Displaying publications 61 - 71 of 71 in total

Abstract:
Sort:
  1. Md Sidek NL, Halim M, Tan JS, Abbasiliasi S, Mustafa S, Ariff AB
    Biomed Res Int, 2018;2018:5973484.
    PMID: 30363649 DOI: 10.1155/2018/5973484
    Nowadays, bacteriocin industry has substantially grown replacing the role of chemical preservatives in enhancing shelf-life and safety of food. The progress in bacteriocin study has been supported by the emerging of consumer demand on the applications of natural food preservatives. Since food is a complex ecosystem, the characteristics of bacteriocin determine the effectiveness of their incorporation into the food products. Among four commercial media (M17 broth, MRS broth, tryptic soy broth, and nutrient broth) tested, the highest growth of Pediococcus acidilactici kp10 and bacteriocin-like-inhibitory substance (BLIS) production were obtained in the cultivation with M17. BLIS production was found to be a growth associated process where the production was increased concomitantly with the growth of producing strain, P. acidilactici kp10. The antimicrobial property of BLIS against three indicator microorganisms (Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus) remained stable upon heating at 100°C but not detectable at 121°C. The BLIS activity was also observed to be stable and active at a wide pH range (pH 2 to pH 7). The BLIS activity remained constant at -20°C and -80°C for 1 month of storage. However, the activity dropped after 3 and 6 months of storage at 4°C, -20°C, and -80°C with more than 80% reduction. The ability of bacteriocin from P. acidilactici kp10 to inhibit food-borne pathogens while remaining stable and active at extreme pH and temperature is of potential interest for future applications in food preservatives.
  2. Pannerchelvan S, Rios-Solis L, Faizal Wong FW, Zaidan UH, Wasoh H, Mohamed MS, et al.
    Food Funct, 2023 Mar 23.
    PMID: 36951915 DOI: 10.1039/d2fo03936b
    Gamma-aminobutyric acid (GABA) is a non-protein amino acid widely distributed in nature and extensively explored for its numerous physiological functions and effects on metabolic disorders. Lactic acid bacteria (LAB) are one of the most important GABA producers, vigorously pursued due to their high GABA content and generally regarded as safe (GRAS) status that allows for direct formulation in various GABA-enriched food products. To meet the strict requirements of the food and nutraceutical industries, the biosynthesis of GABA is typically preferred over the chemical synthesis route. The production of GABA varies among various strains of LAB and is affected by different fermentation conditions. Hence, optimizing the fermentation conditions to enhance the activity of the key enzyme glutamic acid decarboxylase is essential to maximize GABA production. This paper reviews the beneficial effects of GABA on human health and its applications in fermented food products. A particular emphasis is given to the biosynthetic approach for producing GABA by various LAB species via the microbial fermentation route. Efficient strategies for enhancing GABA production through optimization of the fermentation conditions, mode of fermentation, two-step fermentation, co-culturing approach, immobilization technique and genetic engineering are discussed in detail.
  3. Mohd Roslan MR, Mohd Kamal NL, Abdul Khalid MF, Mohd Nasir NF, Cheng EM, Beh CY, et al.
    Materials (Basel), 2021 Apr 14;14(8).
    PMID: 33919814 DOI: 10.3390/ma14081960
    Hydroxyapatite (HA) has been widely used as a scaffold in tissue engineering. HA possesses high mechanical stress and exhibits particularly excellent biocompatibility owing to its similarity to natural bone. Nonetheless, this ceramic scaffold has limited applications due to its apparent brittleness. Therefore, this had presented some difficulties when shaping implants out of HA and for sustaining a high mechanical load. Fortunately, these drawbacks can be improved by combining HA with other biomaterials. Starch was heavily considered for biomedical device applications in favor of its low cost, wide availability, and biocompatibility properties that complement HA. This review provides an insight into starch/HA composites used in the fabrication of bone tissue scaffolds and numerous factors that influence the scaffold properties. Moreover, an alternative characterization of scaffolds via dielectric and free space measurement as a potential contactless and nondestructive measurement method is also highlighted.
  4. Tang KS, Tan JS
    Eur J Pharmacol, 2019 Jan 05;842:133-138.
    PMID: 30385347 DOI: 10.1016/j.ejphar.2018.10.039
    The prevalence of stroke is high in both developing and developed nations. It causes a heavy social and financial burden to the sufferers and their caregivers. Thrombolytic therapy is the only pharmacological treatment available for stroke. However, thrombolytic agents do not provide substantial improvement on long term motor and cognitive disabilities. Thus, there is a need to explore for new compounds that can halt or reverse the deterioration of neurons in the stroke patients' brain. Polydatin, a precursor of resveratrol, is a natural stilbene commonly found in food. This review article describes how different parameters were altered with ischemic injury and polydatin treatment, why it is important and how it could be beneficial or useful in future studies. Our review of polydatin provides convincing evidence regarding the potential of polydatin to be developed into preventive or therapeutic products for ischemic stroke. Nevertheless, additional studies are necessary in order to properly elucidate the biological mechanisms of polydatin, especially its molecular mechanisms of protection and target proteins, in cerebral ischemia.
  5. Tan JS, Ong Kc KC, Rhodes A
    Malays J Pathol, 2016 Aug;38(2):75-82.
    PMID: 27568663 MyJurnal
    Heat shock proteins (HSPs) are a family of evolutionary conserved proteins that work as molecular chaperones for cellular proteins essential for cell viability and growth as well as having numerous cyto-protective roles. They are sub-categorised based on their molecular weights; amongst which some of the most extensively studied are the HSP90 and HSP70 families. Important members of these two families; Heat shock proteins 70 and heat shock proteins 90 (Hsp70/90), are the glucose regulated proteins (GRP). These stress-inducible chaperones possess distinct roles from that of the other HSPs, residing mostly in the endoplasmic reticulum and mitochondria, but they can also be translocated to other cellular locations. Their ability in adapting to stress conditions in the tumour microenvironment suggests novel functions in cancer. GRPs have been implicated in many crucial steps of carcinogenesis to include stabilization of oncogenic proteins, induction of tumour angiogenesis, inhibition of apoptosis and replicative senescence, and promotion of invasion and metastasis.
  6. Rahardiyan D, Moko EM, Tan JS, Lee CK
    Enzyme Microb Technol, 2023 Aug;168:110260.
    PMID: 37224591 DOI: 10.1016/j.enzmictec.2023.110260
    Plastic throughout the years is now one of the biggest world commodities and also the largest pollution to have an environmental impact, accumulating in landfills and also leaching into water systems and oceans. Especially with the shift to single-use disposable plastic, evermore positions plastics as the number one novel entity that pollutes the earth. This shift is also consistent in the food packaging industry. Managing plastic waste is still an issue at large, while the process of pyrolysis incineration still requires an obscene amount of energy that also does not resolve the problems with its environmental impact, the cost of mechanical-chemical degradation even outweighs the cost of producing the materials, and biodegradation process is a very slow and long process. Converting to bioplastics is one of the potential solutions to the global plastic issue. This review covers the potentials, limitations, challenges, progress and advancements of bioplastics, especially thermoplastic starch (starch-based bioplastic) in their efforts to replace petroleum plastics in food packaging and smart food packaging, especially for single-use (disposable) food packaging.
  7. Othman NQ, Sulaiman S, Lee YP, Tan JS
    Data Brief, 2019 Aug;25:104288.
    PMID: 31453289 DOI: 10.1016/j.dib.2019.104288
    To date, Ganoderma boninense is known to be the causal agent of basal stem rot (BSR) disease in oil palm (Elaeis guineensis). This disease causes rotting in the roots, basal and upper stem of oil palm. Infection causes progressive destruction of the basal tissues at the oil palm trunk and internal dry rotting, particularly at the intersection between the bole and trunk. Molecular responses of oil palm during infection are not well study although this information is crucial to strategize effective measures to control or eliminate BSR. Here we report three sets of transcriptome data from samples of near-rot section of basal stem tissue of oil palm tree infected with G. boninense (IPIT), healthy section of basal stem tissue of the same G. boninense infected palm (IPHT) and the healthy section of basal stem tissue of the healthy palm (HPHT). The raw reads were deposited into NCBI database and can be accessed via BioProject accession number PRJNA530030.
  8. Kee PE, Phang SM, Lan JC, Tan JS, Khoo KS, Chang JS, et al.
    Mol Biotechnol, 2023 Nov 08.
    PMID: 37938536 DOI: 10.1007/s12033-023-00940-7
    Seaweeds are photosynthetic marine macroalgae known for their rapid biomass growth and their significant contributions to global food and feed production. Seaweeds play a crucial role in mitigating various environmental issues, including greenhouse gases, ocean acidification, hypoxia, and eutrophication. Tropical seaweeds are typically found in tropical and subtropical coastal zones with warmer water temperatures and abundant sunlight. These tropical seaweeds are rich sources of proteins, vitamins, minerals, fibers, polysaccharides, and bioactive compounds, contributing to their health-promoting properties and their diverse applications across a range of industries. The productivity, cultivability, nutritional quality, and edibility of tropical seaweeds have been well-documented. This review article begins with an introduction to the growth conditions of selected tropical seaweeds. Subsequently, the multifunctional properties of tropical seaweeds including antioxidant and anti-inflammatory, anti-coagulant, anti-carcinogenic and anti-proliferative, anti-viral, therapeutic and preventive properties were comprehensively evaluated. The potential application of tropical seaweeds as functional foods and feeds, as well as their contributions to sustainable cosmetics, bioenergy, and biofertilizer production were also highlighted. This review serves as a valuable resource for researchers involved in seaweed farming as it provides current knowledge and insights into the cultivation and utilization of seaweeds.
  9. Mohd Zin NB, Mohamad Yusof B, Oslan SN, Wasoh H, Tan JS, Ariff AB, et al.
    AMB Express, 2017 Dec;7(1):131.
    PMID: 28651380 DOI: 10.1186/s13568-017-0433-y
    In recent years, many efforts have been directed to explore the methods to reduce the production costs of industrial lipase by improving the yield and the use of low-cost agricultural wastes. Coconut dregs, which is a lignocellulosic by-product from coconut oil and milk processing plants, is rich in cellulose (36%) and crude fat (9%). A newly isolated Bacillus stratosphericus has been demonstrated to perform cellulose hydrolysis on coconut dregs producing fermentable sugars. The highest extracellular lipase activity of 140 U/mL has been achieved in submerged fermentation with acid pre-treated coconut dregs. The lipase was found to be active over a wide range of temperatures and pHs. The activity of lipase can be generally increased by the presence of detergent ingredients such as Tween-80, cetyltrimethylammonium bromide, hydrogen peroxide and phosphate per sulphate. The great compatibility of lipase in commercial detergents has also underlined its potential as an additive ingredient in biodetergent formulations.
  10. Tam YJ, Zeenathul NA, Rezaei MA, Mustafa NH, Azmi MLM, Bahaman AR, et al.
    Biotechnol Appl Biochem, 2017 Sep;64(5):735-744.
    PMID: 27506960 DOI: 10.1002/bab.1528
    Limit of detection (LOD), limit of quantification, and the dynamic range of detection of hepatitis B surface antigen antibody (anti-HBs) using a surface plasmon resonance (SPR) chip-based approach with Pichia pastoris-derived recombinant hepatitis B surface antigen (HBsAg) as recognition element were established through the scouting for optimal conditions for the improvement of immobilization efficiency and in the use of optimal regeneration buffer. Recombinant HBsAg was immobilized onto the sensor surface of a CM5 chip at a concentration of 150 mg/L in sodium acetate buffer at pH 4 with added 0.6% Triton X-100. A regeneration solution of 20 mM HCl was optimally found to effectively unbind analytes from the ligand, thus allowing for multiple screening cycles. A dynamic range of detection of ∼0.00098-0.25 mg/L was obtained, and a sevenfold higher LOD, as well as a twofold increase in coefficient of variance of the replicated results, was shown as compared with enzyme-linked immunosorbent assay (ELISA). Evaluation of the assay for specificity showed no cross-reactivity with other antibodies tested. The ability of SPR chip-based assay and ELISA to detect anti-HBs in human serum was comparable, indicating that the SPR chip-based assay with its multiple screening capacity has greater advantage over ELISA.
  11. Abu Bakar MH, Azmi MN, Shariff KA, Tan JS
    Appl Biochem Biotechnol, 2019 May;188(1):241-259.
    PMID: 30417321 DOI: 10.1007/s12010-018-2920-2
    Withaferin A (WA), a bioactive constituent derived from Withania somnifera plant, has been shown to exhibit many qualifying properties in attenuating several metabolic diseases. The current investigation sought to elucidate the protective mechanisms of WA (1.25 mg/kg/day) on pre-existing obese mice mediated by high-fat diet (HFD) for 12 weeks. Following dietary administration of WA, significant metabolic improvements in hepatic insulin sensitivity, adipocytokines with enhanced glucose tolerance were observed. The hepatic oxidative functions of obese mice treated with WA were improved via augmented antioxidant enzyme activities. The levels of serum pro-inflammatory cytokines and hepatic mRNA expressions of toll-like receptor (TLR4), nuclear factor κB (NF-κB), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand-receptor, and cyclooxygenase 2 (COX2) in HFD-induced obese mice were reduced. Mechanistically, WA increased hepatic mRNA expression of peroxisome proliferator-activated receptors (PPARs), cluster of differentiation 36 (CD36), fatty acid synthase (FAS), carnitine palmitoyltransferase 1 (CPT1), glucokinase (GCK), phosphofructokinase (PFK), and phosphoenolpyruvate carboxykinase (PCK1) that were associated with enhanced lipid and glucose metabolism. Taken together, these results indicate that WA exhibits protective effects against HFD-induced obesity through attenuation of hepatic inflammation, oxidative stress, and insulin resistance in mice.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links