Displaying publications 61 - 80 of 96 in total

Abstract:
Sort:
  1. Kia Y, Osman H, Kumar RS, Murugaiyah V, Basiri A, Khaw KY, et al.
    Med Chem, 2014;10(5):512-20.
    PMID: 24138113
    A series of hitherto unreported piperidone embedded α,β-unsaturated ketones were synthesized efficiently in ionic solvent and evaluated for cholinesterase inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Most of the synthesized compounds displayed good enzyme inhibition; therein compounds 7i and 7f displayed significant activity against AChE with IC50 values of 1.47 and 1.74 µM, respectively. Compound 6g showed the highest BChE inhibitory potency with IC50 value of 3.41 µM, being 5 times more potent than galanthamine. Molecular modeling simulation was performed using AChE and BChE receptors extracted from crystal structure of human AChE and human BChE to determine the amino acid residues involved in the binding interaction of synthesized compounds and their relevant receptors.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  2. Vanessa VV, Mah SH
    Mini Rev Med Chem, 2021;21(17):2507-2529.
    PMID: 33583373 DOI: 10.2174/1389557521666210212152514
    Alzheimer's disease is a neurodegenerative disorder that results in progressive and irreversible central nervous system impairment, which has become one of the severe issues recently. The most successful approach of Alzheimer's treatment is the administration of cholinesterase inhibitors to prevent the hydrolysis of acetylcholine and subsequently improve cholinergic postsynaptic transmission. This review highlights a class of heterocycles, namely xanthone, and its remarkable acetylcholinesterase inhibitory activities. Naturally occurring xanthones, including oxygenated, prenylated, pyrano, and glycosylated xanthones, exhibited promising inhibition effects towards acetylcholinesterase. Interestingly, synthetic xanthone derivatives with complex substituents such as alkyl, pyrrolidine, piperidine, and morpholine have shown greater acetylcholinesterase inhibition activities. The structure-activity relationship of xanthones revealed that the type and position of the substituent(s) attached to the xanthone moiety influenced acetylcholinesterase inhibition activities where hydrophobic moiety will lead to an improved activity by contributing to the π-π interactions, as well as the hydroxy substituent(s) by forming hydrogen-bond interactions. Thus, further studies, including quantitative structure-activity relationship, in vivo and clinical validation studies are crucial for the development of xanthones into novel anti-Alzheimer's disease drugs.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  3. Ahmad R, Baharum SN, Bunawan H, Lee M, Mohd Noor N, Rohani ER, et al.
    Molecules, 2014 Nov 20;19(11):19220-42.
    PMID: 25420073 DOI: 10.3390/molecules191119220
    The aim of this research was to identify the volatile metabolites produced in different organs (leaves, stem and roots) of Polygonum minus, an important essential oil producing crop in Malaysia. Two methods of extraction have been applied: Solid Phase Microextraction (SPME) and hydrodistillation coupled with Gas Chromatography-Mass Spectrometry (GC-MS). Approximately, 77 metabolites have been identified and aliphatic compounds contribute significantly towards the aroma and flavour of this plant. Two main aliphatic compounds: decanal and dodecanal were found to be the major contributor. Terpenoid metabolites were identified abundantly in leaves but not in the stem and root of this plant. Further studies on antioxidant, total phenolic content, anticholinesterase and antimicrobial activities were determined in the essential oil and five different extracts. The plant showed the highest DPPH radical scavenging activity in polar (ethanol) extract for all the tissues tested. For anti-acetylcholinesterase activity, leaf in aqueous extract and methanol extract showed the best acetylcholinesterase inhibitory activities. However, in microbial activity, the non-polar extracts (n-hexane) showed high antimicrobial activity against Methicillin-resistant Staphylococcus aureus (MRSA) compared to polar extracts. This study could provide the first step in the phytochemical profiles of volatile compounds and explore the additional value of pharmacology properties of this essential oil producing crop Polygonum minus.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  4. Fadaeinasab M, Hadi AH, Kia Y, Basiri A, Murugaiyah V
    Molecules, 2013 Mar 25;18(4):3779-88.
    PMID: 23529036 DOI: 10.3390/molecules18043779
    Plants of the Apocynaceae family have been traditionally used in the treatment of age-related brain disorders. Rauvolfia reflexa, a member of the family, has been used as an antidote for poisons and to treat malaria. The dichloromethane, ethanol and methanol extracts from the leaves of Rauvolfia reflexa showed potential acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities, with IC50 values in the 8.49 to 52.23 g/mL range. Further cholinesterase inhibitory-guided isolation of these extracts afforded four bioactive compounds, namely: (E)-3-(3,4,5-trimethoxyphenyl)acrylic acid (1), (E)-methyl 3-(4-hydroxy-3,5-dimethoxyphenyl) acrylate (2), 17-methoxycarbonyl-14-heptadecaenyl-4-hydroxy-3-methoxycinnamate (3) and 1,2,3,4-tetrahydro-1-oxo-β-carboline (4). The isolated compounds showed moderate cholinesterase inhibitory activity compared to the reference standard, physostigmine. Compounds 1 and 2 showed the highest inhibitory activity against AChE (IC50 = 60.17 µM) and BChE (IC50 = 61.72 µM), respectively. Despite having similar molecular weight, compounds 1 and 2 were structurally different according to their chemical substitution patterns, leading to their different enzyme inhibition selectivity. Compound 2 was more selective against BChE, whereas compound 1 was a selective inhibitor of AChE. Molecular docking revealed that both compounds 1 and 2 were inserted, but not deeply into the active site of the cholinesterase enzymes.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  5. Jusril NA, Muhamad Juhari ANN, Abu Bakar SI, Md Saad WM, Adenan MI
    Molecules, 2020 Jul 24;25(15).
    PMID: 32721993 DOI: 10.3390/molecules25153353
    Alzheimer's disease (AD) is a neurodegenerative disease and the most cause of dementia in elderly adults. Acetylcholinesterase (AChE) is an important beneficial target for AD to control cholinergic signaling deficit. Centella asiatica (CA) has proven to be rich with active ingredients for memory enhancement. In the present study, the chemical profiling of three accession extracts of CA namely SECA-K017, SECA-K018, and, SECA-K019 were performed using high-performance liquid chromatography (HPLC). Four biomarker triterpene compounds were detected in all CA accessions. Quantitative analysis reveals that madecassoside was the highest triterpene in all the CA accessions. The biomarker compounds and the ethanolic extracts of three accessions were investigated for their acetylcholinesterase (AChE) inhibitory activity using Ellman's spectrophotometer method. The inhibitory activity of the triterpenes and accession extracts was compared with the standard AChE inhibitor eserine. The results from the in vitro study showed that the triterpene compounds exhibited an AChE inhibitory activity with the half-maximal inhibitory concentration (IC50) values between 15.05 ± 0.05 and 59.13 ± 0.18 µg/mL. Asiatic acid was found to possess strong AChE inhibitory activity followed by madecassic acid. Among the CA accession extracts, SECA-K017 and SECA-K018 demonstrated a moderate AChE inhibitory activity with an IC50 value of 481.5 ± 0.13 and 763.5 ± 0.16 µg/mL, respectively from the in silico docking studies, it is observed that asiatic acid and madecassic acid showed very good interactions with the active sites and fulfilled docking parameters against AChE. The present study suggested that asiatic acid and madecassic acid in the CA accessions could be responsible for the AChE inhibitory action and could be used as markers to guide further studies on CA as potential natural products for the treatment of AD.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  6. Adalat B, Rahim F, Taha M, Alshamrani FJ, Anouar EH, Uddin N, et al.
    Molecules, 2020 Oct 20;25(20).
    PMID: 33092223 DOI: 10.3390/molecules25204828
    We synthesized 10 analogs of benzimidazole-based thiosemicarbazide 1 (a-j) and 13 benzimidazole-based Schiff bases 2 (a-m), and characterized by various spectroscopic techniques and evaluated in vitro for acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) inhibition activities. All the synthesized analogs showed varying degrees of acetylcholinesterase and butyrylcholinesterase inhibitory potentials in comparison to the standard drug (IC50 = 0.016 and 4.5 µM. Amongst these analogs 1 (a-j), compounds 1b, 1c, and 1g having IC50 values 1.30, 0.60, and 2.40 µM, respectively, showed good acetylcholinesterase inhibition when compared with the standard. These compounds also showed moderate butyrylcholinesterase inhibition having IC50 values of 2.40, 1.50, and 2.40 µM, respectively. The rest of the compounds of this series also showed moderate to weak inhibition. While amongst the second series of analogs 2 (a-m), compounds 2c, 2e, and 2h having IC50 values of 1.50, 0.60, and 0.90 µM, respectively, showed moderate acetylcholinesterase inhibition when compared to donepezil. Structure Aactivity Relation of both synthesized series has been carried out. The binding interactions between the synthesized analogs and the enzymes were identified through molecular docking simulations.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  7. Boudriga S, Haddad S, Murugaiyah V, Askri M, Knorr M, Strohmann C, et al.
    Molecules, 2020 Apr 23;25(8).
    PMID: 32340203 DOI: 10.3390/molecules25081963
    A novel one-pot [3+2]-cycloaddition reaction of (E)-3-arylidene-1-phenyl-succinimides, cyclic 1,2-diketones (isatin, 5-chloro-isatin and acenaphtenequinone), and diverse α-aminoacids such as 2-phenylglycine or sarcosine is reported. The reaction provides succinimide-substituted dispiropyrrolidine derivatives with high regio- and diastereoselectivities under mild reaction conditions. The stereochemistry of these N-heterocycles has been confirmed by four X-ray diffraction studies. Several synthetized compounds show higher inhibition on acetylcholinesterase (AChE) than butyrylcholinesterase (BChE). Of the 17 synthesized compounds tested, five exhibit good AChE inhibition with IC50 of 11.42 to 22.21 µM. A molecular docking study has also been undertaken for compound 4n possessing the most potent AChE inhibitory activity, disclosing its binding to the peripheral anionic site of AChE enzymes.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  8. Alhawarri MB, Dianita R, Razak KNA, Mohamad S, Nogawa T, Wahab HA
    Molecules, 2021 Apr 29;26(9).
    PMID: 33946788 DOI: 10.3390/molecules26092594
    Despite being widely used traditionally as a general tonic, especially in South East Asia, scientific research on Cassia timoriensis, remains scarce. In this study, the aim was to evaluate the in vitro activities for acetylcholinesterase (AChE) inhibitory potential, radical scavenging ability, and the anti-inflammatory properties of different extracts of C. timoriensis flowers using Ellman's assay, a DPPH assay, and an albumin denaturation assay, respectively. With the exception of the acetylcholinesterase activity, to the best of our knowledge, these activities were reported for the first time for C. timoriensis flowers. The phytochemical analysis confirmed the existence of tannins, flavonoids, saponins, terpenoids, and steroids in the C. timoriensis flower extracts. The ethyl acetate extract possessed the highest phenolic and flavonoid contents (527.43 ± 5.83 mg GAE/g DW and 851.83 ± 10.08 mg QE/g DW, respectively) as compared to the other extracts. In addition, the ethyl acetate and methanol extracts exhibited the highest antioxidant (IC50 20.12 ± 0.12 and 34.48 ± 0.07 µg/mL, respectively), anti-inflammatory (92.50 ± 1.38 and 92.22 ± 1.09, respectively), and anti-AChE (IC50 6.91 ± 0.38 and 6.40 ± 0.27 µg/mL, respectively) activities. These results suggest that ethyl acetate and methanol extracts may contain bioactive compounds that can control neurodegenerative disorders, including Alzheimer's disease, through high antioxidant, anti-inflammatory, and anti-AChE activities.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  9. Kwong HC, Mah SH, Chia TS, Quah CK, Lim GK, Kumar CSC
    Molecules, 2017 Jun 17;22(6).
    PMID: 28629119 DOI: 10.3390/molecules22061005
    Adamantyl-based compounds are clinically important for the treatments of type 2 diabetes and for their antiviral abilities, while many more are under development for other pharmaceutical uses. This study focused on the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of adamantyl-based ester derivatives with various substituents on the phenyl ring using Ellman's colorimetric method. Compound 2e with a 2,4-dichloro electron-withdrawing substituent on the phenyl ring exhibited the strongest inhibition effect against AChE, with an IC50 value of 77.15 µM. Overall, the adamantyl-based ester with the mono-substituent at position 3 of the phenyl ring exhibited good AChE inhibition effects with an ascending order for the substituents: Cl < NO₂ < CH₃ < OCH₃. Furthermore, compounds with electron-withdrawing groups (Cl and NO₂) substituted at position 3 on their phenyl rings demonstrated stronger AChE inhibition effects, in comparison to their respective positional isomers. On the other hand, compound 2j with a 3-methoxyphenyl ring showed the highest inhibition effect against BChE, with an IC50 value of 223.30 µM. Molecular docking analyses were conducted for potential AChE and BChE inhibitors, and the results demonstrated that the peripheral anionic sites of target proteins were predominant binding sites for these compounds through hydrogen bonds and halogen interactions instead of hydrophobic interactions in the catalytic active site.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  10. Sukumaran SD, Chee CF, Viswanathan G, Buckle MJ, Othman R, Abd Rahman N, et al.
    Molecules, 2016 Jul 22;21(7).
    PMID: 27455222 DOI: 10.3390/molecules21070955
    A series of 2'-hydroxy- and 2'-hydroxy-4',6'-dimethoxychalcones was synthesised and evaluated as inhibitors of human acetylcholinesterase (AChE). The majority of the compounds were found to show some activity, with the most active compounds having IC50 values of 40-85 µM. Higher activities were generally observed for compounds with methoxy substituents in the A ring and halogen substituents in the B ring. Kinetic studies on the most active compounds showed that they act as mixed-type inhibitors, in agreement with the results of molecular modelling studies, which suggested that they interact with residues in the peripheral anionic site and the gorge region of AChE.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  11. Al-Mekhlafi NA, Shaaria K, Abas F, Jeyaraj EJ, Stanslas J, Khalivulla SI, et al.
    Nat Prod Commun, 2013 Apr;8(4):447-51.
    PMID: 23738449
    In the present study phytochemical investigation of the methanol extract of the stem bark of Horsfieldia superba led to the isolation of twenty compounds (1-20), of which three (1-3) were new. However, compounds 2 and 3 were previously reported as synthetic alpha,beta-lactones. The compounds were characterized as (-)-3,4',7-trihydroxy-3'-methoxyflavan (1), (-)-5,6-dihydro-6-undecyl-2H-pyran-2-one (2), and (-)-5,6-dihydro-6-tridecyl-2H-pyran-2-one (3). Seventeen other known compounds were also isolated and identified as (-)-viridiflorol (4), hexacosanoic acid (5), beta-sitosterol (6), methyl 2,4-dihydroxy-6-methylbenzoate (methylorsellinate) (7), methyl 2,4-dihydroxy-3,6-dimethylbenzoate (8), (-)-4'-hydroxy-7-methoxyflavan (9), (-)-4',7-dihydroxyflavan (10), (-)-4',7-dihydroxy-3'-methoxyflavan (11), (+)-3,4',7-trihydroxyflavan (12), (-)-catechin (13), (-)-epicatechin (14), (-)-7-hydroxy-3',4'-methylenedioxyflavan (15), 2',3,4-trihydroxy-4'-methoxydihydrochalcone (16), 3',4',7-trihydroxyflavone (17), (+)-4'-hydroxy-7-methoxyflavanone (18), hexadecanoic acid (palmitic acid) (19) and 3,4-dihydroxybenzoic acid (20). The structures of the compounds were fully characterized by various physical methods (melting point, optical rotation), spectral (UV, IR, ID and 2D NMR) and mass spectrometric techniques. In vitro assay of compounds 2 and 3 demonstrated moderate cytotoxic activities against human prostate (PC-3), colon (HCT-116) and breast (MCF-7) cancer cells, while the chloroform and ethyl acetate fractions of H. superba were found to exhibit moderate AChE inhibitory activity (IC50 72 and 60 microg/mL).
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  12. Jamila N, Yeong KK, Murugaiyah V, Atlas A, Khan I, Khan N, et al.
    Nat Prod Res, 2015;29(1):86-90.
    PMID: 25219673 DOI: 10.1080/14786419.2014.952228
    Garcinia species are reported to possess antimicrobial, anti-inflammatory, anticancer, anti-HIV and anti-Alzheimer's activities. This study aimed to investigate the in vitro cholinesterase enzyme inhibitory activities of garcihombronane C (1), garcihombronane F (2), garcihombronane I (3), garcihombronane N (4), friedelin (5), clerosterol (6), spinasterol glucoside (7) and 3β-hydroxy lup-12,20(29)-diene (8) isolated from Garcinia hombroniana, and to perform molecular docking simulation to get insight into the binding interactions of the ligands and enzymes. The cholinesterase inhibitory activities were evaluated using acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. In this study, compound 4 displayed the highest concentration-dependent inhibition of both AChE and BChE. Docking studies exhibited that compound 4 binds through hydrogen bonds to amino acid residues of AChE and BChE. The calculated docking and binding energies also supported the in vitro inhibitory profiles of IC50. In conclusion, garcihombronanes C, F, I and N (1-4) exhibited dual and moderate inhibitory activities against AChE and BChE.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  13. Wong KC, Hamid A, Eldeen IM, Asmawi MZ, Baharuddin S, Abdillahi HS, et al.
    Nat Prod Res, 2012;26(9):850-8.
    PMID: 21999629 DOI: 10.1080/14786419.2010.551770
    A new sesquiterpenoid, 1α,4β,7β-eudesmanetriol (1), was isolated together with the known compounds 1β,4β,7β-eudesmanetriol (2) and oplopanone (3) from the rhizomes of Homalomena sagittifolia. The structures of these compounds were determined by extensive spectral analyses. The compounds 1 and 2 inhibited growth of Pseudomonas stutzeri with a MIC value of 117 µM when evaluated for antibacterial activity using the minimum concentration assay. Both these compounds showed remarkable activities against acetylcholinesterase enzyme with IC(50) values ranging between 25 and 26 µM. The isolation of these sesquiterpenoids and their biological activities observed in this study support the reported traditional uses of H. sagittifolia for the treatment of microbial related diseases and central nervous system disorders.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  14. Jamila N, Khan N, Khan I, Khan AA, Khan SN
    Nat Prod Res, 2016 Jun;30(12):1388-97.
    PMID: 26158779 DOI: 10.1080/14786419.2015.1060594
    The dichloromethane bark extract of Garcinia hombroniana yielded one new cycloartane triterpene; (22Z,24E)-3β-hydroxycycloart-14,22,24-trien-26-oic acid (1) together with five known compounds: garcihombronane G (2), garcihombronane J (3), 3β acetoxy-9α-hydroxy-17,14-friedolanostan-14,24-dien-26-oic acid (4), (22Z, 24E)-3β, 9α-dihydroxy-17,14-friedolanostan-14,22,24-trien-26-oic acid (5) and 3β, 23α-dihydroxy-17,14-friedolanostan-8,14,24-trien-26-oic acid (6). Their structures were established by the spectral techniques of NMR and ESI-MS. These compounds together with some previously isolated compounds; garcihombronane B (7), garcihombronane D (8) 2,3',4,5'-tetrahydroxy-6-methoxybenzophenone (9), volkensiflavone (10), 4''-O-methyll-volkensiflavone (11), volkensiflavone-7-O-glucopyranoside (12), volkensiflavone-7-O-rhamnopyranoside (13), Morelloflavone (14), 3''-O-methyl-morelloflavone (15) and morelloflavone-7-O-glucopyranoside (16) were evaluated for cholinesterase enzymes inhibitory activities using acetylcholinesterase and butyrylcholinesterase. In these activities, compounds 1-9 showed good dual inhibition on both the enzymes while compounds 10-16 did not reasonably contribute to both the cholinesterases inhibitory effects.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  15. Saleem H, Zengin G, Khan KU, Ahmad I, Waqas M, Mahomoodally FM, et al.
    Nat Prod Res, 2021 Feb;35(4):664-668.
    PMID: 30919661 DOI: 10.1080/14786419.2019.1587427
    This study sets out to probe into total bioactive contents, UHPLC-MS secondary metabolites profiling, antioxidant (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum and metal chelating) and enzyme inhibitory (acetylcholinesterase- AChE, butyrylcholinesterase- BChE, α-amylase, α glucosidase, and tyrosinase) activities of methanol extract of Aerva javanica, also known as desert cotton or Kapok bush. Aerva javanica contains considerable phenolic (44.79 ± 3.12 mg GAE/g) and flavonoid (28.86 ± 0.12 mg QE/g) contents which tends to correlate with its significant antioxidant potential for ABTS, FRAP and CUPRAC assays with values of 101.41 ± 1.18, 124.10 ± 1.71 and 190.22 ± 5.70 mg TE/g, respectively. The UHPLC-MS analysis identified the presence of 45 phytochemicals belonging to six major groups: phenolic, flavonoids, lignin, terpenes, glycoside and alkaloid. Moreover, the plant extract also showed potent inhibitory action against AChE (3.73 ± 0.22 mg GALAE/g), BChE (3.31 ± 0.19 mg GALAE/g) and tyrosinase (126.05 ± 1.77 mg KAE/g). The observed results suggest A. javanica could be further explored as a natural source of bioactive compounds.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  16. Salleh WMNHW, Khamis S, Nafiah MA, Abed SA
    Nat Prod Res, 2021 Jun;35(11):1887-1892.
    PMID: 31293176 DOI: 10.1080/14786419.2019.1639183
    This study was designed to examine the chemical composition and anticholinesterase inhibitory activity of the essential oil of Pseuduvaria macrophylla (Oliv.) Merr. (Annonaceae) from Malaysia. The essential oil was obtained by hydrodistillation and fully analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The analysis led to the identification of thirty-four chemical components that represented 87.7 ± 0.5% of the total oil. The essential oil was found to be rich in germacrene D (21.1 ± 0.4%), bicyclogermacrene (10.5 ± 0.5%), δ-cadinene (5.6 ± 0.2%), α-copaene (5.1 ± 0.3%), and α-cadinol (5.0 ± 0.3%). Anticholinesterase activity was evaluated using Ellman method. The essential oil showed weak inhibitory activity against acetylcholinesterase (I%: 32.5%) and butyrylcholinesterase (I%: 35.4%) assays. Our findings demonstrate that the essential oil could be very useful for the characterization, pharmaceutical and therapeutic applications of the essential oil from Pseuduvaria macrophylla.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  17. Ado MA, Maulidiani M, Ismail IS, Ghazali HM, Shaari K, Abas F
    Nat Prod Res, 2021 Sep;35(17):2992-2996.
    PMID: 31631709 DOI: 10.1080/14786419.2019.1679138
    Phytochemical investigation on the soluble fractions of n-hexane and dichloromethane of methanolic leaves extract of the Callicarpa maingayi K. & G. led to the isolation of three triterpenoids [euscaphic acid (1), arjunic acid (2), and ursolic acid (3)] together with two flavones [apigenin (4) and acacetin (5)], two phytosterols [stigmasterol 3-O-β-glycopyranoside (6) and sitosterol 3-O-β-glycopyranoside (7)], and a fatty acid [n-hexacosanoic acid (8)]. Six (6) compounds (1, 2, 3, 4, 5, and 8) are reported for the first time from this species. Their structures were elucidated and identified by extensive NMR techniques, GC-MS and comparison with the previously reported literature. Compound 3 was found to displayed good inhibition against acetylcholinesterase with an IC50 value of 21.5 ± 0.022 μM, while 1 and 2 exhibited pronounced α-glucosidase inhibitory activity with IC50 values of 22.4 ± 0.016 μM and 24.9 ± 0.012 μM, respectively.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
  18. Salleh WMNHW, Salihu AS, Ab Ghani N
    Nat Prod Res, 2024;38(4):629-633.
    PMID: 36794425 DOI: 10.1080/14786419.2023.2180507
    This study was designed to examine the essential oils compositions of Litsea glauca Siebold and Litsea fulva Fern.-Vill. growing in Malaysia. The essential oils were achieved by hydrodistillation and fully characterized by gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The study identified 17 and 19 components from the leaf oils from L. glauca (80.7%) and L. fulva (81.5%), respectively. The major components of L. glauca oil were β-selinene (30.8%), β-calacorene (11.3%), tridecanal (7.6%), isophytol (4.8%) and β-eudesmol (4.5%); whereas in L. fulva oil gave β-caryophyllene (27.8%), caryophyllene oxide (12.8%), α-cadinol (6.3%), (E)-nerolidol (5.7%), β-selinene (5.5%) and tridecanal (5.0%). Anticholinesterase activity was evaluated using Ellman method. The essential oils showed moderate inhibitory activity on acetylcholinesterase and butyrylcholinesterase assays. Our findings demonstrate that the essential oil could be very useful for the characterization, pharmaceutical, and therapeutic applications of the essential oil from the genus Litsea.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  19. Damodaran T, Cheah PS, Murugaiyah V, Hassan Z
    Neurochem Int, 2020 10;139:104785.
    PMID: 32650028 DOI: 10.1016/j.neuint.2020.104785
    BACKGROUND: Clitoria ternatea (CT) is an herbal plant that has been used as a memory booster in folk medicine. CT root extract has been proven to restore chronic cerebral hypoperfusion (CCH)-induced memory deficits in a rat model, but the underlying mechanisms and the toxicity profile following repeated exposure have yet to be explored.

    THE AIM OF THE STUDY: To investigate the effects of the chronic (28 days) oral administration of CT root extract on CCH-induced cognitive impairment, neuronal damage and cholinergic deficit, and its toxicity profile in the CCH rat model.

    MATERIALS AND METHODS: The permanent bilateral occlusion of common carotid arteries (PBOCCA) surgery method was employed to develop a CCH model in male Sprague Dawley (SD) rats. Then, these rats were given oral administration of CT root extract at doses of 100, 200, and 300 mg/kg, respectively for 28 days and subjected to behavioural tests. At the end of the experiment, the brain was harvested for histological analysis and cholinesterase activities. Then, blood samples were collected and organs such as liver, kidney, lung, heart, and spleen were procured for toxicity assessment.

    RESULTS: Chronic treatment of CT root extract at doses of 200 and 300 mg/kg, restored memory impairments induced by CCH. CT root extract was also found to diminish CCH-induced neuronal damage in the CA1 region of the hippocampus. High dose (300 mg/kg) of the CT root extract was significantly inhibited the increased acetylcholinesterase (AChE) activity in the frontal cortex and hippocampus of the PBOCCA rats. In toxicity study, repeated doses of CT root extract were found to be safe in PBOCCA rats after 28 days of treatment.

    CONCLUSIONS: Our findings provided scientific evidence supporting the therapeutic potential of CT root extract in the treatment of vascular dementia (VaD)-related cholinergic abnormalities and subsequent cognitive decline.

    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology
  20. Abbasi MA, Rehman A, Siddiqui SZ, Hadi N, Mumtaz A, Shah SAA, et al.
    Pak J Pharm Sci, 2019 Jan;32(1):61-68.
    PMID: 30772791
    In the current research work, a series of new N-(alkyl/aralkyl)-N-(2,3-dihydro-1,4-benzodioxan-6-yl)-4-chlorobenzenesulfonamides has been synthesized by reacting 1,4-benzozzdioxan-6-amine (1) with 4-chlorobenzenesulfonyl chloride (2) to yield N-(2,3-dihydro-1,4-benzodioxan-6-yl)-4-chlorobenzenesulfonamide (3) which was further reacted with different alkyl/aralkyl halides (4a-n) to afford the target compounds (5a-n). Structures of the synthesized compounds were confirmed by IR, 1H-NMR, EI-MS spectral techniques and CHN analysis data. The results of enzyme inhibition showed that the molecules, N-2-phenethyl-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5j) and N-(1-butyl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5d), exhibited moderate inhibitory potential against acetylcholinesterase with IC50 values 26.25±0.11 μM and 58.13±0.15 μM respectively, whereas, compounds N-benzyl-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5i) and N-(pentane-2-yl)-N-(2,3-dihydro-1,4-benzodioxin-6-yl)-4-chlorobenzenesulfonamide (5f) showed moderate inhibition against α-glucosidase enzyme as evident from IC50 values 74.52±0.07 and 83.52±0.08 μM respectively, relative to standards Eserine having IC50 value of 0.04±0.0001 μM for cholinesterases and Acarbose having IC50 value 38.25±0.12 μM for α-glucosidase, respectively.
    Matched MeSH terms: Cholinesterase Inhibitors/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links