMR, Ok YS, Jang JH, Wang CT
    Sci Total Environ, 2022 Feb 25;809:151170.
    PMID: 34699825 DOI: 10.1016/j.scitotenv.2021.151170
    The continuous growth of population and the steady improvement of people's living standards have accelerated the generation of massive food waste. Untreated food waste has great potential to harm the environment and human health due to bad odor release, bacterial leaching, and virus transmission. However, the application of traditional disposal techniques like composting, landfilling, animal feeding, and anaerobic digestion are difficult to ease the environmental burdens because of problems such as large land occupation, virus transmission, hazardous gas emissions, and poor efficiency. Pyrolysis is a practical and promising route to reduce the environmental burden by converting food waste into bioenergy. This paper aims to analyze the characteristics of food waste, introduce the production of biofuels from conventional and advanced pyrolysis of food waste, and provide a basis for scientific disposal and sustainable management of food waste. The review shows that co-pyrolysis and catalytic pyrolysis significantly impact the pyrolysis process and product characteristics. The addition of tire waste promotes the synthesis of hydrocarbons and inhibits the formation of oxygenated compounds efficiently. The application of calcium oxide (CaO) exhibits good performance in the increment of bio-oil yield and hydrocarbon content. Based on this literature review, pyrolysis can be considered as the optimal technique for dealing with food waste and producing valuable products.
  11. Shokravi H, Heidarrezaei M, Shokravi Z, Ong HC, Lau WJ, Din MFM, et al.
    J Biotechnol, 2022 Dec 10;360:23-36.
    PMID: 36272575 DOI: 10.1016/j.jbiotec.2022.10.010
    Biofuels from microalgae have promising potential for a sustainable bioeconomy. Algal strains' oil content and biomass yield are the most influential cost drivers in the fourth generation biofuel (FGB) production. Genetic modification is the key to improving oil accumulation and biomass yield, consequently developing the bioeconomy. This paper discusses current practices, new insights, and emerging trends in genetic modification and their bioeconomic impact on FGB production. It was demonstrated that enhancing the oil and biomass yield could significantly improve the probability of economic success and the net present value of the FGB production process. The techno-economic and socioeconomic burden of using genetically modified (GM) strains and the preventive control strategies on the bioeconomy of FGB production is reviewed. It is shown that the fully lined open raceway pond could cost up to 25% more than unlined ponds. The cost of a plastic hoop air-supported greenhouse covering cultivation ponds is estimated to be US 60,000$ /ha. The competitiveness and profitability of large-scale cultivation of GM biomass are significantly locked to techno-economic and socioeconomic drivers. Nonetheless, it necessitates further research and careful long-term follow-up studies to understand the mechanism that affects these parameters the most.
  12. Su G, Zulkifli NWM, Ong HC, Ibrahim S, Cheah MY, Zhu R, et al.
    Energy (Oxf), 2023 Jun 15;273:127221.
    PMID: 36942281 DOI: 10.1016/j.energy.2023.127221
    The ongoing global pandemic of COVID-19 has devastatingly influenced the environment, society, and economy around the world. Numerous medical resources are used to inhibit the infectious transmission of the virus, resulting in massive medical waste. This study proposes a sustainable and environment-friendly method to convert hazardous medical waste into valuable fuel products through pyrolysis. Medical protective clothing (MPC), a typical medical waste from COVID-19, was utilized for co-pyrolysis with oil palm wastes (OPWs). The utilization of MPC improved the bio-oil properties in OPWs pyrolysis. The addition of catalysts further ameliorated the bio-oil quality. HZSM-5 was more effective in producing hydrocarbons in bio-oil, and the relevant reaction pathway was proposed. Meanwhile, a project was simulated to co-produce bio-oil and electricity from the co-pyrolysis of OPWs and MPC from application perspectives. The techno-economic analysis indicated that the project was economically feasible, and the payback period was 6.30-8.75 years. Moreover, it was also environmentally benign as its global warming potential varied from -211.13 to -90.76 kg CO2-eq/t. Therefore, converting MPC and OPWs into biofuel and electricity through co-pyrolysis is a green, economic, and sustainable method that can decrease waste, produce valuable fuel products, and achieve remarkable economic and environmental benefits.
  13. Soudagar MEM, Kiong TS, Jathar L, Nik Ghazali NN, Ramesh S, Awasarmol U, et al.
    Chemosphere, 2024 Apr;353:141540.
    PMID: 38423144 DOI: 10.1016/j.chemosphere.2024.141540
    The development of algae is seen as a potential and ecologically sound approach to address the increasing demands in multiple sectors. However, successful implementation of processes is highly dependent on effective growing and harvesting methods. The present study provides a complete examination of contemporary techniques employed in the production and harvesting of algae, with a particular emphasis on their sustainability. The review begins by examining several culture strategies, encompassing open ponds, closed photobioreactors, and raceway ponds. The analysis of each method is conducted in a systematic manner, with a particular focus on highlighting their advantages, limitations, and potential for expansion. This approach ensures that the conversation is in line with the objectives of sustainability. Moreover, this study explores essential elements of algae harvesting, including the processes of cell separation, dewatering, and biomass extraction. Traditional methods such as centrifugation, filtration, and sedimentation are examined in conjunction with novel, environmentally concerned strategies including flocculation, electro-coagulation, and membrane filtration. It evaluates the impacts on the environment that are caused by the cultivation process, including the usage of water and land, the use of energy, the production of carbon dioxide, and the runoff of nutrients. Furthermore, this study presents a thorough examination of the current body of research pertaining to Life Cycle Analysis (LCA) studies, presenting a perspective that emphasizes sustainability in the context of algae harvesting systems. In conclusion, the analysis ends up with an examination ahead at potential areas for future study in the cultivation and harvesting of algae. This review is an essential guide for scientists, policymakers, and industry experts associated with the advancement and implementation of algae-based technologies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links