METHODS: In this study, CD24 population from the MCF-7 spheroid was sorted and subjected to spheroid formation test, stem cell markers immunofluorescence, invasion and migration test as well as microRNA expression profiling.
RESULTS: Sorted MCF-7 CD24 cells from primary spheroids were able to reform its 3D spheroid shape after 7 days in non-adherent culture conditions. In contrast to the primary spheroids, the expression of SOX-2, CD44, CD49f and Nanog were dim in MCF-7 CD24+ cells. Remarkably, MCF-7 CD24 cells were found to show high expression of ALDH1 protein which may have resulted in these cells exhibiting higher resistance against doxorubicin and cisplatin when compared to that of the parental cells. Moreover, microRNA profiling has shown that the absence of cancer stem cell properties were consistent with the downregulation of major cancer stem cells related pathways including Hedgehog, Wnt and MAPK signalling pathways. However, the upregulated pathways such as adherans junctions, focal adhesion and tight junction suggest that CD24+ cells were probably at an epithelial-like state of cell transition.
CONCLUSION: In conclusion, neglected CD24+ cells in MCF-7 spheroid did not exhibit typical breast CSCs properties. The presence of miRNAs and their analysed pathways suggested that these cells could be a distinct intermediate cell state in breast CSCs.
Methods: In this study, wtHALT-1 (wild type) and its Y110A mutated binding domain counterpart (mHALT-1) were produced and evaluated for their cytotoxic and apoptotic effects on various cancer cell lines. A total of seven different tumour and non-tumour cell lines including HeLa, HepG2, SW-620, MCF-7, CCD841CoN, NHDF and HCT116 were used. Immunofluorescence assays were used to observe membrane binding and localization changes between both HALT-1 recombinant proteins based on 6xHis-tag detection.
Result: Based on MTT data, mHALT-1 demonstrated a significant reduction of 82% ± 12.21% in cytotoxic activity across all cell lines after the membrane recognition domain had been mutated in comparison to the wtHALT-1. Annexin V FITC/PI assay data also indicated that HeLa, HepG2 and MCF-7 demonstrated an apoptosis-mediated cell death after being treated with wtHALT-1. Additionally, a notable difference between wtHALT-1 and mHALT-1 binding affinity was clearly observed where emission of green fluorescence along the cell membrane was observed only in wtHALT-1 treated cells.
Discussion: These results suggest that mHALT-1 (Y110A) can be potentially developed as a toxin-moiety candidate for the development of future immunotoxins against various human cell-based diseases.