Displaying publications 61 - 80 of 168 in total

Abstract:
Sort:
  1. Saw KY, Hussin P, Loke SC, Azam M, Chen HC, Tay YG, et al.
    Arthroscopy, 2009 Dec;25(12):1391-400.
    PMID: 19962065 DOI: 10.1016/j.arthro.2009.07.011
    PURPOSE: The purpose of the study was to determine whether postoperative intra-articular injections of autologous marrow aspirate (MA) and hyaluronic acid (HA) after subchondral drilling resulted in better cartilage repair as assessed histologically by Gill scoring.
    METHODS: In a goat model we created a 4-mm full-thickness articular cartilage defect in the stifle joint (equivalent to 1.6 cm in the human knee) and conducted subchondral drilling. The animals were divided into 3 groups: group A (control), no injections; group B (HA), weekly injection of 1 mL of sodium hyaluronate for 3 weeks; and group C (HA + MA), similar to group B but with 2 mL of autologous MA in addition to HA. MA was obtained by bone marrow aspiration, centrifuged, and divided into aliquots for cryopreservation. Fifteen animals were equally divided between the groups and sacrificed 24 weeks after surgery, when the joint was harvested, examined macroscopically and histologically.
    RESULTS: Of the 15 animals, 2 from group A had died of non-surgery-related complications and 1 from group C was excluded because of a joint infection. In group A the repair constituted mainly scar tissue, whereas in group B there was less scar tissue, with small amounts of proteoglycan and type II collagen at the osteochondral junction. In contrast, repair cartilage from group C animals showed almost complete coverage of the defect with evidence of hyaline cartilage regeneration. Histology assessed by Gill scoring was significantly better in group C with 1-way analysis of variance yielding an F statistic of 10.611 with a P value of .004, which was highly significant.
    CONCLUSIONS: Postoperative intra-articular injections of autologous MA in combination with HA after subchondral drilling resulted in better cartilage repair as assessed histologically by Gill scoring in a goat model.
    CLINICAL RELEVANCE: After arthroscopic subchondral drilling, this novel technique may result in better articular cartilage regeneration.
    Matched MeSH terms: Cartilage, Articular/cytology; Cartilage, Articular/drug effects; Cartilage, Articular/physiology*
  2. Ruszymah BH, Lokman BS, Asma A, Munirah S, Chua K, Mazlyzam AL, et al.
    Int J Pediatr Otorhinolaryngol, 2007 Aug;71(8):1225-34.
    PMID: 17531328
    This study was aimed at regenerating autologous elastic cartilage for future use in pediatric ear reconstruction surgery. Specific attentions were to characterize pediatric auricular chondrocyte growth in a combination culture medium and to assess the possibility of elastic cartilage regeneration using human fibrin.
    Matched MeSH terms: Elastic Cartilage/cytology*; Elastic Cartilage/drug effects; Elastic Cartilage/physiology*
  3. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Eur Cell Mater, 2005 Jun 17;9:58-67; discussion 67.
    PMID: 15962238
    This study was to investigate the effects of insulin-transferrin-selenium (ITS) on the proliferation and quantitative gene expression of adult human nasal septum chondrocytes in monolayer culture expansion and the formation of tissue engineered hyaline cartilage. Effects of ITS on human nasal septum chondrocytes monolayer culture expansion and gene expression were evaluated in various culture media either added with 2% fetal bovine serum (FBS) or 1 ng/mL basic fibroblast growth factor plus 1 ng/mL transforming growth factor or both serum and growth factors supplementation in comparison with medium added with 10%FBS. Chondrocytes cultured in medium added with 2% fetal bovine serum and growth factors either supplemented with or without ITS were then mixed with pluronic F-127 hydrogel for in vivo tissue engineered cartilage formation in nude mice model. Engineered tissues were removed after 8 weeks of implantation and evaluated with histological staining, immunohistochemistry, transmission electron microscopy and quantitative gene expression analysis. ITS promoted human chondrocytes proliferation and reduced chondrocytes dedifferentiation in media supplemented with serum and growth factors. ITS with 2% FBS and growth factors provided 15-fold increased in chondrocytes number by the end of the culture period compared to the standard culture medium used in chondrocytes culture (medium added with 10% FBS). Engineered tissue resulted from ITS supplementation demonstrated higher quality of cartilage formation. In conclusion, our study has demonstrated the benefits of ITS supplementation in human chondrocytes monolayer culture and tissue engineering cartilage formation.
    Matched MeSH terms: Hyaline Cartilage/cytology; Hyaline Cartilage/metabolism*; Hyaline Cartilage/ultrastructure
  4. Dashtdar H, Rothan HA, Tay T, Ahmad RE, Ali R, Tay LX, et al.
    J Orthop Res, 2011 Sep;29(9):1336-42.
    PMID: 21445989 DOI: 10.1002/jor.21413
    Chondrogenic differentiated mesenchymal stem cells (CMSCs) have been shown to produce superior chondrogenic expression markers in vitro. However, the use of these cells in vivo has not been fully explored. In this study, in vivo assessment of cartilage repair potential between allogenic-derived chondrogenic pre-differentiated mesenchymal stem cells and undifferentiated MSCs (MSCs) were compared. Bilateral full thickness cartilage defects were created on the medial femoral condyles of 12 rabbits (n = 12). Rabbits were divided into two groups. In one group, the defects in the right knees were repaired using alginate encapsulated MSCs while in the second group, CMSCs were used. The animals were sacrificed and the repaired and control knees were assessed at 3 and 6 months after implantation. Quantitative analysis was performed by measuring the Glycosaminoglycans (GAGs)/total protein content. The mean Brittberg score was higher in the transplanted knees as compared to the untreated knee at 6 months (p  0.05). This study demonstrates that the use of either MSC or CMSC produced superior healing when compared to cartilage defects that were untreated. However, both cells produced comparable treatment outcomes.
    Matched MeSH terms: Cartilage, Articular/injuries; Cartilage, Articular/pathology*; Cartilage, Articular/surgery
  5. Duarte-Silva M, Guerra-Pinto F, Camelo-Barbosa N, Beja-da-Costa P
    Malays Orthop J, 2019 Jul;13(2):38-41.
    PMID: 31467650 DOI: 10.5704/MOJ.1907.007
    Meniscectomy is the most common surgery in orthopaedics. The absence of meniscal tissue might be related to irreversible damage to the articular cartilage. Meniscal replacement is a tissue-engineering technique for post-meniscectomy syndrome. Its success depends on the implant integration which was vastly proven in animal model studies. Histological evidence is hard to obtain in humans due to ethical issues. We report a clinical case in which a collagen scaffold meniscal implant was harvested six months after implantation due to mechanical failure. Histological analysis was performed revealing vascularisation not only of the peripheral attachment of the implant but also on the anterior horn. These morphologic findings demonstrate that this implant allows the colonisation by precursor cells and vessels, leading to the formation of a fully functional tissue. This present report is one of the few independent reports of scaffold biological integration in the literature.
    Matched MeSH terms: Cartilage, Articular
  6. Nurzazlin, B.Z.N., Shamsul, B.S., Yahya, N.H.M., Ruszymah, B.H.I., Abdul Rani, R., Chowdhury, S.R.
    Medicine & Health, 2018;13(1):77-87.
    MyJurnal
    Culture expanded chondrocytes isolated from non-load bearing region of osteoarthritic (OA) joint has been used to construct tissue engineered cartilage for treatment purposes. The aim of the study was to compare the histological properties of the cartilage tissue and morphological properties of the chondrocytes isolated from less and severely affected OA knee. Human articular cartilage was obtained as redundant tissue from consented patients with late-stage OA undergoing total knee replacement surgery at Universiti Kebangsaan Malaysia Medical Centre (UKMMC). Articular cartilage was graded according to Dougados and Osteoarthritis Research Society International (OARSI) classification. Articular cartilage was classified into less affected (LA; Grade 0-1) and severely affected (SA; Grade 2-3). Cartilage tissue from less and severely affected region was stained with Safranin O staining. Isolated chondrocytes from each group were cultured until passage 4 (P4). Their growth patterns, cell areas, and circularity were compared. LA-cartilage tissue shows uniform spread of safranin O staining indicating intact extracellular matrix (ECM) component. However, SA-cartilage shows significant reduction and unstable staining due to its degraded ECM. LA-chondrocytes showed an aggregated growth compared to SA-chondrocyte that remains monolayer. Moreover, LA-chondrocytes have significantly higher cell area with wider spreading at passage 0 and 4 compared to SA-chondrocytes. It was also found that chondrocyte circularity increased with passage, and circularity of LAchondrocytes was significantly higher than that of the SA-chondrocytes at passage 3. This study demonstrated the considerable difference in the cellular properties for less and severely affected chondrocytes and implication of these differences in cell-based therapy needed to be explored.
    Matched MeSH terms: Cartilage, Articular
  7. Fuloria S, Subramaniyan V, Dahiya R, Dahiya S, Sudhakar K, Kumari U, et al.
    Biology (Basel), 2021 Feb 25;10(3).
    PMID: 33668707 DOI: 10.3390/biology10030172
    Evidence suggests that stem cells exert regenerative potential via the release of extracellular vesicles. Mesenchymal stem cell extracellular vesicles (MSCEVs) offer therapeutic benefits for various pathophysiological ailments by restoring tissues. Facts suggest that MSCEV action can be potentiated by modifying the mesenchymal stem cells culturing methodology and bioengineering EVs. Limited clinical trials of MSCEVs have questioned their superiority, culturing quality, production scale-up and isolation, and administration format. Translation of preclinically successful MSCEVs into a clinical platform requires paying attention to several critical matters, such as the production technique, quantification/characterization, pharmacokinetics/targeting/transfer to the target site, and the safety profile. Keeping these issues as a priority, the present review was designed to highlight the challenges in translating preclinical MSCEV research into clinical platforms and provide evidence for the regenerative potential of MSCEVs in various conditions of the liver, kidney, heart, nervous system, bone, muscle, cartilage, and other organs/tissues.
    Matched MeSH terms: Cartilage
  8. Zamzuri, Z., Adham, S.Y., Shukrimi, A., Azril, M.A., Amran, R.
    MyJurnal
    Clinically, it is sometimes diffi cult to distinguish an infection of the spine from a metastasis. Spinal tuberculosis is common according to its endemic region and adenocarcinoma of the lung is also rising in the incidence worldwide. Similar presentations, with unknown primary, clinical fi ndings and hematological investigations rarely conclude a true diagnosis. Radiologically, the hallmark of spinal infection is erosion of adjacent vertebral endplates and narrowing of the disc space with or without a paravertebral shadow. Metastasis typically does not involve the disc space with erosion of the adjacent vertebral endplates. It usually presents as a lytic/sclerotic lesion in the vertebral body or “winkle owl” sign. These distinguishing features of infection versus metastasis are not certainties. Biopsy is mandatory whenever in doubt or patient is not responded with provisional treatment. The author presents a case with so-called radiological features of spinal tuberculosis infection, which turns out to be a metastatic adenocarcinoma of the lung.
    Matched MeSH terms: Cartilage Diseases
  9. Khoo SS, Loi KW, Tan KT, Suhaeb AR, Simmrat S
    Malays Orthop J, 2015 Jul;9(2):57-59.
    PMID: 28435613 MyJurnal DOI: 10.5704/MOJ.1507.003
    Septic arthritis is a surgical emergency. Prompt diagnosis and immediate treatment reduce the destruction of articular cartilage and give better outcome. We describe a simple, minimally invasive closed tube irrigation system for the initial treatment of septic arthritis of the knee in a patient with complex medical problems who was unfit to undergo surgery.
    Matched MeSH terms: Cartilage, Articular
  10. Tay, L.X.
    JUMMEC, 2015;18(1):1-8.
    MyJurnal
    Osteoarthritis (OA) affects millions of people worldwide with its irreversible destruction of articular cartilage. Recently, the potential of using chondrogenic differentiated multipotent mesenchymal stromal cells (cMSCs) for OA treatment is being assessed. Preliminary clinical studies have been encouraging. However current studies have also demonstrated that cMSCs are not biochemically and biomechanically identical to native articular chondrocytes (ACs). Thus, there is an urgent need for the implementation of proteomic applications as proteomics involve protein identification, relative quantification of proteins and studies of post-translational modification which reveal novel regulating processes of complex mechanisms such as in chondrogenesis. A comprehensive understanding of chondrogenesis is essential for the establishment of an effective cMSC model to regenerate cartilage. In this article, we will review current proteomic studies on chondrogenesis, focusing on recent findings and the proteomic approaches utilised.
    Matched MeSH terms: Cartilage, Articular
  11. Liu J, Tan CSY, Yu Z, Li N, Abell C, Scherman OA
    Adv Mater, 2017 Jun;29(22).
    PMID: 28370560 DOI: 10.1002/adma.201605325
    Recent progress on highly tough and stretchable polymer networks has highlighted the potential of wearable electronic devices and structural biomaterials such as cartilage. For some given applications, a combination of desirable mechanical properties including stiffness, strength, toughness, damping, fatigue resistance, and self-healing ability is required. However, integrating such a rigorous set of requirements imposes substantial complexity and difficulty in the design and fabrication of these polymer networks, and has rarely been realized. Here, we describe the construction of supramolecular polymer networks through an in situ copolymerization of acrylamide and functional monomers, which are dynamically complexed with the host molecule cucurbit[8]uril (CB[8]). High molecular weight, thus sufficient chain entanglement, combined with a small-amount dynamic CB[8]-mediated non-covalent crosslinking (2.5 mol%), yields extremely stretchable and tough supramolecular polymer networks, exhibiting remarkable self-healing capability at room temperature. These supramolecular polymer networks can be stretched more than 100× their original length and are able to lift objects 2000× their weight. The reversible association/dissociation of the host-guest complexes bestows the networks with remarkable energy dissipation capability, but also facile complete self-healing at room temperature. In addition to their outstanding mechanical properties, the networks are ionically conductive and transparent. The CB[8]-based supramolecular networks are synthetically accessible in large scale and exhibit outstanding mechanical properties. They could readily lead to the promising use as wearable and self-healable electronic devices, sensors and structural biomaterials.
    Matched MeSH terms: Cartilage
  12. Mehrali M, Thakur A, Pennisi CP, Talebian S, Arpanaei A, Nikkhah M, et al.
    Adv Mater, 2017 Feb;29(8).
    PMID: 27966826 DOI: 10.1002/adma.201603612
    Given their highly porous nature and excellent water retention, hydrogel-based biomaterials can mimic critical properties of the native cellular environment. However, their potential to emulate the electromechanical milieu of native tissues or conform well with the curved topology of human organs needs to be further explored to address a broad range of physiological demands of the body. In this regard, the incorporation of nanomaterials within hydrogels has shown great promise, as a simple one-step approach, to generate multifunctional scaffolds with previously unattainable biological, mechanical, and electrical properties. Here, recent advances in the fabrication and application of nanocomposite hydrogels in tissue engineering applications are described, with specific attention toward skeletal and electroactive tissues, such as cardiac, nerve, bone, cartilage, and skeletal muscle. Additionally, some potential uses of nanoreinforced hydrogels within the emerging disciplines of cyborganics, bionics, and soft biorobotics are highlighted.
    Matched MeSH terms: Cartilage
  13. Shamsul BS, Chowdhury SR, Hamdan MY, Ruszymah BHI
    Indian J Med Res, 2019 05;149(5):641-649.
    PMID: 31417032 DOI: 10.4103/ijmr.IJMR_45_17
    Background & objectives: Seeding density is one of the major parameters affecting the quality of tissue-engineered cartilage. The objective of this study was to evaluate different seeding densities of osteoarthritis chondrocytes (OACs) to obtain the highest quality cartilage.

    Methods: The OACs were expanded from passage 0 (P0) to P3, and cells in each passage were analyzed for gross morphology, growth rate, RNA expression and immunochemistry (IHC). The harvested OACs were assigned into two groups: low (1×10[7] cells/ml) and high (3×10[7] cells/ml) cell density. Three-dimensional (3D) constructs for each group were created using polymerised fibrin and cultured for 7, 14 and 21 days in vitro using chondrocyte growth medium. OAC constructs were analyzed with gross assessments and microscopic evaluation using standard histology, IHC and immunofluorescence staining, in addition to gene expression and biochemical analyses to evaluate tissue development.

    Results: Constructs with a high seeding density of 3×10[7] cells/ml were associated with better quality cartilage-like tissue than those seeded with 1×10[7] cells/ml based on overall tissue formation, cell association and extracellular matrix distribution. The chondrogenic properties of the constructs were further confirmed by the expression of genes encoding aggrecan core protein and collagen type II.

    Interpretation & conclusions: Our results confirmed that cell density was a significant factor affecting cell behaviour and aggregate production, and this was important for establishing good quality cartilage.

    Matched MeSH terms: Cartilage/drug effects; Cartilage/growth & development*; Cartilage, Articular
  14. Hassan NH, Ahmad RE, Kamarul T, Looi QHD, Chong PP
    Cells Tissues Organs, 2024;213(4):338-355.
    PMID: 37944499 DOI: 10.1159/000535018
    It is apparent that whilst many reports are available regarding platelet-rich-plasma (PRP), the larger majority of these have been mainly focussed on autologous sources, and for good reason. Issues relating to allogenic source have been consciously avoided owing to concerns of cross infectivity and immune rejection. However, this topic today is now revisited and is of interest since progress over the year has demonstrated its safety, efficacy, and its abundance of supply. The present systematic review was thus conducted to elucidate advances made in this area, with the aim to provide a wider and deeper understanding of studies relevant to the application of allogenic PRP in cartilage repair. Literature search was conducted systematically using Medline, ProQuest, Web of Science, Cochrane Central Register of Controlled Trials, and snowballing searching strategy to identify relevant studies using topic-specific keywords in various combinations including "allogenic, platelet, rich, plasma" OR "allogeneic, platelet, rich, plasma" OR "allogenic platelet-rich plasma" OR "allogeneic platelet-rich plasma" OR "allogenic platelet rich plasma" OR "allogeneic platelet rich plasma" AND cartilage OR chondrocytes OR synoviocytes OR stem cells. Studies that used allogenic PRP in an attempt to facilitate cartilage repair were included. The risk of bias was assessed by the SYRCLE's checklist. Of 206 studies identified, 12 were found eligible. Only those studies that are clearly related and specific to allogenic PRP were included. Of these, nine investigated the efficacy of allogenic PRP in animal models, while three articles employed an in vitro model. Allogenic PRP promotes cell proliferation, cartilage matrix production, and anti-inflammatory effects in vitro. The in vivo studies reported histological evidence of significant acceleration of cartilage repair in treated animals. Despite several conflicting findings, all studies agreed that allogenic PRP is safe and potentially efficacious for cartilage repair, with the advantages of allogenic sources apparent.
    Matched MeSH terms: Cartilage
  15. Hani AF, Kumar D, Malik AS, Ahmad RM, Razak R, Kiflie A
    Rheumatol Int, 2015 Jan;35(1):1-16.
    PMID: 24879325 DOI: 10.1007/s00296-014-3052-9
    Early detection of knee osteoarthritis (OA) is of great interest to orthopaedic surgeons, rheumatologists, radiologists, and researchers because it would allow physicians to provide patients with treatments and advice to slow the onset or progression of the disease. Early detection can be achieved by identifying early changes in selected features of degenerative articular cartilage (AC) using non-invasive imaging modalities. Magnetic resonance imaging (MRI) is becoming the standard for assessment of OA. The aim of this paper was to review the influence of MRI on the selection, detection, and measurement of AC features associated with early OA. Our review of the literature indicates that the changes associated with early OA are in cartilage thickness, cartilage volume, cartilage water content, and proteoglycan content that can be accurately, consistently, and non-invasively measured using MRI. Choosing an MR pulse sequence that provides the capability to assess cartilage physiology and morphology in a single acquisition and advanced multi-nuclei MRI is desirable. The results of the review indicate that using an ultra-high magnetic strength, MR imager does not affect early OA detection. In conclusion, MRI is currently the most suitable modality for early detection of knee OA, and future research should focus on the quantitative evaluation of early OA features using advances in MR hardware, software, and data processing with sophisticated image/pattern recognition techniques.
    Matched MeSH terms: Cartilage, Articular/pathology*
  16. Naveen SV, Ahmad RE, Hui WJ, Suhaeb AM, Murali MR, Shanmugam R, et al.
    Int J Med Sci, 2014;11(1):97-105.
    PMID: 24396291 DOI: 10.7150/ijms.6964
    Monosodium -iodoacetate (MIA)-induced animal model of osteoarthritis (OA) is under-utilised despite having many inherent advantages. At present, there is lack of studies that directly compare the degenerative changes induced by MIA with the surgical osteoarthritis induction method and human osteoarthritis, which would further verify a greater use of this model. Therefore, we compared the histological, biochemical and biomechanical characteristics in rat model using MIA against the anterior cruciate ligament transection (ACLT) and human cartilage with clinically established osteoarthritis. The right knees of Sprague-Dawley rats were subjected to either MIA or ACLT (n=18 in each group). Six rats were used as controls. Human cartilage samples were collected and compared from patients clinically diagnosed with (n=7) and without osteoarthritis (n=3). Histological, biochemical (Glycosaminoglycans/total protein) and biomechanical (cartilage stiffness) evaluations were performed at the end of the 1(st) and 2(nd) week after OA induction. For human samples, evaluations were performed at the time of sampling. Histopathological changes in the MIA group were comparable to that observed in the ACLT group and human OA. The Mankin scores of the 3 groups were comparable (MIA: 11.5 ± 1.0; ACLT: 10.1 ± 1.1; human OA: 13.2 ± 0.8). Comparable reduction in Glycosaminoglycan/total protein content in the intervention groups were observed (MIA: 7 ± 0.6; ACLT: 6.6 ± 0.5; human OA: 3.1 ± 0.7). Cartilage stiffness score were 24.2 ± 15.3 Mpa for MIA, 25.3 ± 4.8 for ACLT and 0.5 ± 0.0 Mpa for human OA. The MIA model produces comparable degenerative changes to ACLT and human OA with the advantage of being rapid, minimally invasive and reproducible. Therefore, wider utilisation of MIA as animal translational OA model should perhaps be advocated.
    Matched MeSH terms: Cartilage, Articular/physiopathology*
  17. Dehghan F, Haerian BS, Muniandy S, Yusof A, Dragoo JL, Salleh N
    Scand J Med Sci Sports, 2014 Aug;24(4):e220-9.
    PMID: 24283470 DOI: 10.1111/sms.12149
    Relaxin is a hormone structurally related to insulin and insulin-like growth factor, which exerts its regulatory effect on the musculoskeletal and other systems through binding to its receptor in various tissues, mediated by different signaling pathways. Relaxin alters the properties of cartilage and tendon by activating collagenase. This hormone is also involved in bone remodeling and healing of injured ligaments and skeletal muscle. In this review, we have summarized the literature on the effect of relaxin in musculoskeletal system to provide a broad perspective for future studies in this field.
    Matched MeSH terms: Cartilage/physiology
  18. Bajuri MN, Kadir MR, Amin IM, Ochsner A
    Proc Inst Mech Eng H, 2012 Jul;226(7):510-20.
    PMID: 22913098 DOI: 10.1177/0954411912445846
    The wrist is the most complex joint for virtual three-dimensional simulations, and the complexity is even more pronounced when dealing with skeletal disorders of the joint such, as rheumatoid arthritis (RA). In order to analyse the biomechanical difference between healthy and diseased joints, three-dimensional models of these two wrist conditions were developed from computed tomography images. These images consist of eight carpal bones, five metacarpal bones, the distal radius and ulna. The cartilages were developed based on the shape of the available articulations and ligaments were simulated via mechanical links. The RA model was developed accurately by simulating all ten common criteria of the disease related to the wrist. Results from the finite element (FE) analyses showed that the RA model produced three times higher contact pressure at the articulations compared to the healthy model. Normal physiological load transfer also changed from predominantly through the radial side to an increased load transfer approximately 5% towards the ulnar. Based on an extensive literature search, this is the first ever reported work that simulates the pathological conditions of the rheumatoid arthritis of the wrist joint.
    Matched MeSH terms: Cartilage, Articular/physiopathology*
  19. Moo EK, Herzog W, Han SK, Abu Osman NA, Pingguan-Murphy B, Federico S
    Biomech Model Mechanobiol, 2012 Sep;11(7):983-93.
    PMID: 22234779 DOI: 10.1007/s10237-011-0367-2
    Experimental findings indicate that in-situ chondrocytes die readily following impact loading, but remain essentially unaffected at low (non-impact) strain rates. This study was aimed at identifying possible causes for cell death in impact loading by quantifying chondrocyte mechanics when cartilage was subjected to a 5% nominal tissue strain at different strain rates. Multi-scale modelling techniques were used to simulate cartilage tissue and the corresponding chondrocytes residing in the tissue. Chondrocytes were modelled by accounting for the cell membrane, pericellular matrix and pericellular capsule. The results suggest that cell deformations, cell fluid pressures and fluid flow velocity through cells are highest at the highest (impact) strain rate, but they do not reach damaging levels. Tangential strain rates of the cell membrane were highest at the highest strain rate and were observed primarily in superficial tissue cells. Since cell death following impact loading occurs primarily in superficial zone cells, we speculate that cell death in impact loading is caused by the high tangential strain rates in the membrane of superficial zone cells causing membrane rupture and loss of cell content and integrity.
    Matched MeSH terms: Cartilage/metabolism*
  20. Ruszymah BH, Chua KH, Mazlyzam AL, Aminuddin BS
    Int J Pediatr Otorhinolaryngol, 2011 Jun;75(6):805-10.
    PMID: 21481479 DOI: 10.1016/j.ijporl.2011.03.012
    Formation of external ear via tissue engineering has created interest amongst surgeons as an alternative for ear reconstruction in congenital microtia.
    Matched MeSH terms: Ear Cartilage*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links