Displaying publications 61 - 80 of 118 in total

Abstract:
Sort:
  1. Chia PY, Haseeb ASMA, Mannan SH
    Materials (Basel), 2016 May 31;9(6).
    PMID: 28773552 DOI: 10.3390/ma9060430
    Miniaturization of electronic devices has led to the development of 3D IC packages which require ultra-small-scale interconnections. Such small interconnects can be completely converted into Cu-Sn based intermetallic compounds (IMCs) after reflow. In an effort to improve IMC based interconnects, an attempt is made to add Ni to Cu-Sn-based IMCs. Multilayer interconnects consisting of stacks of Cu/Sn/Cu/Sn/Cu or Cu/Ni/Sn/Ni/Sn/Cu/Ni/Sn/Ni/Cu with Ni = 35 nm, 70 nm, and 150 nm were electrodeposited sequentially using copper pyrophosphate, tin methanesulfonic, and nickel Watts baths, respectively. These multilayer interconnects were investigated under room temperature aging conditions and for solid-liquid reactions, where the samples were subjected to 250 °C reflow for 60 s and also 300 °C for 3600 s. The progress of the reaction in the multilayers was monitored by using X-ray Diffraction, Scanning Electron Microscope, and Energy dispersive X-ray Spectroscopy. FIB-milled samples were also prepared for investigation under room temperature aging conditions. Results show that by inserting a 70 nanometres thick Ni layer between copper and tin, premature reaction between Cu and Sn at room temperature can be avoided. During short reflow, the addition of Ni suppresses formation of Cu₃Sn IMC. With increasing Ni thickness, Cu consumption is decreased and Ni starts acting as a barrier layer. On the other hand, during long reflow, two types of IMC were found in the Cu/Ni/Sn samples which are the (Cu,Ni)₆Sn₅ and (Cu,Ni)₃Sn, respectively. Details of the reaction sequence and mechanisms are discussed.
    Matched MeSH terms: Electronics
  2. Leong YM, Haseeb ASMA
    Materials (Basel), 2016 Jun 28;9(7).
    PMID: 28773645 DOI: 10.3390/ma9070522
    Driven by the trends towards miniaturization in lead free electronic products, researchers are putting immense efforts to improve the properties and reliabilities of Sn based solders. Recently, much interest has been shown on low silver (Ag) content solder SAC105 (Sn-1.0Ag-0.5Cu) because of economic reasons and improvement of impact resistance as compared to SAC305 (Sn-3.0Ag-0.5Cu. The present work investigates the effect of minor aluminum (Al) addition (0.1-0.5 wt.%) to SAC105 on the interfacial structure between solder and copper substrate during reflow. The addition of minor Al promoted formation of small, equiaxed Cu-Al particle, which are identified as Cu₃Al₂. Cu₃Al₂ resided at the near surface/edges of the solder and exhibited higher hardness and modulus. Results show that the minor addition of Al does not alter the morphology of the interfacial intermetallic compounds, but they substantially suppress the growth of the interfacial Cu₆Sn₅ intermetallic compound (IMC) after reflow. During isothermal aging, minor alloying Al has reduced the thickness of interfacial Cu₆Sn₅ IMC but has no significant effect on the thickness of Cu₃Sn. It is suggested that of atoms of Al exert their influence by hindering the flow of reacting species at the interface.
    Matched MeSH terms: Electronics
  3. Nasir S, Hussein MZ, Zainal Z, Yusof NA
    Materials (Basel), 2018 Feb 13;11(2).
    PMID: 29438327 DOI: 10.3390/ma11020295
    Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead. Carbon nanomaterials are believed to be appropriate and promising (when used as energy materials) to cushion the threat. Consequently, the amazing properties of these materials and greatest potentials towards greener and environment friendly synthesis methods and industrial scale production of carbon nanostructured materials is undoubtedly necessary and can therefore be glimpsed as the focal point of many researchers in science and technology in the 21st century. This is based on the incredible future that lies ahead with these smart carbon-based materials. This review is determined to give a synopsis of new advances towards their synthesis, properties, and some applications as reported in the existing literatures.
    Matched MeSH terms: Electronics
  4. Mohd Hassan S, Sulaiman Z, Tengku Ismail TA
    Malays Fam Physician, 2021 Mar 25;16(1):18-30.
    PMID: 33948139 DOI: 10.51866/rv0997
    Objective: This article aims to review the literature published over the past five decades related to the experiences of women who have undergone induced lactation.

    Methods: A comprehensive electronic search was conducted using PubMed, the Library of Congress, Google Scholar, SAGE, and ScienceDirect. The following search keywords were used: adoptive breastfeeding, induced lactation, non-puerperal lactation, extraordinary breastfeeding, and milk kinship. The search was restricted to articles written in English and published from 1956 to 2019. All study designs were included except for practice protocols.

    Results: A total of 50 articles about induced lactation were retrieved. Of these, 17 articles identified the experiences of women who underwent induced lactation. The articles included original papers (n=7), reviews (n=5), and case reports (n=5). Four articles were specifically related to Malaysia, and the others were international. These 17 articles concerning the experiences of women who induced lactation will be reviewed based on four themes related to inducing lactation: (a) understanding women's perception of satisfaction, (b) emotional aspects, (c) enabling factors, and (d) challenges.

    Conclusion: Identifying a total of only 17 articles on induced lactation published over the last 53 years suggests that the subject is understudied. This review provides emerging knowledge regarding the experiences of women who have induced lactation in terms of satisfaction, emotions, enabling factors and challenges related to inducing lactation.

    Matched MeSH terms: Electronics
  5. Fadzidah Mohd Idris, Khamirul Amin Matori, Idza Riati Ibrahim, Rodziah Nazlan, Mohd Shamsul Ezzad Shafie
    MyJurnal
    The rapid growth of electronic systems and devices operating within the gigahertz (GHz) frequency range has increased electromagnetic interference. In order to eliminate or reduce the spurious electromagnetic radiation levels more closely in different applications, there is strong research interest in electromagnetic absorber technology. Moreover, there is still a lack of ability to absorb electromagnetic radiation in a broad frequency range using thin thickness. Thus, this study examined the effect of incorporating magnetic and dielectric materials into the polymer matrix for the processing of radar absorbing materials. The experiment evaluated the sample preparation with different weight percentages of multi-walled carbon nanotubes (MWCNT) mixed with Ni0.5Zn0.5Fe2O4 (Nickel-Zinc-Ferrite) loaded into epoxy (P) as a matrix. The prepared samples were analysed by examining the reflectivity measurements in the 8 – 18 GHz frequency range and conducting a morphological study using scanning electron microscopy analyses. The correlation of the results showed that different amounts of MWCNT influenced the performance of the microwave absorber. As the amount of MWCNTs increased, the reflection loss (RL) peak shifted towards a lower frequency range and the trend was similar for all thicknesses. The highest RL was achieved when the content of MWCNTs was 2 wt% with a thickness of 2 mm with an RL of – 14 dB at 16 GHz. The 2.5 GHz bandwidth corresponded to the RL below -10 dB (90% absorption) in the range of 14.5 – 17 GHz. This study showed that the proposed experimental route provided flexible absorbers with suitable absorption values by mixing only 2 wt% of MWCNTs.

    Matched MeSH terms: Electronics
  6. Affa Rozana Abdul Rashid, Nur Insyierah Md Sarif, Khadijah Ismail
    MyJurnal
    The consumption of low-power electronic devices has increased rapidly, where almost all applications use power electronic devices. Due to the increase in portable electronic devices’ energy consumption, the piezoelectric material is proposed as one of the alternatives of the significant alternative energy harvesters. This study aims to create a prototype of “Smart Shoes” that can generate electricity using three different designs embedded by piezoelectric materials: ceramic, polymer, and a combination of both piezoelectric materials. The basic principle for smart shoes’ prototype is based on the pressure produced from piezoelectric material converted from mechanical energy into electrical energy. The piezoelectric material was placed into the shoes’ sole, and the energy produced due to the pressure from walking, jogging, and jumping was measured. The energy generated was stored in a capacitor as piezoelectric material produced a small scale of energy harvesting. The highest energy generated was produced by ceramic piezoelectric material under jumping activity, which was 1.804 mJ. Polymer piezoelectric material produced very minimal energy, which was 55.618 mJ. The combination of both piezoelectric materials produced energy, which was 1.805 mJ from jumping activity.

    Matched MeSH terms: Electronics
  7. Doris George, Chang Chee Tao, Kumutha Kumarasamy, Asri Ranga
    MyJurnal
    Introduction: Previous studies reported that a two-week double-dose clopidogrel treatment following percutaneous coronary intervention has no difference in safety compared to standard therapy. This study aimed to determine the all-cause readmission rate and survival after a year of percutaneous coronary intervention (PCI) in patients who were treated with two-week double-dose clopidogrel regimen. Methods: This was a retrospective study on patients who underwent PCI in a state general hospital in Malaysia in 2014. Patients’ one month and one-year survival status were retrieved using the hospital electronic patient management system. Patients who received a two-week course of 150mg clopidogrel and subsequently a one-year course of standard double antiplatelet therapy were included. Results: A total of 381 out of 563 patients who underwent PCI were included in the analysis, while those who were switched to ticagrelor and transferred to other hospitals post-PCI excluded. Patients had a mean age of 56.9 (SD 10.7), with majority male (331, 86.9%) and Malay (144, 37.8%). The PCI was mainly indicated for ST-elevated myocardial infarction (188, 49.3%), non-STEMI (114, 29.9%) and unstable angina (36, 9.4%). A total of 107 (28.1%) patients were readmitted within the one year post-PCI period. Readmissions were mainly due to ACS (55.5%) and bleeding events (2.4%). The 30-day and 1-year all-cause mortality was 33 cases and 43 cases, respectively. Conclu- sion: The low readmission and bleeding related readmission suggested that the two-week double-dose clopidogrel regimen was safe for the post PCI patients. Future randomised trial to establish the efficacy of this dosing regimen is therefore warranted.
    Matched MeSH terms: Electronics
  8. Ying Qian Ong, Sakinah Harith, Mohd Razif Shahril, Norshazila Shahidan
    MyJurnal
    Treatment effectiveness depends on the knowledge, attitude, and practice (KAP) of osteoarthritis (OA) patients to- wards their assigned treatment. This study aimed to explore the KAP towards non-surgical intervention among OA patients. A methodological framework proposed by Arksey and O’Malley (2005) was implemented. An electronic database search of English-language academic articles was conducted using PubMed and ScienceDirect databases encompassing 1998 to 2018 period of time, resulting in a total of 26 studies. OA patients were knowledgeable about the disease and exercise management. However, they were lack of knowledge on drug therapy and complementary strategies. The attitude towards non-surgical interventions was ambivalence. Lastly, the practice section mainly fo- cused on patients’ compliance and behaviour towards different conservative managements, namely physiotherapy, medications, and complementary and alternative medicines (CAMs) which influenced by both knowledge level and attitudes. In conclusion, a higher knowledge level and positive attitude will result in good practice.
    Matched MeSH terms: Electronics
  9. Ahmad Badruddin Ghazali, Nur Imanina Abdullah Thaidi
    MyJurnal
    The purpose of this study was to integrate the available data published to date on susuk or charm needles into a com- prehensive analysis of their clinical/radiological features. An electronic search was undertaken in September 2019. Eligibility criteria included publications having enough clinical and radiological to confirm a definite diagnosis. The initial literature search resulted in 48 publications. Ten publications were excluded for duplicates, and another 17 excluded after a screening of the abstract. Besides, the screening of the abstract shows that five publications were not meeting the inclusion criteria, resulting in a total of 14 publications of susuk that were included in the systematic review. Bias analysis was conducted according to Oxford Center for Evidence-Based Medicine. The resulting total of 78 cases from the selected publications were analysed, showing a wide age range with different distribution among gender and ethnicity. Three cases reported in the literature having symptoms related to susuk. Susuk can be seen as an incidental finding during a routine radiographic assessment, and clinicians should be able to differentiate it from other radiopaque foreign bodies. The practice is not limited to South East Asian population and can be seen in wide racial profiles.
    Matched MeSH terms: Electronics
  10. Li Tsu Chong, Deena Clare Thomas, Renie Martha Joanes, Rose A Nain
    MyJurnal
    Introduction: Phlebitis may localise to the insertion site or travel along the vein. The risk of phlebitis is higher in children as they have thin and weak blood vessels and move continuously due to the pain associated with insertion. Therefore, regular assessment of the risk of developing phlebitis is crucial. This review aimed to identify infusion phlebitis assessment tool used in the paediatric setting. Methods: Electronic databases used were Scopus, ProQuest, ScienceDirect, and Google Scholar. A total of ten studies which assess the development of infusion phlebitis on hos- pitalised children included in this reviewed. Study findings were discussed and concluded with a recommendation for clinical practice and future studies. Results: Phlebitis development rate was the primary outcome measures in ten studies. Of ten studies, six provided no actual definition of phlebitis. Eight reported phlebitis incidence and/or severity, eight used a scale and two used a definition alone in assessing the development of phlebitis. This review identified five different phlebitis assessment scales. Conclusion: Although there are applicable phlebitis scales can be used for paediatric setting, Limited studies have been conducted on infusion phlebitis assessment method in chil- dren. Therefore, it is suggested that more studies and vigorous test needed to identify applicable assessment tools in paediatric setting.
    Matched MeSH terms: Electronics
  11. Sivarajan S, Mani SA, John J, Fayed MMS, Kook YA, Wey MC
    Korean J Orthod, 2021 Jan 25;51(1):55-74.
    PMID: 33446621 DOI: 10.4041/kjod.2021.51.1.55
    Objective: To systematically review studies on canine agenesis prevalence in different populations and continents, based on the jaw, sex, location, and associated dental anomalies.

    Methods: Electronic and hand searches of English literature in PubMed, Web of Science, Scopus, OpenGrey, and Science Direct were conducted, and the authors were contacted when necessary. Observational studies (population-based, hospital/clinic-based, and cross-sectional) were included. For study appraisal and synthesis, duplicate selection was performed independently by two reviewers. Study quality was assessed using a modified Strengthening the Reporting of Observational Studies in Epidemiology checklist, with main outcome of prevalence of canine agenesis.

    Results: The global population prevalence of canine agenesis was 0.30% (0.0-4.7%), highest in Asia (0.54%), followed by Africa (0.33%), and the least in Europe and South America (0.19% in both continents). Canine agenesis was more common in the maxilla (88.57%), followed by both maxilla and mandible (8.57%), and the least common was mandible-only presentation (2.86%). The condition was more common in females (female:male ratio = 1.23), except in Asia (female:male ratio = 0.88) and Africa (female:male ratio = 1). In Asia, unilateral agenesis was almost twice as prevalent as bilateral, but in Europe, the bilateral form was more common.

    Conclusions: The overall prevalence of canine agenesis is 0.30%, with the highest prevalence in Asia, followed by Africa, Europe, and South America. The condition is more common in the maxilla than the mandible, and in females than males (except in Asia and Africa), with unilateral agenesis being more common in Asia and the bilateral form showing a greater prevalence in Europe.

    Matched MeSH terms: Electronics
  12. Lombigit, Lojius, Maslina Ibrahim, Nolida Yusup, Nur Aira Abdul Rahman, Yong, Chong Fong
    MyJurnal
    Pulse Shaping Amplifier (PSA) is an essential component in nuclear spectroscopy system. This
    amplifier has two functions; to shape the output pulse and performs noise filtering. In this paper,
    we describe the procedure for the design and development of a pulse shaping amplifier which can
    be used in a nuclear spectroscopy system. This prototype was developed using high performance
    electronics devices and assembled on a FR4 type printed circuit board. Performance of this
    prototype was tested by comparing it with an equivalent commercial spectroscopy amplifier (Model
    Silena 7611). The test results showed that the performance of this prototype was comparable
    to the commercial spectroscopic amplifier.
    Matched MeSH terms: Electronics
  13. Wan Faizatul Azirah Ismayatim, Nur Dalila Mohamad Nazri, Ramiaida Darmi, Nursyuhada’ Ab Wahab, Nur Adibah Zamri, Haliza Harun, et al.
    Jurnal Inovasi Malaysia, 2020;4(1):173-192.
    MyJurnal
    This paper presents an innovation of a revolutionized self-directed English learning module entitled My Electronic Visual and Audio (MyEVO), which is designed and developed to assist language learners to conveniently acquire the required listening skills through the combination of current and state-of-the-art technology - Augmented Reality (AR) and mobile applications. Using Video Media method introduced by Gruba (1997, 2004), all listening practices in this module are based on video recording. Feedbacks gained from the users of the module indicate that learners are very excited and happy to use technology assisted module in acquiring listening skills compared to the traditional module. Educators also believe that this module cater the needs of the 21st century learners and is suitable to be used inside the classroom or as a self-directed learning module. Another key feature of this smart module highlighted by the educators is the ability of the mobile application that allows learners to engage with the e-global community known as ‘MyEVO community, where all users can share their answers and exchange opinions regarding the given questions. In addition, listening activities that were designed in this module also cover the Higher Order Thinking Skills (HOTS) needed in learning. Educators also agreed that this interactive feature does not only encourage the learners to be active in their learning but it also helps to reduce their anxiety, learning process becomes more interesting and helps to aid their understanding of the topics covered.
    Matched MeSH terms: Electronics
  14. Zolkefley MKI, Firwana YMS, Hatta HZM, Rowbin C, Nassir CMNCM, Hanafi MH, et al.
    J Phys Ther Sci, 2021 Jan;33(1):75-83.
    PMID: 33519079 DOI: 10.1589/jpts.33.75
    [Purpose] Understanding the essential mechanisms in post-stroke recovery not only provides important basic insights into brain function and plasticity but can also guide the development of new therapeutic approaches for stroke patients. This review aims to give an overview of how various variables of Magnetic Resonance-Diffusion Tensor Imaging (MR-DTI) metrics of fractional anisotropy (FA) can be used as a reliable quantitative measurement and indicator of corticospinal tract (CST) changes, particularly in relation to functional motor outcome correlation with a Fugl-Meyer assessment in stroke rehabilitation. [Methods] PubMed electronic database was searched for the relevant literature, using key words of diffusion tensor imaging (dti), corticospinal tract, and stroke. [Results] We reviewed the role of FA in monitoring CST remodeling and its role of predicting motor recovery after stroke. We also discussed the mechanism of CST remodeling and its modulation from the value of FA and FMA-UE. [Conclusion] Heterogeneity of post-stroke brain disorganization and motor impairment is a recognized challenge in the development of accurate indicators of CST integrity. DTI-based FA measurements offer a reliable and evidence-based indicator for CST integrity that would aid in predicting motor recovery within the context of stroke rehabilitation.
    Matched MeSH terms: Electronics
  15. Sun C, Zhang X, Lee WG, Tu Y, Li H, Cai X, et al.
    J Orthop Surg Res, 2020 Aug 05;15(1):297.
    PMID: 32758250 DOI: 10.1186/s13018-020-01823-2
    BACKGROUND: The infrapatellar fat pad (IPFP) or Hoffa's fat pad is often resected during total knee arthroplasty in order to improve visibility. However, the management of the IPFP during total knee arthroplasty (TKA) is the subject of an ongoing debate that has no clear consensus. The purpose of this review was to appraise if resection of the IPFP affects clinical outcomes.

    METHODS: We conducted a meta-analysis to identify relevant randomized controlled trials involving infrapatellar fat pad resection and infrapatellar fat pad preservation during total knee arthroplasty in electronic databases, including Web of Science, Embase, PubMed, Cochrane Controlled Trials Register, Cochrane Library, Highwire, CBM, CNKI, VIP, and Wanfang database, up to March 2020.

    RESULTS: Nine randomized controlled trials, involving 783 TKAs (722 patients), were included in the systematic review. Outcome measures included patellar tendon length (PTL), Insall-Salvati ratio (ISR), rate of anterior knee pain, Knee Society Scores (KSS), and knee range of motion. The meta-analysis identified a trend toward the shortening of the patellar tendon with IPFP resection at 6 months (P = 0.0001) and 1 year (P = 0.001). We found no statistical difference in ISR (P = 0.87), rate of anterior knee pain within 6 months (p = 0.45) and 1 year (p = 0.38), KSS at 1 year (p = 0.77), and knee range of motion within 6 months (p = 0.61) and 1 year (0.46).

    CONCLUSION: Based on the available level I evidence, we were unable to conclude that one surgical technique of IPFP can definitively be considered superior over the other. More adequately powered and better-designed randomized controlled trial (RCT) studies with long-term follow-up are required to produce evidence-based guidelines regarding IPFP resection.

    Matched MeSH terms: Electronics
  16. Sagadevan S, Chowdhury ZZ, Johan MRB, Aziz FA, Roselin LS, Podder J, et al.
    J Nanosci Nanotechnol, 2019 Nov 01;19(11):7139-7148.
    PMID: 31039868 DOI: 10.1166/jnn.2019.16666
    In this work, a simple, co-precipitation technique was used to prepare un-doped, pure tin oxide (SnO₂). As synthesized SnO₂ nanoparticles were doped with Cu2+ ions. Detailed characterization was carried out to observe the crystalline phase, morphological features and chemical constituents with opto-electrical and magnetic properties of the synthesized nanoparticles (NPs). X-ray diffraction analysis showed the existence of crystalline, tetragonal structure of SnO₂. Both the sample synthesized here showed different crystalline morphology. The band gap energy (Eg) of the synthesized sample was estimated and it was found to decrease from 3.60 to 3.26 eV. The band gap energy reduced due to increase in Cu2+ dopant amount inside the SnO₂ lattice. Optical properties were analyzed using absorption spectra and Photoluminescence (PL) spectra. It was observed that Cu2+ ions incorporated SnO₂ NPs exhibited more degradation efficiencies for Rhodamine B (RhB) dye compared to un-doped sample under UV-Visible irradiation. The dielectric characteristics of un-doped, pure and Cu2+ incorporated SnO₂ nanoparticles were studied at different frequency region under different temperatures. The ac conductivity and impedance analysis of pure and Cu2+ incorporated SnO₂ nanoparticles was also studied. The magnetic properties of the synthesized samples were analysed. Both the sample showed ferromagnetic properties. The research indicated that the Cu2+ ions doping can make the sample a promising candidate for using in the field of optoelectronics, magneto electronics, and microwave devices.
    Matched MeSH terms: Electronics
  17. Chaudhry AR, Irfan A, Muhammad S, Al-Sehemi AG, Ahmed R, Jingping Z
    J Mol Graph Model, 2017 08;75:355-364.
    PMID: 28651184 DOI: 10.1016/j.jmgm.2017.05.012
    In the present study, we use the state of art density functional theory (DFT) techniques to calculate the structural, optoelectronic and nonlinear optical (NLO) properties for two novel chalcone derivatives. The geometrical structures of chalcone derivatives compound 1 and 2 are optimized using periodic boundary conditions (PBC) in solid-state phase as well as isolated single molecular geometry in the gas phase. The reasonable agreement is found among experimental, solid-state and gas phase single molecular geometries, which provide us, further confidence to explore the potential of above-entitled derivatives as good functional materials for electro-optical applications. For instance, the frequency dependent real parts of dielectric functions are calculated for compound 1 and 2. The maximum value of real part of the dielectric function for compound 1 and 2 at 0eV are computed as 4.35 and 6.68 for the polarization vectors of (001) directions, respectively, which reveals the fact that the compound 1 and 2 might be good charge transport materials. The reflectivities of the compound 1 and 2 are 0.64 and 0.45 revealing that the compound 2 might be more efficient material for organic photovoltaic (OPV) applications. The results of the refractive index improved by doping the strong electron withdrawing groups (EWGs) shows that the compound 2 might be good refractor of the photon as compared to compound 1. The calculated values for static second-order polarizability are 3498 and 10464 a. u. and for frequency dependent second harmonic generations are 2557 and 6429 a. u. for compound 1 and 2, respectively, which indicates their significant potential for possible nonlinear optical applications.
    Matched MeSH terms: Electronics*
  18. Souadia Z, Bouhemadou A, Bin-Omran S, Khenata R, Al-Douri Y, Al Essa S
    J Mol Graph Model, 2019 07;90:77-86.
    PMID: 31031219 DOI: 10.1016/j.jmgm.2019.04.008
    Structural parameters, electronic structure and optical properties of the dialkali metal monotelluride M2Te (M = Li, Na, K and Rb) compounds in the cubic antifluorite structure were investigated via ab initio calculations using the all electron linearized augmented plane wave approach based on density functional theory with and without including spin-orbit coupling (SOC). The exchange-correlation interactions were described within the PBEsol version of the generalized gradient approximation and Tran-Blaha modified Becke-Johnson potential (TB-mBJ). Optimized equilibrium lattice parameters are in excellent accordance with existing measured ones. Computed energy band dispersions show that the studied compounds are large band gap materials. Inclusion of SOC reduces the band gap value compared to the corresponding one calculated without including SOC. Determination of the energy band character and interatomic bonding nature are performed using the densities of states diagrams and charge density distribution map. Linear optical function spectra are predicted for a wide energy range and the origin of the dielectric function spectrum peaks are determined.
    Matched MeSH terms: Electronics/methods
  19. Tan GL
    J Hum Ergol (Tokyo), 1996 Jun;25(1):49-62.
    PMID: 9551132 DOI: 10.11183/jhe1972.25.38
    The analyses of a few tasks were carried out in an electronics factory. The main objectives are to identify the ergonomic and biomechanical hazards of problem work tasks, to analyze each task systematically in order to evaluate the workers' exposures to the risk factors of force, posture pressure and repetition and to make recommendations to reduce the risks and hazards. The methodology includes objective measures--detailed analysis by going through training manuals, job description and production records. Subjective measures include interviewing the operator and supervisors informally, the operators were also required to fill in a structured questionnaire. The paper concludes by making recommendations to reduce the ergonomic hazards by engineering solutions, redesign or administrative controls or the implementation of procedures.
    Matched MeSH terms: Electronics*
  20. Ismail H, Hanafiah MM
    J Environ Manage, 2020 Jun 15;264:110495.
    PMID: 32250915 DOI: 10.1016/j.jenvman.2020.110495
    Studies on sustainable management of waste from electrical and electronic equipment (or e-waste) have gained increasing attention from researchers around the world in recent years, with investigations into various aspects of e-waste management were investigated. Studies on e-waste generation by previous papers have been reviewed to provide an overview of the current research progress and recommendations for future research. The relevant existing studies were collected from various databases. Using content analysis, three main aspects of the existing studies were evaluated: the distribution and trends of the publications, the scope and boundaries of the studies, and the current research practices and research applications. Although there was a significant increasing trend of the amount of research on the evaluation of e-waste generation, however, the number of publications based on the countries of origin was still small. Another limitation was found related to the differences in the selection of research subjects and the level of analysis resulted in variations in the scopes and boundaries of the existing studies. Various other research areas were investigated further based on their research findings, but the analysis of various methodological aspects was complicated due to the increasing number of newly developed methodologies and the lack of comprehensive and up-to-date reviews on this research area. Additionally, there was also a need to evaluate emerging and/or older technology, which led electrical appliances to be overlooked. We found that comprehensive and up-to-date reviews of the methodological aspects of e-waste generation are still lacking. Based on the research gaps and limitations discussed, recommendations for future research were made.
    Matched MeSH terms: Electronics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links