Displaying publications 61 - 80 of 121 in total

Abstract:
Sort:
  1. Soh LT, Squires RC, Tan LK, Pok KY, Yang H, Liew C, et al.
    Western Pac Surveill Response J, 2016 04 22;7(2):26-34.
    PMID: 27508088 DOI: 10.5365/WPSAR.2016.7.1.002
    OBJECTIVE: To conduct an external quality assessment (EQA) of dengue and chikungunya diagnostics among national-level public health laboratories in the Asia Pacific region following the first round of EQA for dengue diagnostics in 2013.

    METHODS: Twenty-four national-level public health laboratories performed routine diagnostic assays on a proficiency testing panel consisting of two modules. Module A contained serum samples spiked with cultured dengue virus (DENV) or chikungunya virus (CHIKV) for the detection of nucleic acid and DENV non-structural protein 1 (NS1) antigen. Module B contained human serum samples for the detection of anti-DENV antibodies.

    RESULTS: Among 20 laboratories testing Module A, 17 (85%) correctly detected DENV RNA by reverse transcription polymerase chain reaction (RT-PCR), 18 (90%) correctly determined serotype and 19 (95%) correctly identified CHIKV by RT-PCR. Ten of 15 (66.7%) laboratories performing NS1 antigen assays obtained the correct results. In Module B, 18/23 (78.3%) and 20/20 (100%) of laboratories correctly detected anti-DENV IgM and IgG, respectively. Detection of acute/recent DENV infection by both molecular (RT-PCR) and serological methods (IgM) was available in 19/24 (79.2%) participating laboratories.

    DISCUSSION: Accurate laboratory testing is a critical component of dengue and chikungunya surveillance and control. This second round of EQA reveals good proficiency in molecular and serological diagnostics of these diseases in the Asia Pacific region. Further comprehensive diagnostic testing, including testing for Zika virus, should comprise future iterations of the EQA.

    Matched MeSH terms: Dengue/diagnosis*
  2. Chong ZL, Soe HJ, Ismail AA, Mahboob T, Chandramathi S, Sekaran SD
    Biosensors (Basel), 2021 Apr 22;11(5).
    PMID: 33921935 DOI: 10.3390/bios11050129
    Dengue is a major threat to public health globally. While point-of-care diagnosis of acute/recent dengue is available to reduce its mortality, a lack of rapid and accurate testing for the detection of previous dengue remains a hurdle in expanding dengue seroepidemiological surveys to inform its prevention, especially vaccination, to reduce dengue morbidity. This study evaluated ViroTrack Dengue Serostate, a biosensors-based semi-quantitative anti-dengue IgG (immunoglobulin G) immuno-magnetic agglutination assay for the diagnosis of previous and recent dengue in a single test. Blood samples were obtained from 484 healthy participants recruited randomly from two communities in Petaling district, Selangor, Malaysia. The reference tests were Panbio Dengue IgG indirect and capture enzyme-linked immunosorbent assays, in-house hemagglutination inhibition assay, and focus reduction neutralization test. Dengue Serostate had a sensitivity and specificity of 91.1% (95%CI 87.8-93.8) and 91.1% (95%CI 83.8-95.8) for the diagnosis of previous dengue, and 90.2% (95%CI 76.9-97.3) and 93.2% (95%CI 90.5-95.4) for the diagnosis of recent dengue, respectively. Its positive predictive value of 97.5% (95%CI 95.3-98.8) would prevent most dengue-naïve individuals from being vaccinated. ViroTrack Dengue Serostate's good point-of-care diagnostic accuracy can ease the conduct of dengue serosurveys to inform dengue vaccination strategy and facilitate pre-vaccination screening to ensure safety.
    Matched MeSH terms: Dengue/diagnosis*
  3. Md Sani SS, Han WH, Bujang MA, Ding HJ, Ng KL, Amir Shariffuddin MA
    BMC Infect Dis, 2017 07 21;17(1):505.
    PMID: 28732476 DOI: 10.1186/s12879-017-2601-8
    BACKGROUND: Existing biomarkers such as AST, ALT and hematocrit have been associated with severe dengue but evidence are mixed. Recently, interests in creatine kinase as a dengue biomarker have risen. These biomarkers represent several underlying pathophysiological processes in dengue. Hence, we aimed to assess AST, ALT, CK and hematocrit in identification of severe dengue and to assess the correlational relationship amongst common biomarkers of dengue.

    METHODS: This was a retrospective cohort study of confirmed dengue patients who were warded in Kuala Lumpur Hospital between December 2014 and January 2015. CK, AST, ALT, hematocrit, platelet count, WBC and serum albumin were taken upon ward admission and repeated at timed intervals. Composite indices based on admission AST and ALT were analyzed. Correlation coefficients and coefficients of determination were computed.

    RESULTS: Among the 365 cases reviewed, twenty-two (6%) patients had severe dengue. AST and ALT were found to be good at identification of severe dengue. The AST2/ALT composite index was the most accurate (AUC 0.83; 95% CI 0.73 - 0.93). Optimal cutoff was 402 with a sensitivity of 59.1% (95% CI: 36.4 - 79.3%) and specificity of 92.4% (95% CI: 89.1 - 95.0%). Modified cutoff of 653 had a sensitivity of 40.9% (95% CI: 20.7 - 63.7%) and specificity of 97.4% (95% CI: 95.1 - 98.8%). Our analyses also suggested that several underlying biological processes represented by biomarkers tested were unrelated despite occurring in the same disease entity. Also, markers of plasma leakage were discordant and AST was likely hepatic in origin.

    CONCLUSIONS: The composite index AST2/ALT may be used as a marker for identification of severe dengue based on admission AST and ALT, with two choices of cutoff values, 402 and 653. AST is most likely of liver origin and CK does not provide additional value.

    Matched MeSH terms: Dengue/diagnosis; Severe Dengue/diagnosis*
  4. Lam SK, Devine PL
    Clin Diagn Virol, 1998 May 1;10(1):75-81.
    PMID: 9646004
    Rapid diagnosis of dengue infection is essential to patient management and disease control. The development of a rapid (5 min) immunochromatographic test and a 2 h commercial capture enzyme linked immunosorbent assay (ELISA) for anti-dengue IgM and IgG antibodies may lead to more rapid and accurate testing in peripheral health settings and diagnostic laboratories.
    Matched MeSH terms: Dengue/diagnosis
  5. Kumarasamy V, Wahab AH, Chua SK, Hassan Z, Chem YK, Mohamad M, et al.
    J Virol Methods, 2007 Mar;140(1-2):75-9.
    PMID: 17140671
    A commercial dengue NS1 antigen-capture ELISA was evaluated to demonstrate its potential application for early laboratory diagnosis of acute dengue virus infection. Dengue virus NS1 antigen was detected in 199 of 213 acute serum samples from patients with laboratory confirmation of acute dengue virus infection but none of the 354 healthy blood donors' serum specimens. The dengue NS1 antigen-capture ELISA gave an overall sensitivity of 93.4% (199/213) and a specificity of 100% (354/354). The sensitivity was significantly higher in acute primary dengue (97.3%) than in acute secondary dengue (70.0%). The positive predictive value of the dengue NS1 antigen-capture ELISA was 100% and negative predictive value was 97.3%. Comparatively, virus isolation gave an overall positive isolation rate of 68.1% with a positive isolation rate of 73.9 and 31.0% for acute primary dengue and acute secondary dengue, respectively. Molecular detection of dengue RNA by RT-PCR gave an overall positive detection rate of 66.7% with a detection rate of 65.2 and 75.9% for acute primary dengue and acute secondary dengue, respectively. The results indicate that the commercial dengue NS1 antigen-capture ELISA may be superior to virus isolation and RT-PCR for the laboratory diagnosis of acute dengue infection based on a single serum sample.
    Matched MeSH terms: Dengue/diagnosis
  6. Wang SM, Sekaran SD
    J Clin Microbiol, 2010 Aug;48(8):2793-7.
    PMID: 20573879 DOI: 10.1128/JCM.02142-09
    Early definitive diagnosis of dengue virus infection may help in the timely management of dengue virus infection. We evaluated the Standard Diagnostics (SD, South Korea) dengue virus nonstructural protein NS1 antigen enzyme-linked immunosorbent assay (SD dengue NS1 Ag ELISA) for the detection of dengue virus NS1 antigen in patients' sera, using a total of 399 serum samples in a comparison with real-time reverse transcription (RT)-PCR, an in-house IgM capture (MAC)-ELISA, and a hemagglutination inhibition (HI) assay. Of the 320 dengue sera, 205 (64%) tested positive for NS1 antigen compared to 300 (93.75%) by either MAC-ELISA or RT-PCR, 161 (50.31%) by RT-PCR, and 226 (70.36%) by MAC-ELISA only. The assay was able to detect NS1 antigen in convalescent-phase sera until day 14 of infection. The NS1 detection rate is inversely proportional while the IgM detection rate is directly proportional to the presence of IgG antibodies. The overall sensitivity and specificity of the SD dengue NS1 Ag ELISA in the detection of "confirmed dengue virus" sera are 76.76% and 98.31%, respectively. This suggests that the SD kit is highly specific and sensitive for the detection of NS1 antigen. However, caution is needed when the kit is used as a single assay, as detection in samples that contained the virus was only about 81.97%. Combining this assay with an IgM and/or IgG assay will increase the sensitivity of detection, especially in areas with a higher prevalence of secondary dengue virus infections.
    Matched MeSH terms: Dengue/diagnosis*
  7. Kit Lam S, Lan Ew C, Mitchell JL, Cuzzubbo AJ, Devine PL
    Clin Diagn Lab Immunol, 2000 Sep;7(5):850-2.
    PMID: 10973469
    A commercially available enzyme-linked immunosorbent assay (ELISA) (PanBio Dengue Screening ELISA) that utilized both immunoglobulin M (IgM) and IgG capture in the same microtiter well for the diagnosis of dengue infection was evaluated. Sensitivity in primary and secondary dengue was 95%, while specificity was 94%.
    Matched MeSH terms: Dengue/diagnosis*
  8. Kumarasamy V, Chua SK, Hassan Z, Wahab AH, Chem YK, Mohamad M, et al.
    Singapore Med J, 2007 Jul;48(7):669-73.
    PMID: 17609831
    INTRODUCTION: The aim of this report is to establish an accurate diagnosis of acute dengue virus infection early, in order to provide timely information for the management of patients and early public health control of dengue outbreak.
    METHODS: 224 serum samples from patients with a clinical diagnosis of acute dengue infection, which were subsequently confirmed by laboratory tests, were used to evaluate the performance of a commercially-available dengue NS1 antigen-capture ELISA kit.
    RESULTS: The dengue NS1 antigen-capture ELISA gave an overall sensitivity rate of 93.3 percent (209/224). The sensitivity rate was significantly higher in acute primary dengue (97.4 percent) than in acute secondary dengue (68.8 percent). In comparison, the virus isolation gave an overall positive isolation rate of 64.7 percent, with a positive rate of 70.8 percent and 28.1 percent, for acute primary dengue and acute secondary dengue, respectively. Molecular detection of dengue RNA by RT-PCR gave an overall positive detection rate of 63.4 percent, with a positive rate of 62.5 percent and 68.8 percent, for acute primary dengue and acute secondary dengue, respectively. Of the 224 acute serum samples from patients with laboratory-confirmed acute dengue infection, dengue IgM was detected in 88 specimens, comprising 68 acute primary dengue specimens and 20 acute secondary dengue specimens. NS1 antigen-capture ELISA kit gave an overall sensitivity rate of 88.6 percent in the presence of anti-dengue IgM and 96.3 percent in the absence of anti-dengue IgM.
    CONCLUSION: Of the 224 acute serum samples, the sample ages of 166 acute serum samples are known. The positive detection rate of dengue NS1 antigen-capture ELISA, on the whole, was higher than the other three established diagnostic test methods for laboratory diagnosis of acute dengue infection.
    Matched MeSH terms: Severe Dengue/diagnosis*
  9. Arima Y, Edelstein ZR, Han HK, Matsui T
    Western Pac Surveill Response J, 2013 May 14;4(2):47-54.
    PMID: 24015372 DOI: 10.5365/WPSAR.2012.3.4.019
    Dengue is an emerging vectorborne infectious disease that is a major public health concern in the Asia and the Pacific. Official dengue surveillance data for 2011 provided by ministries of health were summarized as part of routine activities of the World Health Organization Regional Office for the Western Pacific. Based on officially reported surveillance data, dengue continued to show sustained activity in the Western Pacific Region. In 2011, Member States reported a total of 244,855 cases of which 839 died for a case fatality rate of 0.34%. More than 1000 cases were reported each from Cambodia, the Federated States of Micronesia, the Lao People's Democratic Republic, Malaysia, the Philippines, the Marshall Islands, Singapore and Viet Nam. Cambodia, the Federated States of Micronesia and the Marshall Islands reported higher activity relative to 2010. There continues to be great variability among the dengue-endemic countries and areas in the Region in the number of cases and serotype distribution. The continued high notification rate and complex dengue epidemiology in the Region highlight the need for information-sharing on a routine and timely basis.
    Matched MeSH terms: Dengue/diagnosis*
  10. Ngwe Tun MM, Muthugala R, Rajamanthri L, Nabeshima T, Buerano CC, Morita K
    Jpn J Infect Dis, 2021 Sep 22;74(5):443-449.
    PMID: 33642435 DOI: 10.7883/yoken.JJID.2020.854
    During the 2017 outbreak of severe dengue in Sri Lanka, dengue virus (DENV) serotypes 2, 3, and 4 were found to be co-circulating. Our previous study of 295 patients from the National Hospital Kandy in Sri Lanka between March 2017 and January 2018 determined that the dominant infecting serotype was DENV-2. In this study, we aimed to characterize the DENV-3 strains from non-severe and severe dengue patients from our previous study population. Patients' clinical records and previous laboratory tests, including dengue-specific nonstructural protein 1 antigen rapid test and IgM-capture and IgG enzyme-linked immunosorbent assays, were analyzed together with the present results of real-time reverse transcription polymerase chain reaction and next-generation sequencing of DENV-3. Complete genome analysis determined that DENV-3 isolates belonged to 2 different clades of genotype I and were genetically close to strains from Indonesia, China, Singapore, Malaysia, and Australia. There were 16 amino acid changes among DENV-3 isolates, and a greater number of changes were found in nonstructural proteins than in structural proteins. The emergence of DENV-3 genotype I was noted for the first time in Sri Lanka. Continuous monitoring of this newly emerged genotype and other DENV serotypes and genotypes is needed to determine their effects on future outbreaks and understand the molecular epidemiology of dengue.
    Matched MeSH terms: Severe Dengue/diagnosis
  11. Wang SM, Sekaran SD
    Am J Trop Med Hyg, 2010 Sep;83(3):690-5.
    PMID: 20810840 DOI: 10.4269/ajtmh.2010.10-0117
    A commercial Dengue Duo rapid test kit was evaluated for early dengue diagnosis by detection of dengue virus NS1 antigen and immunoglobulin M (IgM)/IgG antibodies. A total of 420 patient serum samples were subjected to real-time reverse transcription-polymerase chain reaction (RT-PCR), in-house IgM capture enzyme-linked immunosorbent assay (ELISA), hemagglutination inhibition assay, and the SD Dengue Duo rapid test. Of the 320 dengue acute and convalescent sera, dengue infection was detected by either serology or RT-PCR in 300 samples (93.75%), as compared with 289 samples (90.31%) in the combined SD Duo NS1/IgM. The NS1 detection rate is inversely proportional, whereas the IgM detection rate is directly proportional to the presence of IgG antibodies. The sensitivity and specificity in diagnosing acute dengue infection in the SD Duo NS1/IgM were 88.65% and 98.75%, respectively. The assay is sensitive and highly specific. Detection of both NS1 and IgM by SD Duo gave comparable detection rate by either serology or RT-PCR.
    Matched MeSH terms: Dengue/diagnosis*
  12. Teoh BT, Sam SS, Tan KK, Danlami MB, Shu MH, Johari J, et al.
    J Clin Microbiol, 2015 Mar;53(3):830-7.
    PMID: 25568438 DOI: 10.1128/JCM.02648-14
    A method for the rapid diagnosis of early dengue virus (DENV) infection is highly needed. Here, a prototype reverse transcription-recombinase polymerase amplification (RT-RPA) assay was developed. The assay detected DENV RNA in <20 min without the need for thermocycling amplification. The assay enabled the detection of as few as 10 copies of DENV RNA. The designed RT-RPA primers and exo probe detected the DENV genome of at least 12 genotypes of DENV circulating globally without cross-reacting with other arboviruses. We assessed the diagnostic performance of the RT-RPA assay for the detection of DENV RNA in 203 serum samples of patients with clinically suspected dengue. The sera were simultaneously tested for DENV using a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay, quantitative RT-PCR (qRT-PCR), and IgM- and IgG-capture enzyme-linked immunosorbent assays (ELISA). Acute DENV infection was confirmed in 130 samples and 61 of the samples (46.9%) were classified as viremic with qRT-PCR. The RT-RPA assay showed good concordance (κ of ≥0.723) with the RT-LAMP and qRT-PCR assays in detecting the dengue viremic samples. When used in combination with ELISA, both the RT-RPA and RT-LAMP assays increased the detection of acute DENV infection to ≥95.7% (≥45/47) in samples obtained within 5 days of illness. The results from the study suggest that the RT-RPA assay is the most rapid molecular diagnostic tool available for the detection of DENV. Hence, it is possible to use the RT-RPA assay in a laboratory to complement routine serology testing for dengue.
    Matched MeSH terms: Dengue/diagnosis*
  13. Alice V, Cheong BM
    Med J Malaysia, 2016 02;71(1):41-3.
    PMID: 27130747
    A previously well 13-year-old boy presented with a short history of fever and altered mental status. His mother was admitted for dengue fever and there had been a recent dengue outbreak in their neighbourhood. He was diagnosed with dengue encephalitis as both his dengue non-structural protein 1 (NS-1) antigen and cerebrospinal fluid (CSF) dengue polymerase chain reaction (PCR) were positive. He did not have haemoconcentration, thrombocytopenia or any warning signs associated with severe dengue. He recovered fully with supportive treatment. This case highlights the importance of considering the diagnosis of dengue encephalitis in patients from dengue endemic areas presenting with an acute febrile illness and neurological symptoms.
    Matched MeSH terms: Dengue/diagnosis
  14. Cardosa MJ, Tio PH
    Bull World Health Organ, 1991;69(6):741-5.
    PMID: 1786623
    A dot enzyme immunoassay (DEIA) for the detection of antibodies to dengue virus was tested for use as a tool in the presumptive diagnosis of dengue fever and dengue haemorrhagic fever. Paired sera from the following groups of patients were tested using the DEIA and the haemagglutination inhibition (HI) test: those with primary dengue fever; those experiencing a second dengue infection; and febrile patients who did not have dengue. The data obtained show that the DEIA can be effectively used at a serum dilution of 1:1000 to confirm presumptive recent dengue in patients with a second dengue infection. However, demonstration of seroconversion proved necessary for patients with primary dengue. At a serum dilution of 1:1000 the DEIA has a specificity of 97.3%. The role of this simple and rapid test in improving the effectivity of programmes for the control of dengue virus infection is discussed.
    Matched MeSH terms: Dengue/diagnosis*
  15. Thayan R, Huat TL, See LL, Khairullah NS, Yusof R, Devi S
    PMID: 19323035
    We determined the differential expression levels of proteins in peripheral blood mononuclear cells of patients with dengue fever (DF) and dengue hemorrhagic fever (DHF). Proteins were subjected to two-dimensional electrophoresis, mass spectrometry and Western blot analysis. We identified 8 proteins that were 2-fold or more up-regulated in patients compared to healthy control, three of which, aldolase, thioredoxin peroxidase and alpha tubulin, were related to dengue infection. Both thioredoxin peroxidase and alpha tubulin were over-expressed 4.9 and 3.3 times respectively in DHF compared to DF patients while aldolase was up-regulated 2.2 times in DF compared to DHF patients. Alpha tubulin and thioredoxin peroxidase have the potential to be utilized as biomarkers for DHF.
    Matched MeSH terms: Severe Dengue/diagnosis
  16. Chong ZL, Sekaran SD, Soe HJ, Peramalah D, Rampal S, Ng CW
    BMC Infect Dis, 2020 Mar 12;20(1):210.
    PMID: 32164538 DOI: 10.1186/s12879-020-4911-5
    BACKGROUND: Dengue is an emerging infectious disease that infects up to 390 million people yearly. The growing demand of dengue diagnostics especially in low-resource settings gave rise to many rapid diagnostic tests (RDT). This study evaluated the accuracy and utility of ViroTrack Dengue Acute - a new biosensors-based dengue NS1 RDT, SD Bioline Dengue Duo NS1/IgM/IgG combo - a commercially available RDT, and SD Dengue NS1 Ag enzyme-linked immunosorbent assay (ELISA), for the diagnosis of acute dengue infection.

    METHODS: This prospective cross-sectional study consecutively recruited 494 patients with suspected dengue from a health clinic in Malaysia. Both RDTs were performed onsite. The evaluated ELISA and reference tests were performed in a virology laboratory. The reference tests comprised of a reverse transcription-polymerase chain reaction and three ELISAs for the detection of dengue NS1 antigen, IgM and IgG antibodies, respectively. The diagnostic performance of evaluated tests was computed using STATA version 12.

    RESULTS: The sensitivity and specificity of ViroTrack were 62.3% (95%CI 55.6-68.7) and 95.0% (95%CI 91.7-97.3), versus 66.5% (95%CI 60.0-72.6) and 95.4% (95%CI 92.1-97.6) for SD NS1 ELISA, and 52.4% (95%CI 45.7-59.1) and 97.7% (95%CI 95.1-99.2) for NS1 component of SD Bioline, respectively. The combination of the latter with its IgM and IgG components were able to increase test sensitivity to 82.4% (95%CI 76.8-87.1) with corresponding decrease in specificity to 87.4% (95%CI 82.8-91.2). Although a positive test on any of the NS1 assays would increase the probability of dengue to above 90% in a patient, a negative result would only reduce this probability to 23.0-29.3%. In contrast, this probability of false negative diagnosis would be further reduced to 14.7% (95%CI 11.4-18.6) if SD Bioline NS1/IgM/IgG combo was negative.

    CONCLUSIONS: The performance of ViroTrack Dengue Acute was comparable to SD Dengue NS1 Ag ELISA. Addition of serology components to SD Bioline Dengue Duo significantly improved its sensitivity and reduced its false negative rate such that it missed the fewest dengue patients, making it a better point-of-care diagnostic tool. New RDT like ViroTrack Dengue Acute may be a potential alternative to existing RDT if its combination with serology components is proven better in future studies.

    Matched MeSH terms: Dengue/diagnosis*
  17. Low GKK, Kagize J, Faull KJ, Azahar A
    Trop Med Int Health, 2019 10;24(10):1169-1197.
    PMID: 31373098 DOI: 10.1111/tmi.13294
    OBJECTIVE: To review the diagnostic test accuracy and predictive value of statistical models in differentiating the severity of dengue infection.

    METHODS: Electronic searches were conducted in the Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, MEDLINE (complete), PubMed and Scopus. Eligible studies to be included in this review were cohort studies with participants confirmed by laboratory test for dengue infection and comparison among the different severity of dengue infection by using statistical models. The methodological quality of the paper was assessed by independent reviewers using QUADAS-2.

    RESULTS: Twenty-six studies published from 1994 to 2017 were included. Most diagnostic models produced an accuracy of 75% to 80% except one with 86%. Two models predicting severe dengue according to the WHO 2009 classification have 86% accuracy. Both of these logistic regression models were applied during the first three days of illness, and their sensitivity and specificity were 91-100% and 79.3-86%, respectively. Another model which evaluated the 30-day mortality of dengue infection had an accuracy of 98.5%.

    CONCLUSION: Although there are several potential predictive or diagnostic models for dengue infection, their limitations could affect their validity. It is recommended that these models be revalidated in other clinical settings and their methods be improved and standardised in future.

    Matched MeSH terms: Dengue/diagnosis*
  18. Wong PF, Wong LP, AbuBakar S
    J Infect Public Health, 2020 Feb;13(2):193-198.
    PMID: 31405788 DOI: 10.1016/j.jiph.2019.07.012
    BACKGROUND: Delayed diagnosis of dengue cases with increased risk for severe disease could lead to poor disease outcome. To date there is no specific laboratory diagnostic test for severe dengue. This qualitative study explored expert views regarding current issues in diagnosing severe dengue, rationale for severe dengue-specific diagnostics, future prospects and features of potential diagnostics for severe dengue.

    METHODS: In-depth individual interviews with thematic saturation were conducted between May and July 2018. The data was analyzed using thematic analysis.

    RESULTS: Based on expert opinion, diagnosis of severe dengue is challenging as it depends on astute clinical interpretation of non-dengue-specific clinical and laboratory findings. A specific test that detects impending manifestation of severe dengue could 1) overcome failure in identifying severe disease for referral or admission, 2) facilitate timely and appropriate management of plasma leakage and bleeding, 3) overcome the lack of clinical expertise and laboratory diagnosis in rural health settings. The most important feature of any diagnostics for severe dengue is the point-of-care (POC) format where it can be performed at or near the bedside.

    CONCLUSION: The development of diagnostics to detect impending severe dengue is warranted to reduce the morbidity and mortality rates of dengue infection and it should be prioritized.

    Matched MeSH terms: Severe Dengue/diagnosis*
  19. Parkash O, Shueb RH
    Viruses, 2015 Oct 19;7(10):5410-27.
    PMID: 26492265 DOI: 10.3390/v7102877
    Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed.
    Matched MeSH terms: Dengue/diagnosis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links