Displaying publications 61 - 80 of 244 in total

Abstract:
Sort:
  1. Ahmed S, Ahmed MZ, Rafique S, Almasoudi SE, Shah M, Jalil NAC, et al.
    Biomed Res Int, 2023;2023:5250040.
    PMID: 36726844 DOI: 10.1155/2023/5250040
    Antimicrobial resistance (AMR) is a ubiquitous public health menace. AMR emergence causes complications in treating infections contributing to an upsurge in the mortality rate. The epidemic of AMR in sync with a high utilization rate of antimicrobial drugs signifies an alarming situation for the fleet recovery of both animals and humans. The emergence of resistant species calls for new treatments and therapeutics. Current records propose that health drug dependency, veterinary medicine, agricultural application, and vaccination reluctance are the primary etymology of AMR gene emergence and spread. Recently, several encouraging avenues have been presented to contest resistance, such as antivirulent therapy, passive immunization, antimicrobial peptides, vaccines, phage therapy, and botanical and liposomal nanoparticles. Most of these therapies are used as cutting-edge methodologies to downplay antibacterial drugs to subdue the resistance pressure, which is a featured motive of discussion in this review article. AMR can fade away through the potential use of current cutting-edge therapeutics, advancement in antimicrobial susceptibility testing, new diagnostic testing, prompt clinical response, and probing of new pharmacodynamic properties of antimicrobials. It also needs to promote future research on contemporary methods to maintain host homeostasis after infections caused by AMR. Referable to the microbial ability to break resistance, there is a great ultimatum for using not only appropriate and advanced antimicrobial drugs but also other neoteric diverse cutting-edge therapeutics.
    Matched MeSH terms: Drug Resistance, Microbial
  2. Navindra Kumari Palanisamy, Parasakthi Navaratnam, Shamala Devi Sekaran
    Introduction: Streptococcus pneumoniae is an important bacterial pathogen, causing respiratory infection. Penicillin resistance in S. pneumoniae is associated with alterations in the penicillin binding proteins, while resistance to macrolides is conferred either by the modification of the ribosomal target site or efflux mechanism. This study aimed to characterize S. pneumoniae and its antibiotic resistance genes using 2 sets of multiplex PCRs. Methods: A quintuplex and triplex PCR was used to characterize the pbp1A, ermB, gyrA, ply, and the mefE genes. Fifty-eight penicillin sensitive strains (PSSP), 36 penicillin intermediate strains (PISP) and 26 penicillin resistance strains (PRSP) were used. Results: Alteration in pbp1A was only observed in PISP and PRSP strains, while PCR amplification of the ermB or mefE was observed only in strains with reduced susceptibility to erythromycin. The assay was found to be sensitive as simulated blood cultures showed the lowest level of detection to be 10cfu. Conclusions: As predicted, the assay was able to differentiate penicillin susceptible from the non-susceptible strains based on the detection of the pbp1A gene, which correlated with the MIC value of the strains.
    Matched MeSH terms: Drug Resistance, Microbial
  3. Navindra Kumari Palanisamy, Parasakthi Navaratnam, Shamala Devi Sekaran
    MyJurnal
    Introduction: Streptococcus pneumoniae is an important bacterial pathogen, causing respiratory infection. Penicillin resistance in S. pneumoniae is associated with alterations in the penicillin binding proteins, while resistance to macrolides is conferred either by the modification of the ribosomal target site or efflux mechanism. This study aimed to characterize S. pneumoniae and its antibiotic resistance genes using 2 sets of multiplex PCRs. Methods: A quintuplex and triplex PCR was used to characterize the pbp1A, ermB, gyrA, ply, and the mefE genes. Fifty-eight penicillin sensitive strains (PSSP), 36 penicillin intermediate strains (PISP) and 26 penicillin resistance strains (PRSP) were used. Results: Alteration in pbp1A was only observed in PISP and PRSP strains, while PCR amplification of the ermB or mefE was observed only in strains with reduced susceptibility to erythromycin. The assay was found to be sensitive as simulated blood cultures showed the lowest level of detection to be 10cfu. Conclusions: As predicted, the assay was able to differentiate penicillin susceptible from the non-susceptible strains based on the detection of the pbp1A gene, which correlated with the MIC value of the strains.
    Matched MeSH terms: Drug Resistance, Microbial
  4. Najwa, M.S., Rukayadi, Y., Ubong, A., Loo, Y.Y., Chang, W.S., Lye, Y.L., et al.
    MyJurnal
    Salmonella has been reported to be presence both in raw and processed foods worldwide. In this study, the prevalence, quantification and antibiotic susceptibility of Salmonella isolated from raw vegetables or locally known as ulam such as asiatic pennywort (Centella asiatica (L) Urb), water dropwort (Oenanthe javanica (Blume) DC), long bean (Vigna sinensis EndL), and winged bean (Psophocarpus tetragonolobus (L) DC) obtained from retail markets in Selangor, Malaysia were carried out. From 96 samples tested, the overall prevalence of Salmonella spp. was 97.9%, Salmonella Enteritidis was 54.2% and Salmonella Typhimurium was 82.3% respectively. Samples were contaminated with Salmonella ranging from < 3 to 2400 MPN/g. Salmonella Enteritidis and Salmonella Typhimurium isolates obtained from the raw vegetables (ulam) were found to exhibit high resistance against ampicillin (100%), erythromycin (100%), amoxicillin/clavunic acid (81.3%), cephalothin (75%), streptomycin (50%) and ciprofloxacin (50%). All Salmonella isolates showed multi drug resistant (MDR) profile with each isolate being resistant to 3 or more antibiotics. The multiple antibiotic resistance (MAR) index of Salmonella isolates ranged from 0.27 to 0.55 for Salmonella Enteritidis and 0.27 to 0.82 for Salmonella Typhimurium. The presence of Salmonella on raw vegetables (ulam) and high antibiotic resistance isolates indicated that raw vegetables could be contaminated and thus imposes possible health risk to local consumers.
    Matched MeSH terms: Drug Resistance, Microbial
  5. Clyde DF, DuPont HL, Miller RM, McCarthy VC
    Trans R Soc Trop Med Hyg, 1970;64(6):834-8.
    PMID: 4924648
    Matched MeSH terms: Drug Resistance, Microbial*
  6. Parasakthi N, Goh KL
    Am J Gastroenterol, 1995 Mar;90(3):519.
    PMID: 7872306
    Matched MeSH terms: Drug Resistance, Microbial
  7. Jamali H, Paydar M, Ismail S, Looi CY, Wong WF, Radmehr B, et al.
    BMC Microbiol, 2015;15:144.
    PMID: 26209099 DOI: 10.1186/s12866-015-0476-7
    The aim of this study was to investigate the prevalence and characterization of Listeria species and Listeria monocytogenes isolated from raw fish and open-air fish market environments. Eight hundred and sixty two samples including raw fish and fish market environments (samples from workers' hands, workers' knives, containers and work surface) were collected from the open-air fish markets in the Northern region of Iran.
    Matched MeSH terms: Drug Resistance, Microbial
  8. Adzitey F, Rusul G, Huda N, Cogan T, Corry J
    Int J Food Microbiol, 2012 Mar 15;154(3):197-205.
    PMID: 22285201 DOI: 10.1016/j.ijfoodmicro.2012.01.006
    We report for the first time on the prevalence, antibiotic resistance and RAPD types of Campylobacter species in ducks and duck related environmental samples in Malaysia. Samples were examined by enrichment in Bolton Broth followed by plating onto modified Charcoal Cefoperazone Deoxycholate agar (mCCDA) and/or plating directly onto mCCDA. A total of 643 samples were screened, and the prevalence of Campylobacter spp. in samples from different sources ranged from 0% to 85%. The method of isolation had a significant (P<0.05) effect on the isolation rate. One hundred and sixteen Campylobacter isolates, comprising of 94 Campylobacter jejuni, 19 Campylobacter coli and three Campylobacter lari, were examined for their sensitivity to 13 antibiotics. Majority of the C. jejuni isolates were resistant to cephalothin (99%), tetracycline (96%), suphamethoxazole/trimethoprim (96%), and very few were resistant to gentamicin (5%), chloramphenicol (7%) and erythromycin (1%). All C. coli isolates were resistant to cephalothin, nalidixic acid, norfloxacin and tetracycline but susceptible to chloramphenicol, erythromycin and gentamicin. The three C. lari isolates were resistant to all the antibiotics tested except chloramphenicol and gentamicin (1/3 and 2/3 susceptible, respectively). Genetic diversity of Campylobacter isolates were determined using random amplification of polymorphic DNA (RAPD). C. jejuni and C. coli isolates belong to fifty-eight and twelve RAPD types, respectively.
    Matched MeSH terms: Drug Resistance, Microbial/genetics*
  9. Maurice Bilung L, Sin Chai L, Tahar AS, Ted CK, Apun K
    Biomed Res Int, 2018;2018:3067494.
    PMID: 30065935 DOI: 10.1155/2018/3067494
    This study aimed to identify Listeria spp. and L. monocytogenes, characterize the isolates, and determine the antibiotic resistance profiles of the isolates Listeria spp. and L. monocytogenes in fresh produce, fertilizer, and environmental samples from vegetable farms (organic and conventional farms). A total of 386 samples (vegetables, soil, water, and fertilizer with manure) were examined. The identification of bacterial isolates was performed using PCR and characterized using ERIC-PCR and BOX-PCR. The discriminating power of the typing method was analyzed using Simpson's Index of Diversity. Thirty-four (n=34) Listeria isolates were subjected to antimicrobial susceptibility test using the disc-diffusion technique. The PCR analysis revealed that Listeria spp. were present in 7.51% (29/386) of all the samples (vegetable, soil, fertilizer, and water). None of the samples examined were positive for the presence of L. monocytogenes. Percentages of 100% (15/15) and 73.30% (11/15) of the Listeria spp. isolated from vegetables, fertilizer, and soil from organic farm B had indistinguishable DNA fingerprints by using ERIC-PCR and BOX-PCR, respectively. Listeria spp. isolated from 86 samples of vegetable, fertilizer, and environment of organic farm A and conventional farm C had distinct DNA fingerprints. Simpson's Index of Diversity, D, of ERIC-PCR and BOX-PCR is 0.604 and 0.888, respectively. Antibiotic susceptibility test revealed that most of the Listeria spp. in this study were found to be resistant to ampicillin, rifampin, penicillin G, tetracycline, clindamycin, cephalothin, and ceftriaxone. The isolates had MAR index ranging between 0.31 and 0.85. In conclusion, hygienic measures at farm level are crucial to the reduction of Listeria transmission along the food chain.
    Matched MeSH terms: Drug Resistance, Microbial*
  10. Sing CK, Md. Zahirul Islam Khan, Hassan Hj. Mohd Daud, Abd. Rahman Aziz
    Sains Malaysiana, 2016;45:1597-1602.
    The present study was conducted to determine the prevalence and antibiotic resistance of Salmonella sp. isolated from
    African catfish (Clarias gariepinus). A total of 30 catfish were harvested from four different farms and four different
    wet markets. A total of 60 samples (30 catfish skins and 30 catfish intestines) were used for Salmonella sp. isolation
    (pellet-method), its biochemical and serological test. Confirmation of Salmonella sp. were determined by polyvalent
    O antisera and polymerase chain reaction (PCR) using genus specific primers for invA genes (DNA amplification
    showed one distinct band with molecular weight of 389 bp) and the species of isolated Salmonella sp. were identified
    by serotyping. The result showed 6/30 (20%) of fish or 6/60 (10%) of organ samples were positive for Salmonella sp.
    Among those positive for Salmonella sp., 4/6 were from intestine samples and 2/6 were from skin samples. No significant
    difference was found in the prevalence of Salmonella sp. isolates between fish harvested from farms and wet markets
    (p-value= 0.406). The Salmonella serovars identified were Salmonella corvallis (n=3), Salmonella mbandaka (n=2)
    and Salmonella typhmurium (n=1). Salmonella sp. isolates were resistance to Penicillin (P 10, 100%), Clindamycin
    (DA 2, 100%), Tetracycline (TE 30, 100%) and Rifampicin (RD 5, 100%) and all of the isolates were susceptible or
    intermediate resistance to Ceftazidime (CAZ 30) and Trimethopin (W 5). Multiple antibiotic resistance (MAR) index of
    all Salmonella sp. isolates in current study was 0.67 indicating that fish sampled in the present study was under high
    risk of been exposed to the tested antibiotics.
    Matched MeSH terms: Drug Resistance, Microbial
  11. Thong KL, Hoe CH, Koh YT, Yasin RM
    J Health Popul Nutr, 2002 Dec;20(4):356-8.
    PMID: 12659418
    Matched MeSH terms: Drug Resistance, Microbial*
  12. Rusul G, Yaacob NH
    Int J Food Microbiol, 1995 Apr;25(2):131-9.
    PMID: 7547144
    Enterotoxigenic Bacillus cereus was detected in cooked foods (17), rice noodles (3), wet wheat noodles (2), dry wheat noodles (10), spices (8), grains (4), legumes (11) and legume products (3). One hundred ninety-four (42.3%), 70 (15.3%) and 23 (5.2%) of the 459 presumptive B. cereus colonies isolated from PEMBA agar were identified as B. cereus, Bacillus thuringiensis and B. mycoides, respectively. B. cereus isolates were examined for growth temperature, pH profile and enterotoxin production using both TECRA-VIA and BCET-RPLA kits. One hundred seventy-eight (91.8%) and 164 (84%) of the strains were enterotoxigenic as determined using TECRA-VIA and BCET-RPLA, respectively. Eighty-two (50%) of the enterotoxigenic strains were capable of growing at 5 degrees C, and 142 (86.6%) grew at 7 degrees C within 7 days of incubation. The enterotoxigenic strains did not grow at pH 4.0 but 69 (42.0%) of the strains were able to grow at pH 4.5 within 7 days at 37 degrees C. The isolates were resistant to ampicillin (98.8%), cloxallin (100%) and tetracycline (61.0%), and susceptible to chloroamphenicol (87%), erythromycin (77.4%), gentamycin (100%) and streptomycin (98.7%).
    Matched MeSH terms: Drug Resistance, Microbial
  13. Tan CW, Malcolm TTH, Kuan CH, Thung TY, Chang WS, Loo YY, et al.
    Front Microbiol, 2017;8:1087.
    PMID: 28659901 DOI: 10.3389/fmicb.2017.01087
    Numerous prevalence studies and outbreaks of Vibrio parahaemolyticus infection have been extensively reported in shellfish and crustaceans. Information on the quantitative detection of V. parahaemolyticus in finfish species is limited. In this study, short mackerels (Rastrelliger brachysoma) obtained from different retail marketplaces were monitored with the presence of total and pathogenic strains of V. parahaemolyticus. Out of 130 short mackerel samples, 116 (89.2%) were detected with the presence of total V. parahaemolyticus and microbial loads of total V. parahaemolyticus ranging from <3 to >10(5) MPN/g. Prevalence of total V. parahaemolyticus was found highest in wet markets (95.2%) followed by minimarkets (89.1%) and hypermarkets (83.3%). Pathogenic V. parahaemolyticus strains (tdh+ and/or trh+) were detected in 16.2% (21 of 130) of short mackerel samples. The density of tdh+ V. parahaemolyticus strains were examined ranging from 3.6 to >10(5) MPN/g and microbial loads of V. parahaemolyticus strains positive for both tdh and trh were found ranging from 300 to 740 MPN/g. On the other hand, antibiotic susceptibility profiles of V. parahaemolyticus strains isolated from short mackerels were determined through disc diffusion method in this study. Assessment of antimicrobial susceptibility profile of V. parahaemolyticus revealed majority of the isolates were highly susceptible to ampicillin sulbactam, meropenem, ceftazidime, and imipenem, but resistant to penicillin G and ampicillin. Two isolates (2.99%) exhibited the highest multiple antibiotic resistance (MAR) index value of 0.41 which shown resistance to 7 antibiotics. Results of the present study demonstrated that the occurrence of pathogenic V. parahaemolyticus strains in short mackerels and multidrug resistance of V. parahaemolyticus isolates could be a potential public health concerns to the consumer. Furthermore, prevalence data attained from the current study can be further used to develop a microbial risk assessment model to estimate health risks associated with the consumption of short mackerels contaminated with pathogenic V. parahaemolyticus.
    Matched MeSH terms: Drug Resistance, Microbial
  14. Asmat Armad, Nur Diana Mehat, Usup G, Rahimi Hamid
    Sains Malaysiana, 2014;43:543-550.
    This study was carried out to know the bacteria population density in the blood cockle (Anadara granosa) and green lipped mussel (Perna viridis), to analyse the bacteria resistance towards antibiotics and antimicrobial activity of isolates against selected pathogen. Samples of blood cockle and green lipped mussel were obtained from five areas in Kedah and Negeri Sembilan. Bacterial population densities in mussels and cockles were 3 x 102 - 8 x 108 cFulmL and 5 x 102 - 5 x 108 cFulmL, respectively. A total of 162 isolates were obtained, of which 131 isolates were from mussels and 31 isolates were from cockles. Vibrio sp. was the most dominant genus in both types of samples. Antibiotic testing of all isolates showed most were resistant to Penicillin (10 U) and most were sensitive to Ciprofloxacin (5 Jig). Most isolates (160/162) showed resistance to at least two antibiotics and 10 isolates were resistant to more than five antibiotics. Multiple antibiotic resistance indices (MAR) were calculated based on the antibiotic resistance results. Most isolates had a MAR index value of 02 which indicated the isolates were not contaminated with antibiotic residues. The highest index value was 0 .7 . Fifteen out of 39 isolates which produced beta-lactamase enzyme were tested for antimicrobial activity against selected pathogen. Results indicated that antimicrobial activity were varies among the isolates. Isolate smii-Ip produced antimicrobial activity against six out of the nine tested pathogen and none of the isolates active against Pseudomonas mirabilis.
    Matched MeSH terms: Drug Resistance, Microbial
  15. Ram M R, Teh X, Rajakumar T, Goh KL, Leow AHR, Poh BH, et al.
    J Antimicrob Chemother, 2019 01 01;74(1):11-16.
    PMID: 30403784 DOI: 10.1093/jac/dky401
    Objectives: Eradication of Helicobacter pylori is influenced by susceptibility to antimicrobial agents, elevated bacterial load and degree of acid inhibition, which can be affected by genotypes of drug-metabolizing enzymes [cytochrome P450 (CYP) 2C19 polymorphism]. Theoretically, the choice and dose of proton pump inhibitor may also influence the suppression of H. pylori infection. The CYP2C19 genotype has recently been found to have an impact on peptic ulcer healing, H. pylori eradication and therapeutic efficacy of proton pump inhibitors.

    Methods: Here, we investigated the impact of the CYP2C19 genotype polymorphism and the success of triple therapy (fluoroquinolones/metronidazole/clarithromycin) on antibiotic-resistant strains in eradicating H. pylori in human subjects with non-ulcer dyspepsia (NUD), in human subjects with peptic ulcer disease (PUD) and in asymptomatic human subjects (positive and negative for H. pylori infection).

    Results: Based on the CYP2C19 genotypes, determined by Droplet Digital PCR (ddPCR) analysis, we found 11.2%, 62.5% and 26.3% corresponding to rapid metabolizers, intermediate metabolizers and poor metabolizers, respectively. However, we did not find any significant effect for homozygous ABCB1 or CYP2C19*2 and CYP2C19*3 alleles. We detected several participants heterozygous for both ABCB1 and CYP2C19*2, CYP2C19*3 and CYP2C19*17 loci. The participants heterozygous for both ABCB1 and CYP2C19*2 and *3 loci should be defined as intermediate and poor metabolizers according to the haplotype analysis in the NUD, PUD and asymptomatic subjects.

    Conclusions: Consequently, fluoroquinolones/metronidazole/clarithromycin-based triple therapies can be used to eradicate H. pylori infection, if one does not know the CYP2C19 genotype of the patient.

    Matched MeSH terms: Drug Resistance, Microbial*
  16. Jamal F, Pit S, Isahak I, Abdullah N, Zainal Z, Abdullah R, et al.
    PMID: 3660072
    A total of 90 cases of pneumococcal infections were identified at a major referral hospital in Kuala Lumpur, Malaysia during a study period of four years. Pneumonia was the most common clinical presentation (41 cases) followed by meningitis (19 cases). Of 48 patients who were followed-up during the microbiology consultation round, 11 died, 9 were children below two years old. Capsular typing was carried out on 57 strains of Streptococcus pneumoniae isolated from blood and body fluids of 43 children and 14 adults. 38 strains isolated from pharyngeal specimens were also typed. Types 6A (11 strains), 6B (7 strains), 14 (8 strains) and 19A (8 strains) predominated in children. The strains from older patients comprised 3 isolates from cerebrospinal fluid (types 18B, 6B and 14), five from blood (4 strains, type 1 and 1 strain, type 4) and six from pus (1 strain, type 14, 3 strains type 23F and 2 strains type 34). The isolates from pharyngeal specimens belonged to capsular type similar to those implicated in infections. 90% of the types reported in this study are included in the 23 valent pneumococcal vaccines. Minimum inhibitory concentrations of penicillin, cefuroxime, chloramphenicol and rifampicin were determined for selected strains. 4.1% of isolates were resistant to penicillin (3/74), 4.5% to cefuroxime (2/44), 6.5% to chloramphenicol (3/46) and 14.6% to rifampicin (6/41).
    Matched MeSH terms: Drug Resistance, Microbial
  17. Chuah LO, Shamila-Syuhada AK, Liong MT, Rosma A, Thong KL, Rusul G
    Food Microbiol, 2016 Sep;58:95-104.
    PMID: 27217364 DOI: 10.1016/j.fm.2016.04.002
    This study aims to determine physio-chemical properties of tempoyak, characterise the various indigenous species of lactic acid bacteria (LAB) present at different stages of fermentation and also to determine the survival of selected foodborne pathogens in tempoyak. The predominant microorganisms present in tempoyak were LAB (8.88-10.42 log CFU/g). Fructobacillus durionis and Lactobacillus plantarum were the dominant members of LAB. Other LAB species detected for the first time in tempoyak were a fructophilic strain of Lactobacillus fructivorans, Leuconostoc dextranicum, Lactobacillus collinoides and Lactobacillus paracasei. Heterofermentative Leuconostoc mesenteroides and F. durionis were predominant in the initial stage of fermentation, and as fermentation proceeded, F. durionis remained predominant, but towards the end of fermentation, homofermentative Lb. plantarum became the predominant species. Lactic, acetic and propionic acids were present in concentrations ranging from 0.30 to 9.65, 0.51 to 7.14 and 3.90 to 7.31 mg/g, respectively. Genotyping showed a high degree of diversity among F. durionis and Lb. plantarum isolates, suggesting different sources of LAB. All tested Lb. plantarum and F. durionis (except for one isolate) isolates were multidrug resistant. Salmonella spp., Listeria monocytogenes and Staphylococcus aureus were not detected. However, survival study showed that these pathogens could survive up to 8-12 days. The results aiming at improving the quality and safety of tempoyak.
    Matched MeSH terms: Drug Resistance, Microbial
  18. Idris SB, Abdul Kadir A, Abdullah JFF, Ramanoon SZ, Basit MA, Abubakar MZZA
    Front Vet Sci, 2020;7:270.
    PMID: 32613011 DOI: 10.3389/fvets.2020.00270
    The development and utilization of nano-antibiotics is currently gaining attention as a possible solution to antibiotic resistance. The aim of this study was therefore to determine the pharmacokinetics of free oxytetracycline (OTC) and oxytetracycline loaded cockle shell calcium carbonate-based nanoparticle (OTC-CNP) after a single dose of intraperitoneal (IP) administration in BALB/c mice. A total of 100 female BALB/c mice divided into two groups of equal number (n = 50) were administered with 10 mg/kg OTC and OTC-CNP, respectively. Blood samples were collected before and post-administration from both groups at time 0, 5, 10, 15, and 30 min and 1, 2, 6, 24, and 48 h, and OTC plasma concentration was quantified using a validated HPLC-UV method. The pharmacokinetic parameters were analyzed using a non-compartment model. The Cmax values of OTC in OTC-CNP and free OTC treated group were 64.99 and 23.53 μg/ml, respectively. OTC was detected up to 24 h in the OTC-CNP group as against 1 h in the free OTC group following intraperitoneal administration. In the OTC-CNP group, the plasma elimination rate of OTC was slower while the half-life, the area under the curve, and the volume of the distribution were increased. In conclusion, the pharmacokinetic profile of OTC in the OTC-CNP group differs significantly from that of free OTC. However, further studies are necessary to determine the antibacterial efficacy of OTC-CNP for the treatment of bacterial diseases.
    Matched MeSH terms: Drug Resistance, Microbial
  19. Husain Khan A, Abdul Aziz H, Palaniandy P, Naushad M, Cevik E, Zahmatkesh S
    Chemosphere, 2023 Oct;339:139647.
    PMID: 37516325 DOI: 10.1016/j.chemosphere.2023.139647
    Hospital wastewater has emerged as a major category of environmental pollutants over the past two decades, but its prevalence in freshwater is less well documented than other types of contaminants. Due to compound complexity and improper operations, conventional treatment is unable to remove pharmaceuticals from hospital wastewater. Advanced treatment technologies may eliminate pharmaceuticals, but there are still concerns about cost and energy use. There should be a legal and regulatory framework in place to control the flow of hospital wastewater. Here, we review the latest scientific knowledge regarding effective pharmaceutical cleanup strategies and treatment procedures to achieve that goal. Successful treatment techniques are also highlighted, such as pre-treatment or on-site facilities that control hospital wastewater where it is used in hospitals. Due to the prioritization, the regulatory agencies will be able to assess and monitor the concentration of pharmaceutical residues in groundwater, surface water, and drinking water. Based on the data obtained, the conventional WWTPs remove 10-60% of pharmaceutical residues. However, most PhACs are eliminated during the secondary or advanced therapy stages, and an overall elimination rate higher than 90% can be achieved. This review also highlights and compares the suitability of currently used treatment technologies and identifies the merits and demerits of each technology to upgrade the system to tackle future challenges. For this reason, pharmaceutical compound rankings in regulatory agencies should be the subject of prospective studies.
    Matched MeSH terms: Drug Resistance, Microbial
  20. Saleh MS, Hong YH, Muda MR, Dali AF, Hassali MA, Khan TM, et al.
    Eur J Hosp Pharm, 2020 05;27(3):173-177.
    PMID: 32419939 DOI: 10.1136/ejhpharm-2018-001679
    Objective: The increase in antimicrobial resistance and the lack of new antimicrobial agents in drug discovery pipelines have called for global attention to mitigate the problem of antimicrobial misuse. While an antimicrobial stewardship (AMS) programme has been implemented in Malaysia, the perception and practices of public hospital pharmacists remain unknown. The aim of this study was to determine the perception and practices of Malaysian public hospital pharmacists towards the AMS programme in the state of Selangor, Malaysia.

    Methods: A cross-sectional study, using a validated 23-item self-administered questionnaire, was conducted among pharmacists from 11 public hospitals in the State of Selangor, Malaysia, from December 2016 to January 2017. All public hospital pharmacists (n=432) were invited to participate in the survey. A 5-point Likert scale was employed in the questionnaire; the perception section was scored from 1 (strongly disagree) to 5 (strongly agree) while the practice section was scored from 1 (never) to 5 (always). Both descriptive and inferential statistical analyses were used to analyse data.

    Results: Of the 432 pharmacists surveyed, 199 responded, giving a response rate of 46.0%. The majority of the respondents agreed (n=190, 95.5%) that the AMS programme improves patient care at their hospitals (median=5; IQR=1). Slightly less than half of the respondents indicated that a local antibiotic guideline was established in their hospitals (median=3, IQR=2.5), and had taken part in antimicrobial awareness campaigns to promote optimal use of antimicrobials in hospitals (median=3, IQR=1).

    Conclusions: Overall, the perception and practices of the surveyed hospital pharmacists towards AMS programme were positive. National antibiotic guidelines, which take into consideration local antimicrobial resistance patterns, should be used fully to improve antimicrobial usage and to reduce practice variation. Collaboration among healthcare professionals should be strengthened to minimise the unfavourable consequences of unintended use of antimicrobial agents while optimising clinical outcomes.

    Matched MeSH terms: Drug Resistance, Microbial
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links