Displaying publications 61 - 80 of 198 in total

Abstract:
Sort:
  1. Hany Mohamed Aly Ahmed, Deepti Saini
    Archives of Orofacial Sciences, 2012;7(2):101-106.
    MyJurnal
    Sufficient knowledge on the root and root canal anatomy is essential for practicing root canal treatment. The mesiobuccal roots of maxillary molar teeth present an endodontic challenge due to their wide variability and complexity of their internal morphological landmarks. A review on the literature indicates that the prevalence of a third mesiobuccal root canal in the mesiobuccal root of maxillary molar teeth may reach 9%, and the root canal configuration usually is type XV (3-2). These reported data reveal the importance of absolute awareness for this anatomical aberration that requires special attention from dental practitioners while commencing root canal treatment in maxillary molar teeth. Hence, this article aims to report and describe the management of a maxillary first molar tooth with three mesiobuccal root canals, but with an unusual configuration.
    Matched MeSH terms: Dental Pulp Cavity
  2. Soo, W.K.M., Thong, Y.L.
    Ann Dent, 2002;9(1):-.
    MyJurnal
    Simulated canals in clear resin blocks have been widely used in pre-clinical endodontic teaching. The artificial canal provides direct visualisation of procedures in root canal treatment. Stanuardised simulated root canals have been produced in the Faculty of Dentistry, University of Malaya for dental education and research. The canals are easy and inexpensive to construct. An outline of the method of construction of resin simulated canals is presented in this paper.
    Matched MeSH terms: Dental Pulp Cavity
  3. Teong L, Lens YS
    Dent J Malaysia Singapore, 1972 May;12(1):39-45.
    PMID: 4507356
    Matched MeSH terms: Dental Pulp Devitalization
  4. Vivekananda Pai AR, Arora V
    J Conserv Dent, 2018 4 21;21(2):230-232.
    PMID: 29674831 DOI: 10.4103/JCD.JCD_316_16
    A metallic obstruction in the canal orifice of a maxillary right canine could not be bypassed during endodontic treatment. Aids such as ultrasonics and retrieval kits were not available for the removal of the obstruction. Therefore, a novel approach using a disposable syringe needle was employed. A 22-gauge needle was inserted into the orifice and turned in an arc with a gentle apical pressure and alternate rocking motion around the obstruction. This procedure was repeated few times to cut dentin and successfully dislodge and remove the obstruction using the sharp beveled tip of the needle. This case report demonstrates that, in the absence of other aids, the use of a disposable syringe needle is a simple, economical, and yet an effective technique for conservative removal of dentin and to dislodge and remove an obstruction from the root canal. However, its effectiveness depends on case selection and straight-line accessibility to the obstruction.
    Matched MeSH terms: Dental Pulp Cavity
  5. Arora S, Gill GS, Setia P, Abdulla AM, Sivadas G, Vedam V
    Case Rep Dent, 2018;2018:7594147.
    PMID: 30402298 DOI: 10.1155/2018/7594147
    This article aims at providing an insight to the clinical modifications required for the endodontic management of severely dilacerated mandibular third molar. A 35-year-old patient was referred for the root canal treatment of the mandibular left third molar. An intraoral periapical radiograph revealed a severe curvature in both the canals. A wide trapezoidal access was prepared following the use of intermediate-sized files for apical preparation. Owing to increased flexibility, Hero Shaper NITI files were used for the biomechanical preparation and single cone obturation was carried out. Third molars owing to their most posterior location-limited access coupled with a severe curvature pose utmost clinical challenges require meticulous skill, advanced technology, and patience to achieve success.
    Matched MeSH terms: Dental Pulp Cavity
  6. Ahmed HMA, Che Ab Aziz ZA, Azami NH, Farook MS, Khan AA, Mohd Noor NS, et al.
    Int Endod J, 2020 Jun;53(6):871-879.
    PMID: 32003029 DOI: 10.1111/iej.13271
    AIM: To evaluate and compare the feedback of final year undergraduate dental students in eight Malaysian dental schools on the application of a new system for classifying root canal morphology in teaching and clinical practice.

    METHODS: One PowerPoint presentation describing two classification systems for root canal morphology (Oral Surgery Oral Medicine Oral Pathology, 1974 38, 456 and its supplemental configurations, International Endodontic Journal 2017, 50, 761) was delivered to final year undergraduate dental students in eight dental schools in Malaysia by two presenters (each presented to four schools). To examine students' feedback on the utility of each system, printed questionnaires consisting of six questions (five multiple choice questions and one open-ended question) were distributed and collected after the lecture. The questionnaire was designed to compare the classification systems in terms of accuracy, practicability, understanding of root canal morphology and recommendation for use in pre-clinical and clinical courses. The exact test was used for statistical analysis, with the level of significance set at 0.05 (P = 0.05).

    RESULTS: A total of 382 (out of 447) students participated giving a response rate of 86%. More than 90% of students reported that the new system was more accurate and more practical compared with the Vertucci system (P  0.05). The students' responses for all questions were almost similar for both presenters (P > 0.05).

    CONCLUSIONS: The new system of International Endodontic Journal 2017, 50, 761 for classifying root and canal morphology was favoured by final year undergraduate dental students in Malaysia. The new system has the potential to be included in the undergraduate endodontic curriculum for teaching courses related to root and canal morphology.

    Matched MeSH terms: Dental Pulp Cavity
  7. Senthilkumar S, Maiya K, Jain NK, Mata S, Mangaonkar S, Prabhu P, et al.
    Curr Gene Ther, 2023;23(3):198-214.
    PMID: 36305152 DOI: 10.2174/1566523223666221027113723
    INTRODUCTION: We aim to investigate whether timed systemic administration of dental pulp stem cells (DPSCs) or bone marrow mesenchymal stem cells (BM-MSCs) with status epilepticus (SE) induced blood-brain barrier (BBB) damage could facilitate the CNS homing of DPSCs/BM-MSCs and mitigate neurodegeneration, neuroinflammation and neuropsychiatric comorbidities in an animal model of Temporal Lobe epilepsy (TLE).

    BACKGROUND: Cognitive impairments, altered emotional responsiveness, depression, and anxiety are the common neuropsychiatric co-morbidities observed in TLE patients. Mesenchymal stem cells (MSCs) transplantation has gained immense attention in treating TLE, as ~30% of patients do not respond to anti-epileptic drugs. While MSCs are known to cross the BBB, better CNS homing and therapeutic effects could be achieved when the systemic administration of MSC is timed with BBB damage following SE.

    OBJECTIVES: The objectives of the present study are to investigate the effects of systemic administration of DPSCs/BM-MSCs timed with BBB damage on CNS homing of DPSCs/BM-MSCs, neurodegeneration, neuroinflammation and neuropsychiatric comorbidities in an animal model of TLE.

    METHODOLOGY: We first assessed the BBB leakage following kainic acid-induced SE and timed the intravenous administration of DPSCs/BM-MSCs to understand the CNS homing/engraftment potential of DPSCs/BM-MSCs and their potential to mitigate neurodegeneration, neuroinflammation and neuropsychiatric comorbidities.

    RESULTS: Our results revealed that systemic administration of DPSCs/BM-MSCs attenuated neurodegeneration, neuroinflammation, and ameliorated neuropsychiatric comorbidities. Three months following intravenous administration of DPSCs/BM-MSCs, we observed a negligible number of engrafted cells in the corpus callosum, sub-granular zone, and sub-ventricular zone.

    CONCLUSION: Thus, it is evident that functional recovery is still achievable despite poor engraftment of MSCs into CNS following systemic administration.

    Matched MeSH terms: Dental Pulp
  8. Ahmed HM, Abbott PV
    Aust Dent J, 2012 Jun;57(2):123-31; quiz 248.
    PMID: 22624750 DOI: 10.1111/j.1834-7819.2012.01678.x
    Maxillary molar teeth may have accessory roots. The aim of this paper is to review and discuss the endodontic implications of this anatomical variation. A review of the literature was undertaken to identify studies and reported cases where accessory roots have been recorded in maxillary molar teeth. The results show that although the prevalence of accessory roots in maxillary molar teeth is low, they can exist in all three types of maxillary molar teeth, and they may be located palatally, buccally, mesially or distally. Hence, it is essential that dentists undertaking root canal treatment thoroughly assess all teeth to determine how many roots are present in order to provide the best possible outcome of treatment for the patient.
    Matched MeSH terms: Dental Pulp Cavity/anatomy & histology*; Dental Pulp Cavity/radiography
  9. Ahmad M
    Endod Dent Traumatol, 1991 Apr;7(2):55-8.
    PMID: 1782894
    The efficacy of two ultrasonic units in shaping curved canals in teeth were compared. Twenty teeth were instrumented using the Cavi-Endo unit at a power setting 1 using the technique recommended by the manufacturer. Another group of 20 teeth received similar treatment but were instrumented with the Enac unit. The time taken to instrument each canal was recorded. The pre- and post-instrumented radiographs of the teeth of x 10 magnification were taken using a microfocal technique. The radiographs were subjected to a subtraction technique to result in composite images of the pre- and post-instrumented shapes. The canal shape and the incidence of elbows were evaluated using various measurements taken from the radiographs. The manner the dentine was removed was similar in both groups. All canals exhibited unequal removal along the canal with more dentine being removed at the coronal end. The Enac group exhibited a higher incidence of elbows which occurred further apically than those in the Cavi-Endo group. There was no significant difference between groups in the following: time of instrumentation, amount of apical and coronal canal enlargement, apical deviation and change in width at the elbow. These findings were no different from those of another study using simulated canals.
    Matched MeSH terms: Dental Pulp Cavity/anatomy & histology; Dental Pulp Cavity/radiography
  10. Abdullah MF, Abdullah SF, Omar NS, Mahmood Z, Fazliah Mohd Noor SN, Kannan TP, et al.
    Cell Biol Int, 2014 May;38(5):582-90.
    PMID: 24375868 DOI: 10.1002/cbin.10229
    Stem cells from human exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSCs) obtained from the dental pulp of human extracted tooth were cultured and characterized to confirm that these were mesenchymal stem cells. The proliferation rate was assessed using AlamarBlue® cell assay. The differentially expressed genes in SHED and DPSCs were identified using the GeneFishing™ technique. The proliferation rate of SHED (P < 0.05) was significantly higher than DPSCs while SHED had a lower multiplication rate and shorter population doubling time (0.01429, 60.57 h) than DPSCs (0.00286, 472.43 h). Two bands were highly expressed in SHED and three bands in DPSCs. Sequencing analysis showed these to be TIMP metallopeptidase inhibitor 1 (TIMP1), and ribosomal protein s8, (RPS8) in SHED and collagen, type I, alpha 1, (COL1A1), follistatin-like 1 (FSTL1), lectin, galactoside-binding, soluble, 1, (LGALS1) in DPSCs. TIMP1 is involved in degradation of the extracellular matrix, cell proliferation and anti-apoptotic function and RPS8 is involved as a rate-limiting factor in translational regulation; COL1A1 is involved in the resistance and elasticity of the tissues; FSTL1 is an autoantigen associated with rheumatoid arthritis; LGALS1 is involved in cell growth, differentiation, adhesion, RNA processing, apoptosis and malignant transformation. This, along with further protein expression analysis, holds promise in tissue engineering and regenerative medicine.
    Matched MeSH terms: Dental Pulp/cytology*; Dental Pulp/metabolism*
  11. Sangkert S, Kamonmattayakul S, Chai WL, Meesane J
    J Biomed Mater Res A, 2017 Jun;105(6):1624-1636.
    PMID: 28000362 DOI: 10.1002/jbm.a.35983
    Maxillofacial bone defect is a critical problem for many patients. In severe cases, the patients need an operation using a biomaterial replacement. Therefore, to design performance biomaterials is a challenge for materials scientists and maxillofacial surgeons. In this research, porous silk fibroin scaffolds with mimicked microenvironment based on decellularized pulp and fibronectin were created as for bone regeneration. Silk fibroin scaffolds were fabricated by freeze-drying before modification with three different components: decellularized pulp, fibronectin, and decellularized pulp/fibronectin. The morphologies of the modified scaffolds were observed by scanning electron microscopy. Existence of the modifying components in the scaffolds was proved by the increase in weights and from the pore size measurements of the scaffolds. The modified scaffolds were seeded with MG-63 osteoblasts and cultured. Testing of the biofunctionalities included cell viability, cell proliferation, calcium content, alkaline phosphatase activity (ALP), mineralization and histological analysis. The results demonstrated that the modifying components organized themselves into aggregations of a globular structure. They were arranged themselves into clusters of aggregations with a fibril structure in the porous walls of the scaffolds. The results showed that modified scaffolds with a mimicked microenvironment of decellularized pulp/fibronectin were suitable for cell viability since the cells could attach and spread into most of the pores of the scaffold. Furthermore, the scaffolds could induce calcium synthesis, mineralization, and ALP activity. The results indicated that modified silk fibroin scaffolds with a mimicked microenvironment of decellularized pulp/fibronectin hold promise for use in tissue engineering in maxillofacial bone defects. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1624-1636, 2017.
    Matched MeSH terms: Dental Pulp/cytology; Dental Pulp/chemistry*
  12. Hatipoğlu Ö, Hatipoğlu FP, Javed MQ, Nijakowski K, Taha N, El-Saaidi C, et al.
    J Endod, 2023 Jun;49(6):675-685.
    PMID: 37094712 DOI: 10.1016/j.joen.2023.04.005
    INTRODUCTION: Direct pulp capping (DPC) procedures require the placement of a bioactive material over an exposure site without selective pulp tissue removal. This web-based multicentered survey had 3 purposes: (1) to investigate the factors that affect clinicians' decisions in DPC cases, (2) to determine which method of caries removal is preferred, and (3) to evaluate the preferred capping material for DPC.

    METHODS: The questionnaire comprised 3 sections. The first part comprised questions regarding demographic features. The second part comprised questions on how treatment plans change according to factors such as nature, location, number and size of the pulp exposure, and patients' age. The third part composed of questions on the common materials and techniques used in DPC. To estimate the effect size, the risk ratio (RR) and 95% confidence interval (CI) were calculated using a meta-analysis software.

    RESULTS: A tendency toward more invasive treatment was observed for the clinical scenario with carious-exposed pulp (RR = 2.86, 95% CI: 2.46, 2.32; P pulp exposures (RR = 1.38, 95% CI: 1.24, 1.53; P pulp is the most important factor in clinical decisions regarding DPC, the number of exposures has the least impact. Overall, complete caries removal was preferred over selective caries removal. In addition, the use of calcium silicate-based materials appears to have replaced calcium hydroxide-based materials.

    Matched MeSH terms: Dental Pulp; Dental Pulp Capping/methods
  13. Abu Kasim NH, Govindasamy V, Gnanasegaran N, Musa S, Pradeep PJ, Srijaya TC, et al.
    J Tissue Eng Regen Med, 2015 Dec;9(12):E252-66.
    PMID: 23229816 DOI: 10.1002/term.1663
    The discovery of mesenchymal stem cells (MSCs) from a myriad of tissues has triggered the initiative of establishing tailor-made stem cells for disease-specific therapy. Nevertheless, lack of understanding on the inherent differential propensities of these cells may restrict their clinical outcome. Therefore, a comprehensive study was done to compare the proliferation, differentiation, expression of cell surface markers and gene profiling of stem cells isolated from different sources, viz. bone marrow, Wharton's jelly, adipose tissue and dental pulp. We found that although all MSCs were phenotypically similar to each other, Wharton's jelly (WJ) MSCs and dental pulp stem cells (DPSCs) were highly proliferative as compared to bone marrow (BM) MSCs and adipose tissue (AD) MSCs. Moreover, indistinguishable cell surface characteristics and differentiation capacity were confirmed to be similar among all cell types. Based on gene expression profiling, we postulate that BM-MSCs constitutively expressed genes related to inflammation and immunodulation, whereas genes implicated in tissue development were highly expressed in AD-MSCs. Furthermore, the transcriptome profiling of WJ-MSCs and DPSCs revealed an inherent bias towards the neuro-ectoderm lineage. Based on our findings, we believe that there is no unique master mesenchymal stem cell that is appropriate to treat all target diseases. More precisely, MSCs from different sources exhibit distinct and unique gene expression signatures that make them competent to give rise to specific lineages rather than others. Therefore, stem cells should be subjected to rigorous characterization and utmost vigilance needs to be adopted in order to choose the best cellular source for a particular disease.
    Matched MeSH terms: Dental Pulp/cytology; Dental Pulp/metabolism*
  14. Parolia A, Kumar H, Ramamurthy S, Madheswaran T, Davamani F, Pichika MR, et al.
    Molecules, 2021 Jan 30;26(3).
    PMID: 33573147 DOI: 10.3390/molecules26030715
    To determine the antibacterial effect of propolis nanoparticles (PNs) as an endodontic irrigant against Enterococcus faecalis biofilm inside the endodontic root canal system. Two-hundred-ten extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into seven groups, with 30 dentinal blocks in each group including: group I-saline; group II-propolis 100 µg/mL; group III-propolis 300 µg/mL; group IV-propolis nanoparticle 100 µg/mL; group V-propolis nanoparticle 300µg/mL; group VI-6% sodium hypochlorite; group VII-2% chlorhexidine. Dentin shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of one, five, and ten minutes. The non-parametric Kruskal-Wallis and Mann-Whitney tests were used to compare the differences in reduction in CFUs between all groups, and probability values of p < 0.05 were set as the reference for statistically significant results. The antibacterial effect of PNs as an endodontic irrigant was also assessed against E. faecalis isolates from patients with failed root canal treatment. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were also performed after exposure to PNs. A Raman spectroscope, equipped with a Leica microscope and lenses with curve-fitting Raman software, was used for analysis. The molecular interactions between bioactive compounds of propolis (Pinocembrin, Kaempferol, and Quercetin) and the proteins Sortase A and β-galactosidase were also understood by computational molecular docking studies. PN300 was significantly more effective in reducing CFUs compared to all other groups (p < 0.05) except 6% NaOCl and 2% CHX (p > 0.05) at all time intervals and both depths. At five minutes, 6% NaOCl and 2% CHX were the most effective in reducing CFUs (p < 0.05). However, no significant difference was found between PN300, 6% NaOCl, and 2% CHX at 10 min (p > 0.05). SEM images also showed the maximum reduction in E. faecalis with PN300, 6% NaOCl, and 2% CHX at five and ten minutes. CLSM images showed the number of dead cells in dentin were highest with PN300 compared to PN100 and saline. There was a reduction in the 484 cm-1 band and an increase in the 870 cm-1 band in the PN300 group. The detailed observations of the docking poses of bioactive compounds and their interactions with key residues of the binding site in all the three docking protocols revealed that the interactions were consistent with reasonable docking and IFD docking scores. PN300 was equally as effective as 6% NaOCl and 2% CHX in reducing the E. faecalis biofilms.
    Matched MeSH terms: Dental Pulp Cavity/drug effects; Dental Pulp Cavity/microbiology
  15. Sebastian AA, Kannan TP, Norazmi MN, Nurul AA
    J Tissue Eng Regen Med, 2018 08;12(8):1856-1866.
    PMID: 29774992 DOI: 10.1002/term.2706
    Stem cells derived from human exfoliated deciduous teeth (SHED) represent a promising cell source for bone tissue regeneration. This study evaluated the effects of interleukin-17A (IL-17A) on the osteogenic differentiation of SHED. SHED were cultured in complete alpha minimum essential medium supplemented with osteoinducing reagents and treated with recombinant IL-17A. The cells were quantitatively analysed for proliferative activity by MTS assay, cell markers expression, and apoptotic activity by flow cytometry. For osteogenic differentiation, alkaline phosphatase (ALP) activity was quantified; mineralization assays were carried out using von Kossa and Alizarin red, and expression of osteogenic markers were analysed by real-time polymerase chain reaction and Western blot. The results showed that treatment with IL-17A increased proliferative activity in a dose-dependent manner, but reduced the expression of stem cell markers (c-Myc and Nanog) as the days progressed. IL-17A induced osteogenic differentiation in SHED as evidenced by high ALP activity, increased matrix mineralization, and upregulation of the mRNA expression of the osteogenic markers ALP, alpha 1 type 1 collagen (Col1A1), runt-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), and osteoprotegerin (OPG) but downregulation of receptor activator of nuclear factor κB ligand (RANKL) as well as altering the OPG/RANKL ratio. Findings from our study indicate that IL-17A enhances proliferation and osteogenic differentiation of SHED by regulating OPG/RANKL mechanism thus suggests therapeutic potential of IL-17A in bone regeneration.
    Matched MeSH terms: Dental Pulp/cytology; Dental Pulp/metabolism*
  16. Daood U, Parolia A, Matinlinna J, Yiu C, Ahmed HMA, Fawzy A
    Dent Mater, 2020 12;36(12):e386-e402.
    PMID: 33010944 DOI: 10.1016/j.dental.2020.09.008
    OBJECTIVES: Evaluate a new modified quaternary ammonium silane irrigant solution for its antimicrobial, cytotoxic and mechanical properties of dentine substrate.

    METHODS: Root canal preparation was performed using stainless steel K-files™ and F4 size protaper with irrigation protocols of 6% NaOCl + 2% CHX; 3.5% QIS; 2% QIS and sterile saline. Biofilms were prepared using E. faecalis adjusted and allowed to grow for 3 days, treated with irrigants, and allowed to grow for 7 days. AFM was performed and surface free energy calculated. MC3T3 cells were infected with endo irrigant treated E. faecalis biofilms. Raman spectroscopy of biofilms were performed after bacterial re-growth on root dentine and exposed to different irrigation protocols and collagen fibers analysed collagen fibers using TEM. Antimicrobial potency against E. faecalis biofilms and cytoxicity against 3T3 NIH cells were also. Resin penetration and MitoTracker green were also evaluated for sealer penetration and mitochondrial viability. Data were analysed using One-way ANOVA, principal component analysis and post-hoc Fisher's least-significant difference.

    RESULTS: Elastic moduli were maintained amongst control (5.5 ± 0.9) and 3.5% QIS (4.4 ± 1.1) specimens with surface free energy higher in QIS specimens. MC3T3 cells showed reduced viability in 6%NaOCl+2%CHX specimens compared to QIS specimens. DNA/purine were expressed in increased intensities in control and 6% NaOCl + 2% CHX specimens with bands around 480-490 cm-1 reduced in QIS specimens. 3.5% QIS specimens showed intact collagen fibrillar network and predominantly dead bacterial cells in confocal microscopy. 3.5% QIS irrigant formed a thin crust-type surface layer with cytoplasmic extensions of 3T3NIH spread over root dentine. Experiments confirmed MitoTracker accumulation in 3.5% treated cells.

    SIGNIFICANCE: Novel QIS root canal irrigant achieved optimum antimicrobial protection inside the root canals facilitating a toxic effect against the Enterococcus faecalis biofilm. Root dentine substrates exhibited optimum mechanical properties and there was viability of fibroblastic mitochondria.

    Matched MeSH terms: Dental Pulp Cavity
  17. Ahmed HMA, Musale PK, El Shahawy OI, Dummer PMH
    Int Endod J, 2020 Jan;53(1):27-35.
    PMID: 31390075 DOI: 10.1111/iej.13199
    Knowledge of root and canal morphology is essential for the effective practice of root canal treatment. Paediatric endodontics aims to preserve fully functional primary teeth in the dental arch; however, pulpectomy procedures in bizarre and tortuous canals encased in roots programmed for physiologic resorption are unique challenges. A new coding system for classifying the roots and main canals (https://doi.org/10.1111/iej.12685), accessory canals (https://doi.org/10.1111/iej.12800) and developmental anomalies (https://doi.org/10.1111/iej.12867) has been introduced recently. This paper discusses challenges for describing root and canal morphology in primary teeth and describes the potential application of the new classification system for root canals in the primary dentition.
    Matched MeSH terms: Dental Pulp Cavity
  18. Heng BC, Jiang S, Yi B, Gong T, Lim LW, Zhang C
    Arch Oral Biol, 2019 Jun;102:26-38.
    PMID: 30954806 DOI: 10.1016/j.archoralbio.2019.03.024
    OBJECTIVE: Dental-derived stem cells originate from the embryonic neural crest, and exhibit high neurogenic potential. This study aimed to investigate whether a cocktail of eight small molecules (Valproic acid, CHIR99021, Repsox, Forskolin, SP600125, GO6983, Y-27632 and Dorsomorphin) can enhance the in vitro neurogenic differentiation of dental pulp stem cells (DPSCs), stem cells from apical papilla (SCAPs) and gingival mesenchymal stem cells (GMSCs), as a preliminary step towards clinical applications.

    MATERIALS AND METHODS: Neural induction was carried out with a small molecule cocktail based two-step culture protocol, over a total duration of 14 days. At the 8 and 14 day timepoints, the cells were analyzed for expression of neural markers with immunocytochemistry, qRT-PCR and Western Blot. The Fluo 4-AM calcium flux assay was also performed after a further 14 days of neural maturation.

    RESULTS: More pronounced morphological changes characteristic of the neural lineage (i.e. neuritogenesis) were observed in all three cell types treated with small molecules, as compared to the untreated controls. This was corroborated by the immunocytochemistry, qRT-PCR and western blot data, which showed upregulated expression of several early and mature neural markers in all three cell types treated with small molecules, versus the corresponding untreated controls. Finally, the Fluo-4 AM calcium flux assay showed consistently higher calcium transient (F/Fo) peaks for the small molecule-treated versus untreated control groups.

    CONCLUSIONS: Small molecules can enhance the neurogenic differentiation of DPSCs, SCAPs and GMSCs, which offer much potential for therapeutic applications.

    Matched MeSH terms: Dental Pulp
  19. Aws Hashim Ali Al-Kadhim, Azlan Jaafar, Mohd Nazrin Isa
    MyJurnal
    Nonsurgical retreatment involves removing mechanical barriers such as gutta-percha to achieve proper cleaning and disinfection. The complexity of the anatomy of molar tooth gives challenge in retreatment procedure. Thus, this study evaluates the amount of residual gutta-percha after retreatment with rotary files (Reciproc Blue®) from each maxillary first molar canal using cone-beam computed tomography (CBCT) and the time required to accomplish it. Nine freshly extracted maxillary molars were instrumented and obturated. Preoperative CBCT was taken, and retreatment was done using Reciproc Blue®. CBCT was taken post retreatment, and the residual volume percentage of gutta-percha from each canal was calculated. The total retreatment time was recorded, and the data were statistically analyzed. The result shows no statistically significant difference in the amount of residual filling material in mesiobuccal, distobuccal, and palatal canal for maxillary first molar and total time used for retreatment with Reciproc Blue® system.

    Matched MeSH terms: Dental Pulp Cavity
  20. Ahmed HMA, Ibrahim N, Mohamad NS, Nambiar P, Muhammad RF, Yusoff M, et al.
    Int Endod J, 2021 Jul;54(7):1056-1082.
    PMID: 33527452 DOI: 10.1111/iej.13486
    Adequate knowledge and accurate characterization of root and canal anatomy is an essential prerequisite for successful root canal treatment and endodontic surgery. Over the years, an ever-increasing body of knowledge related to root and canal anatomy of the human dentition has accumulated. To correct deficiencies in existing systems, a new coding system for classifying root and canal morphology, accessory canals and anomalies has been introduced. In recent years, micro-computed tomography (micro-CT) and cone beam computed tomography (CBCT) have been used extensively to study the details of root and canal anatomy in extracted teeth and within clinical settings. This review aims to discuss the application of the new coding system in studies using micro-CT and CBCT, provide a detailed guide for appropriate characterization of root and canal anatomy and to discuss several controversial issues that may appear as potential limitations for proper characterization of roots and canals.
    Matched MeSH terms: Dental Pulp Cavity
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links