Displaying publications 61 - 80 of 995 in total

Abstract:
Sort:
  1. Ang KH
    Sains Malaysiana, 2018;47:471-479.
    In recent years, Malaysia has experienced quite a few number of chronic air pollution problems and it has become a
    major contributor to the deterioration of human health and ecosystems. This study aimed to assess the air quality data
    and identify the pattern of air pollution sources using chemometric analysis through hierarchical cluster analysis (HCA),
    discriminant analysis (DA), principal component analysis (PCA) and multiple linear regression analysis (MLR). The air
    quality data from January 2016 until December 2016 was obtained from the Department of Environment Malaysia. Air
    quality data from eight sampling stations in Selangor include the selected variables of nitrogen dioxide (NO2
    ), ozone (O3
    ),
    sulfur dioxide (SO2
    ), carbon monoxide (CO) and particulate matter (PM10). The HCA resulted in three clusters, namely low
    pollution source (LPS), moderate pollution source (MPS) and slightly high pollution source (SHPS). Meanwhile, DA resulted
    in two and four variables for the forward stepwise mode and the backward stepwise mode, respectively. Through PCA,
    it was identified that the main pollutants of LPS, MPS and SHPS came from industrial and vehicle emissions, agricultural
    systems, residential factors and natural emission sources. Among the three models yielded from the MLR analysis, it was
    found that SHPS is the most suitable model to be used for the prediction of Air Pollution Index. This study concluded that
    a clearer review and practical design of air quality monitoring network would be beneficial for better management of
    air pollution. The study also suggested that chemometric techniques have the ability to show significant information on
    spatial variability for large and complex air quality data.
    Matched MeSH terms: Ecosystem
  2. Haque MA, Rafii MY, Yusoff MM, Ali NS, Yusuff O, Arolu F, et al.
    Mol Biol Rep, 2023 Mar;50(3):2795-2812.
    PMID: 36592290 DOI: 10.1007/s11033-022-07853-9
    Natural and man-made ecosystems worldwide are subjected to flooding, which is a form of environmental stress. Genetic variability in the plant response to flooding involves variations in metabolism, architecture, and elongation development that are related with a low oxygen escape strategy and an opposing quiescence scheme that enables prolonged submergence endurance. Flooding is typically associated with a decrease in O2 in the cells, which is especially severe when photosynthesis is absent or limited, leading to significant annual yield losses globally. Over the past two decades, considerable advancements have been made in understanding of mechanisms of rice adaptation and tolerance to flooding/submergence. The mapping and identification of Sub1 QTL have led to the development of marker-assisted selection (MAS) breeding approach to improve flooding-tolerant rice varieties in submergence-prone ecosystems. The Sub1 incorporated in rice varieties showed tolerance during flash flood, but not during stagnant conditions. Hence, gene pyramiding techniques can be applied to combine/stack multiple resistant genes for developing flood-resilient rice varieties for different types of flooding stresses. This review contains an update on the latest advances in understanding the molecular mechanisms, metabolic adaptions, and genetic factors governing rice flooding tolerance. A better understanding of molecular genetics and adaptation mechanisms that enhance flood-tolerant varieties under different flooding regimes was also discussed.
    Matched MeSH terms: Ecosystem
  3. Gikonyo EW, Zaharah AR, Hanafi MM, Anuar RA
    ScientificWorldJournal, 2010 Sep 01;10:1679-93.
    PMID: 20842313 DOI: 10.1100/tsw.2010.174
    The effectiveness of different soil tests in assessing soil phosphorus (P) in soils amended with phosphate rocks (PRs) is uncertain. We evaluated the effects of triple superphosphate (TSP) and PRs on extractable P by conventional soil tests (Mehlich 3 [Meh3] and Bray-1 [B1]) and a nonconventional test (iron oxide-impregnated paper, strip). Extracted amounts of P were in the order: Meh3 >B1 > strip. All the tests were significantly correlated (p = 0.001). Acidic reagents extracted more P from TSP than PRs, while the strip removed equal amounts from the two sources. The P removed by the three tests was related significantly to dry matter yield (DMY), but only in the first harvest, except for B1. Established critical P levels (CPLs) differed for TSP and PRs. In PR-fertilized soils, CPLs were 27, 17, and 12 mg P kg(-1) soil for Meh3, B1, and strip, respectively, and 42, 31, and 12 mg P kg(-1) soil, respectively, in TSP-fertilized soils. Thus, the strip resulted in a common CPL for TSP and PRs (12 mg P kg(-1) soil). This method can be used effectively in soils where integrated nutrient sources have been used, but there is need to establish CPLs for different crops. For cost-effective fertilizer P recommendations based on conventional soil tests, there is a need to conduct separate calibrations for TSP- and PR-fertilized soils.
    Matched MeSH terms: Ecosystem
  4. Nurul Amin M, Babatunde TA, Ihab MMM, Usman BI, Ara R
    Sains Malaysiana, 2016;45:891-898.
    Cobia Rachycentron canadum, is one of the emerging aquaculture species but is usually a non-target resource in fisheries
    industry and within Malaysia, their landings are among the highest worldwide. Identification of stocks with unique
    morphological characters is important for effective management and sustainable utilization. Morphometric variations
    among three different cobia populations from Kedah, Terengganu and Johor were studied. All the morphometric
    characteristics varied among the three populations as all the elements of the first Eigen vector were positive. Discriminant
    analysis suggested that head depth (HD) and maximum body depth, (MaxD) were the most varied among the populations.
    Cobia populations from Kedah and Johor were in a single cluster in the dendrogram with a 63.69% similarity while
    Terengganu was in another cluster with a similarity of 8.01% from Kedah and Johor. The differences in the observed
    morphometry may be resulted from different trophic activities and/or habitat productiveness explored by each of the
    populations
    Matched MeSH terms: Ecosystem
  5. Arai T
    Ecol Evol, 2014 Oct;4(19):3812-9.
    PMID: 25614795 DOI: 10.1002/ece3.1245
    Freshwater eels have fascinated biologists for centuries due to the spectacular long-distance migrations between the eels' freshwater habitats and their spawning areas far out in the ocean and the mysteries of their ecology. The spawning areas of Atlantic eels and Japanese eel were located far offshore in the Atlantic Ocean and the Pacific Ocean, respectively, and their reproduction took place thousands of kilometers away from their growth habitats. Phylogenetic studies have revealed that freshwater eels originated in the Indonesian region. However, remarkably little is known about the life histories of tropical freshwater eels despite the fact that tropical eels are key to understanding the nature of primitive forms of catadromous migration. This study found spawning-condition tropical freshwater eels in Lake Poso, central Sulawesi, Indonesia, with considerably high gonadosomatic index values and with histologically fully developed gonads. This study provides the first evidence that under certain conditions, freshwater eels have conditions that are immediately able to spawn even in river downstream. The results suggest that, in contrast to the migrations made by the Atlantic and Japanese eels, freshwater eels originally migrated only short distances of <100 kilometers to local spawning areas adjacent to their freshwater growth habitats. Ancestral eels most likely underwent a catadromous migration from local short-distance movements in tropical coastal waters to the long-distance migrations characteristic of present-day temperate eels, which has been well established as occurring in subtropical gyres in both hemispheres.
    Matched MeSH terms: Ecosystem
  6. Arguelles ED
    Trop Life Sci Res, 2019 Jan;30(1):1-21.
    PMID: 30847030 DOI: 10.21315/tlsr2019.30.1.1
    Taxonomic study on the composition of epiphytic algae living on submerged leaf and root tissues of macrophyte Eichhornia crassipes (Mart.) Solms-Loubach, found at Laguna de Bay, Philippines was conducted. In total, 21 algal taxa were identified: seven Cyanophyceae, six Euglenophyceae, five Chlorophyceae, two Trebouxiophyceae and one Klebsormidiophyceae. Of these taxa, the occurrence of two rare cyanobacteria, Pseudanabaena minima (G.S. An) Anagnostidis and Synechococcus nidulans (Pringsheim) Komárek are reported for the first time in the Philippines. Two species are also reported here for the first time in the Philippines based on current taxonomic nomenclature and these are Pseudopediastrum boryanum (Turpin) E. Hegewald, Phormidium granulatum (Gardner) Anagnostidis which were based on the former names of Pediastrum boryanum (Turpin) Meneghini and Oscillatoria granulata Gardner, respectively. These taxonomic records are considered important basal information in enriching the knowledge about the diversity and habitat distribution of cyanobacteria and microalgae on macrophytes found in freshwater habitats in the Philippines.
    Matched MeSH terms: Ecosystem
  7. Zainuddin AH, Wee SY, Aris AZ
    Environ Geochem Health, 2020 Nov;42(11):3703-3715.
    PMID: 32488800 DOI: 10.1007/s10653-020-00604-4
    The application of organophosphorus pesticides (OPPs) increased gradually because of the rise in global food demand that triggered the agriculture sector to increase the production, leading to OPP residues in the surface water. This study elucidated the presence of OPPs and estimated its ecological risk in the riverine ecosystem of the urbanised Linggi River, Negeri Sembilan, Malaysia. The OPP concentration in surface water was determined using solid-phase extraction method and high-performance liquid chromatography coupled with diode array detection. Further, the ecological risk was estimated by using the risk quotient (RQ) method. The three OPPs, i.e. chlorpyrifos, diazinon, and quinalphos were detected with mean concentrations of 0.0275 µg/L, 0.0328 µg/L, and 0.0362 µg/L, respectively. The OPPs were at high risk (in general and worst cases) under acute exposure. The estimated risk of diazinon was observed as medium for general (RQm = 0.5857) and high for worst cases (RQex = 4.4678). Notably, the estimated risk for chlorpyrifos was high for both general and worst cases (RQm = 1.9643 and RQex = 11.5643) towards the aquatic ecosystem of the Linggi River. Chronic risk of quinalphos remains unknown because of the absence of toxicity endpoints. This study presented clear knowledge regarding OPP contamination and possible risk for aquatic ecosystems. Hence, OPPs should be listed as one of the main priority contaminants in pesticide mitigation management in the future.
    Matched MeSH terms: Ecosystem
  8. Zaki MRM, Ying PX, Zainuddin AH, Razak MR, Aris AZ
    Environ Geochem Health, 2021 Sep;43(9):3733-3748.
    PMID: 33712970 DOI: 10.1007/s10653-021-00872-8
    Microplastics have been considered as contaminants of emerging concern due to ubiquity in the environment; however, the occurrence of microplastics in river estuaries is scarcely investigated. The Klang River estuary is an important ecosystem that receives various contaminants from urbanised, highly populated areas and the busiest maritime centre in Selangor, Malaysia. This study investigates the abundance and characteristics of microplastics in surface water of the Klang River estuary. The abundance of microplastics ranged from 0.5 to 4.5 particles L-1 with a mean abundance of 2.47 particles L-1. There is no correlation between the abundance of microplastics and physicochemical properties, while there is a strong correlation between salinity and conductivity. The microplastics were characterised with a stereomicroscope and attenuated total reflection-Fourier transform infrared spectroscopy to analyse size, shape, colour, and polymer composition. The microplastics in the surface water were predominantly in the 300-1000 μm size class, followed by > 1000 μm and 
    Matched MeSH terms: Ecosystem
  9. Ismail NAH, Wee SY, Aris AZ
    Chemosphere, 2017 Dec;188:375-388.
    PMID: 28892772 DOI: 10.1016/j.chemosphere.2017.08.150
    Fishes are a major protein food source for humans, with a high economic value in the aquaculture industry. Because endocrine disrupting compounds (EDCs) have been introduced into aquatic ecosystems, the exposure of humans and animals that depend on aquatic foods, especially fishes, should be seriously considered. EDCs are emerging pollutants causing global concern because they can disrupt the endocrine system in aquatic organisms, mammals, and humans. These pollutants have been released into the environment through many sources, e.g., wastewater treatment plants, terrestrial run-off (industrial activities, pharmaceuticals, and household waste), and precipitation. The use of pharmaceuticals, pesticides, and fertilizers for maintaining and increasing fish health and growth also contributes to EDC pollution in the water body. Human and animal exposure to EDCs occurs via ingestion of contaminated matrices, especially aquatic foodstuffs. This paper aims to review human EDC exposure via fish consumption. In respect to the trace concentration of EDCs in fish, types of instrument and clean-up method are of great concerns.
    Matched MeSH terms: Ecosystem
  10. Wee SY, Aris AZ
    Chemosphere, 2017 Dec;188:575-581.
    PMID: 28917209 DOI: 10.1016/j.chemosphere.2017.09.035
    Pesticides are of great concern because of their existence in ecosystems at trace concentrations. Worldwide pesticide use and its ecological impacts (i.e., altered environmental distribution and toxicity of pesticides) have increased over time. Exposure and toxicity studies are vital for reducing the extent of pesticide exposure and risk to the environment and humans. Regional regulatory actions may be less relevant in some regions because the contamination and distribution of pesticides vary across regions and countries. The risk quotient (RQ) method was applied to assess the potential risk of organophosphorus pesticides (OPPs), primarily focusing on riverine ecosystems. Using the available ecotoxicity data, aquatic risks from OPPs (diazinon and chlorpyrifos) in the surface water of the Langat River, Selangor, Malaysia were evaluated based on general (RQm) and worst-case (RQex) scenarios. Since the ecotoxicity of quinalphos has not been well established, quinalphos was excluded from the risk assessment. The calculated RQs indicate medium risk (RQm = 0.17 and RQex = 0.66; 0.1 ≤ RQ  1 (high risk) was observed for both the general and worst cases of chlorpyrifos, but only for the worst cases of diazinon at all sites from downstream to upstream regions. Thus, chlorpyrifos posed a higher risk than diazinon along the Langat River, suggesting that organisms and humans could be exposed to potentially high levels of OPPs.
    Matched MeSH terms: Ecosystem
  11. Zainuddin AH, Roslan MQJ, Razak MR, Yusoff FM, Haron DEM, Aris AZ
    Mar Pollut Bull, 2023 Jul;192:115019.
    PMID: 37201347 DOI: 10.1016/j.marpolbul.2023.115019
    Bisphenol analogues are prevalent globally because of rampant usage and imprecise processing techniques, prompting alerts about environmental and health hazards. The method employed in this study by solid phase extraction (SPE) and liquid chromatography-tandem quadrupole mass spectrometer (LC-MS/MS) for both quantification and qualitative analysis of the bisphenol compounds in the surface water samples. The coastal and estuarine surface water of Port Dickson and Lukut ranges from 1.32 ng/L to 1890.51 ng/L of bisphenol analogues. BPF mean concentration at 1143.88 ng/L is the highest, followed by BPA and BPS at 59.01 ng/L and 10.96 ng/L, respectively. Based on RQm for bisphenol analogues, the highest for BPF at 2.49 (RQ > 1, high risk), followed by BPS at 0.12 (0.1 
    Matched MeSH terms: Ecosystem*
  12. Alkhadher SAA, Kadir AA, Zakaria MP, Al-Gheethi A, Asghar BHM
    Mar Pollut Bull, 2020 May;154:111115.
    PMID: 32319929 DOI: 10.1016/j.marpolbul.2020.111115
    The current study aimed to develop a suitable molecular marker [Linear alkylbenzenes (LABs)] approach for pollution determination in mangrove oysters of peninsular Malaysia. C. belcheri species were collected from rivers of Merbok, Perai, Klang, Muar and PulauMerambong (An Island). The LABs were extracted from C. belcheri and determined using GC-MS. The LABs indices which included I/E, L/S and C13/C12 were applied to describe the sources and biodegradation of LABs. The results revealed that the maximum concentrations were detected in oysters from Klang (27.91 ng g-1dw), while the lowest concentrations were detected in oysters from Merbok (8.12 ng g-1dw). Moreover, I/E ratios varied between 2.83 and 6.40, indicating the secondary treatment effluents being discharged to coastal zones. The results of this study suggested that the oysters absorbed LABs mainly in dissolved phase. Therefore, mangrove oysters are a good biosensor for LABs contamination in the aquatic environment.
    Matched MeSH terms: Ecosystem
  13. Khan AM, Bakar NKA, Bakar AFA, Ashraf MA
    Environ Sci Pollut Res Int, 2017 Oct;24(29):22764-22789.
    PMID: 27722986 DOI: 10.1007/s11356-016-7427-1
    Rare earths (RE), chemically uniform group of elements due to similar physicochemical behavior, are termed as lanthanides. Natural occurrence depends on the geological circumstances and has been of long interest for geologist as tools for further scientific research into the region of ores, rocks, and oceanic water. The review paper mainly focuses to provide scientific literature about rare earth elements (REEs) with potential environmental and health effects in understanding the research. This is the initial review of RE speciation and bioavailability with current initiative toward development needs and research perceptive. In this paper, we have also discussed mineralogy, extraction, geochemistry, analytical methods of rare earth elements. In this study, REEs with their transformation and vertical distribution in different environments such as fresh and seawater, sediments, soil, weathering, transport, and solubility have been reported with most recent literature along key methods of findings. Speciation and bioavailability have been discussed in detail with special emphasis on soil, plant, and aquatic ecosystems and their impacts on the environment. This review shows that REE gained more importance in last few years due to their detrimental effects on living organisms, so their speciation, bioavailability, and composition are much more important to evaluate their health risks and are discussed thoroughly as well.
    Matched MeSH terms: Ecosystem
  14. Nakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, et al.
    Trends Ecol Evol, 2017 06;32(6):438-451.
    PMID: 28359572 DOI: 10.1016/j.tree.2017.02.020
    Forest canopies are dynamic interfaces between organisms and atmosphere, providing buffered microclimates and complex microhabitats. Canopies form vertically stratified ecosystems interconnected with other strata. Some forest biodiversity patterns and food webs have been documented and measurements of ecophysiology and biogeochemical cycling have allowed analyses of large-scale transfer of CO2, water, and trace gases between forests and the atmosphere. However, many knowledge gaps remain. With global research networks and databases, and new technologies and infrastructure, we envisage rapid advances in our understanding of the mechanisms that drive the spatial and temporal dynamics of forests and their canopies. Such understanding is vital for the successful management and conservation of global forests and the ecosystem services they provide to the world.
    Matched MeSH terms: Ecosystem
  15. Kohyama TS, Potts MD, Kohyama TI, Kassim AR, Ashton PS
    Am Nat, 2015 Mar;185(3):367-79.
    PMID: 25674691 DOI: 10.1086/679664
    Different mechanisms have been proposed to explain how vertical and horizontal heterogeneity in light conditions enhances tree species coexistence in forest ecosystems. The foliage partitioning theory proposes that differentiation in vertical foliage distribution, caused by an interspecific variation in mortality-to-growth ratio, promotes stable coexistence. In contrast, successional niche theory posits that horizontal light heterogeneity, caused by gap dynamics, enhances species coexistence through an interspecific trade-off between growth rate and survival. To distinguish between these theories of species coexistence, we analyzed tree inventory data for 370 species from the 50-ha plot in Pasoh Forest Reserve, Malaysia. We used community-wide Bayesian models to quantify size-dependent growth rate and mortality of every species. We compared the observed size distributions and the projected distributions from size-dependent demographic rates. We found that the observed size distributions were not simply correlated with the rate of population increase but were related to demographic properties such as size growth rate and mortality. Species with low relative abundance of juveniles in size distribution showed high growth rate and low mortality at small tree sizes and low per-capita recruitment rate. Overall, our findings were in accordance with those predicted by foliage partitioning theory.
    Matched MeSH terms: Ecosystem
  16. Evans LJ, Davies AB, Goossens B, Asner GP
    PLoS One, 2017;12(10):e0184804.
    PMID: 29020111 DOI: 10.1371/journal.pone.0184804
    Riparian ecosystems are amongst the most biodiverse tropical habitats. They are important, and essential, ecological corridors, linking remnant forest fragments. In this study, we hypothesised that crocodile's actively select nocturnal resting locations based on increased macaque predation potential. We examined the importance of riparian vegetation structure in the maintenance of crocodile hunting behaviours. Using airborne Light Detection and Ranging (LiDAR) and GPS telemetry on animal movement, we identified the repeated use of nocturnal resting sites by adult estuarine crocodiles (Crocodylus porosus) throughout the fragmented Lower Kinabatangan Wildlife Sanctuary in Sabah, Malaysia. Crocodile resting locations were found to resemble, in terms of habitat characteristics, the sleeping sites of long-tailed macaque; positioned in an attempt to avoid predation by terrestrial predators. We found individual crocodiles were actively selecting overhanging vegetation and that the protrusion of trees from the tree line was key to site selection by crocodiles, as well as influencing both the presence and group size of sleeping macaques. Although these findings are correlational, they have broad management implications, with the suggestion that riparian corridor maintenance and quality can have implications beyond that of terrestrial fauna. We further place our findings in the context of the wider ecosystem and the maintenance of trophic interactions, and discuss how future habitat management has the potential to mitigate human-wildlife conflict.
    Matched MeSH terms: Ecosystem
  17. Davies AB, Ancrenaz M, Oram F, Asner GP
    Proc Natl Acad Sci U S A, 2017 Aug 01;114(31):8307-8312.
    PMID: 28720703 DOI: 10.1073/pnas.1706780114
    The conservation of charismatic and functionally important large species is becoming increasingly difficult. Anthropogenic pressures continue to squeeze available habitat and force animals into degraded and disturbed areas. Ensuring the long-term survival of these species requires a well-developed understanding of how animals use these new landscapes to inform conservation and habitat restoration efforts. We combined 3 y of highly detailed visual observations of Bornean orangutans with high-resolution airborne remote sensing (Light Detection and Ranging) to understand orangutan movement in disturbed and fragmented forests of Malaysian Borneo. Structural attributes of the upper forest canopy were the dominant determinant of orangutan movement among all age and sex classes, with orangutans more likely to move in directions of increased canopy closure, tall trees, and uniform height, as well as avoiding canopy gaps and moving toward emergent crowns. In contrast, canopy vertical complexity (canopy layering and shape) did not affect movement. Our results suggest that although orangutans do make use of disturbed forest, they select certain canopy attributes within these forests, indicating that not all disturbed or degraded forest is of equal value for the long-term sustainability of orangutan populations. Although the value of disturbed habitats needs to be recognized in conservation plans for wide-ranging, large-bodied species, minimal ecological requirements within these habitats also need to be understood and considered if long-term population viability is to be realized.
    Matched MeSH terms: Ecosystem
  18. Ordway EM, Asner GP
    Proc Natl Acad Sci U S A, 2020 04 07;117(14):7863-7870.
    PMID: 32229568 DOI: 10.1073/pnas.1914420117
    Nearly 20% of tropical forests are within 100 m of a nonforest edge, a consequence of rapid deforestation for agriculture. Despite widespread conversion, roughly 1.2 billion ha of tropical forest remain, constituting the largest terrestrial component of the global carbon budget. Effects of deforestation on carbon dynamics in remnant forests, and spatial variation in underlying changes in structure and function at the plant scale, remain highly uncertain. Using airborne imaging spectroscopy and light detection and ranging (LiDAR) data, we mapped and quantified changes in forest structure and foliar characteristics along forest/oil palm boundaries in Malaysian Borneo to understand spatial and temporal variation in the influence of edges on aboveground carbon and associated changes in ecosystem structure and function. We uncovered declines in aboveground carbon averaging 22% along edges that extended over 100 m into the forest. Aboveground carbon losses were correlated with significant reductions in canopy height and leaf mass per area and increased foliar phosphorus, three plant traits related to light capture and growth. Carbon declines amplified with edge age. Our results indicate that carbon losses along forest edges can arise from multiple, distinct effects on canopy structure and function that vary with edge age and environmental conditions, pointing to a need for consideration of differences in ecosystem sensitivity when developing land-use and conservation strategies. Our findings reveal that, although edge effects on ecosystem structure and function vary, forests neighboring agricultural plantations are consistently vulnerable to long-lasting negative effects on fundamental ecosystem characteristics controlling primary productivity and carbon storage.
    Matched MeSH terms: Ecosystem*
  19. Ali AH, Asokan S
    Trop Life Sci Res, 2015 Apr;26(1):9-20.
    PMID: 26868589
    The diurnal time-activity patterns of the Small Bee-eater (Merops orientalis) were studied between 2005 and 2006 in the Nagapattinam District of Southern India. Bee-eaters were observed to spend an average of 52.5% of their day time scanning, 21.3% feeding, 13.3% flying, 8.8% resting and 4.1% engaging in preening activities. The time spent on scanning varied among seasons in 2005 (p<0.05) and among time blocks (p<0.05), but it did not vary among years or habitats (p>0.05). The feeding patterns differed among years, seasons within years, time blocks and habitats (p<0.05). The flying habits varied among years, time blocks and habitats (p<0.05) but did not change between seasons within years (p>0.05). The resting habits differed among years and habitats (p<0.05) but did not differ among seasons within years or time blocks (p>0.05). Preening differed among years and time blocks (p<0.05) but did not vary among seasons within years or habitats (p>0.05). We conclude that several factors, such as food availability, environmental factors and predation threats, may affect the diurnal activity patterns of Bee-eaters between habitats and seasons; a further study could clarify this conclusion.
    Matched MeSH terms: Ecosystem
  20. Thamizharasan A, Rajaguru VRR, Gajalakshmi S, Lim JW, Greff B, Rajagopal R, et al.
    Environ Res, 2024 Feb 15;243:117752.
    PMID: 38008202 DOI: 10.1016/j.envres.2023.117752
    Plant leaf litter has a major role in the structure and function of soil ecosystems as it is associated with nutrient release and cycling. The present study is aimed to understand how well the decomposing leaf litter kept soil organic carbon and nitrogen levels stable during an incubation experiment that was carried out in a lab setting under controlled conditions and the results were compared to those from a natural plantation. In natural site soil samples, Anacardium. occidentale showed a higher value of organic carbon at surface (1.14%) and subsurface (0.93%) and Azadirachta. indica exhibited a higher value of total nitrogen at surface (0.28%) and subsurface sample (0.14%). In the incubation experiment, Acacia auriculiformis had the highest organic carbon content initially (5.26%), whereas A. occidentale had the highest nitrogen level on 30th day (0.67%). The overall carbon-nitrogen ratio showed a varied tendency, which may be due to dynamic changes in the complex decomposition cycle. The higher rate of mass loss and decay was observed in A. indica leaf litter, the range of the decay constant is 1.26-2.22. The morphological and chemical changes of soil sample and the vermicast were substantained using scanning electron microscopy (SEM) and Fourier transmission infrared spectroscopy (FT-IR).
    Matched MeSH terms: Ecosystem
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links