Displaying publications 61 - 80 of 267 in total

Abstract:
Sort:
  1. Shuhaimi-Othman M, Pascoe D, Borgmann U, Norwood WP
    Environ Monit Assess, 2006 Jun;117(1-3):27-44.
    PMID: 16917696
    Hyalella azteca (Crustacea: Amphipoda), water and sediments from 12 circum-neutral lakes between Sudbury and North Bay in Ontario, Canada were sampled in August 1998 and analyzed for 10 metals including Cu, Zn, Cd, Ni, Pb, Co, Mo, V, Ba and Ti. Statistical analyses showed that concentrations of the metals in H. azteca, water and sediment differed significantly (ANOVA, P<0.05) among lakes (except for Zn and Pb in H. azteca and Mo in water). There was a trend of declining metal concentration, especially for Cu, Ni and Co (in water, Hyalella and sediment), with distance from the smelters indicating the reduced impact of atmospheric pollution. Metal concentrations of lakes (water) in the Sudbury area were found to be lower compared to data from the 1970s and 1980s indicating an improvement in water quality. Metal concentrations in field-collected amphipods compared favorably with those measured in the laboratory in animals exposed to deep-water sediments, provided metal concentrations were not extremely low (e.g., Pb) and that water chemistry differences (e.g., pH) were taken into account for some metals (especially Cd). In general bioaccumulation of metals in H. azteca was predicted better from surface water than from sediment total metal.
    Matched MeSH terms: Fresh Water
  2. Ismail A
    Environ Monit Assess, 1994 Sep;32(3):187-91.
    PMID: 24214132 DOI: 10.1007/BF00546274
    A study of heavy metal contents in freshwater snails from rice fields have been made. The results indicate that the levels of heavy metals, Pb, Cu, Zn and Cd, are low and within the permissible limit of Malaysian Food Regulations. The results can serve as background data for further reference.
    Matched MeSH terms: Fresh Water
  3. Musa HI, Hassan L, Shamsuddin ZH, Panchadcharam C, Zakaria Z, Aziz SA
    Environ Monit Assess, 2018 Mar 22;190(4):241.
    PMID: 29569066 DOI: 10.1007/s10661-018-6613-7
    Burkholderia pseudomallei causes melioidosis, a life-threatening infection in both humans and animals. Water is an important reservoir of the bacteria and may serve as a source of environmental contamination leading to infection. B. pseudomallei has an unusual ability to survive in water for a long period. This paper investigates physicochemical properties of water associated with the presence of B. pseudomallei in water supply in small ruminant farms in Peninsular Malaysia. Physicochemical properties of water samples taken from small ruminant farms that included temperature, pH, dissolved oxygen (DO2), optical density (OD), and chemical oxygen demand (COD) were measured after which the samples were cultured for B. pseudomallei. Multivariable logistic regression model revealed that slightly acidic water pH and higher COD level were significantly associated with the likelihood of the B. pseudomallei presence in the water.
    Matched MeSH terms: Fresh Water/microbiology; Fresh Water/chemistry
  4. Ng CK, Goh CH, Lin JC, Tan MS, Bong W, Yong CS, et al.
    Environ Monit Assess, 2018 Jun 15;190(7):402.
    PMID: 29904816 DOI: 10.1007/s10661-018-6784-2
    El Niño and Southern Oscillation (ENSO) is a natural forcing that affects global climate patterns, thereon influencing freshwater quality and security. In the advent of a strong El Niño warming event in 2016 which induced an extreme dry weather in Malaysia, water quality variation was investigated in Kampar River which supplies potable water to a population of 92,850. Sampling points were stratified into four ecohydrological units and 144 water samples were examined from October 2015 to March 2017. The Malaysian Water Quality Index (WQI) and some supplementary parameters were analysed in the context of reduced precipitation. Data shows that prolonged dry weather, episodic and sporadic pollution incidents have caused some anomalies in dissolved oxygen (DO), total suspended solids (TSS), turbidity and ammoniacal nitrogen (AN) values recorded and the possible factors are discussed. The month of March and August 2016 recorded the lowest precipitation, but the overall resultant WQI remained acceptable. Since the occurrence of a strong El Niño event is infrequent and far between in decadal time scale, this paper gives some rare insights that may be central to monitoring and managing freshwater resource that has a crucial impact to the mass population in the region of Southeast Asia.
    Matched MeSH terms: Fresh Water
  5. Muthukumaravel K, Priyadharshini M, Kanagavalli V, Vasanthi N, Ahmed MS, Musthafa MS, et al.
    Environ Monit Assess, 2022 Oct 21;195(1):10.
    PMID: 36269455 DOI: 10.1007/s10661-022-10554-2
    Phenol, an aromatic chemical commonly found in domestic and industrial effluents, upon its introduction into aquatic ecosystems adversely affects the indigenous biota, the invertebrates and the vertebrates. With the increased demand for agrochemicals, a large amount of phenol is released directly into the environment as a byproduct. Phenol and its derivatives tend to persist in the environment for longer periods which in turn poses a threat to both humans and the aquatic ecosystem. In our current study, the response of Labeo rohita to sublethal concentrations of phenol was observed and the results did show a regular decrease in biochemical constituents of the targeted organs. Exposure of Labeo rohita to sublethal concentration of phenol (22.32 mg/L) for an epoch of 7, 21 and 28 days shows a decline in lipid, protein, carbohydrate content and phosphatase activity in target organs such as the gills, muscle, intestine, liver and kidney of the fish. The present study also aims to investigate the toxic effects of phenol with special reference to the haematological parameters of Labeo rohita. At the end of the exposure period, the blood of the fish was collected by cutting the caudal peduncle with a surgical scalpel. And it was observed that the red blood corpuscle count (RBC), white blood corpuscle (WBC), haemoglobin count (Hb), packed cell volume (PCV), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) values showed a decline after exposure to phenol for 7 days, while white blood corpuscle (WBC) shows an increased count. At 21 days and 28 days, all the haematological parameters showed a significant decrease.
    Matched MeSH terms: Fresh Water/chemistry
  6. Chen HL, Selvam SB, Ting KN, Gibbins CN
    Environ Monit Assess, 2023 Jan 18;195(2):307.
    PMID: 36652034 DOI: 10.1007/s10661-022-10856-5
    Recent increase in awareness of the extent of microplastic contamination in marine and freshwater systems has heightened concerns over the ecological and human health risks of this ubiquitous material. Assessing risks posed by microplastic in freshwater systems requires sampling to establish contamination levels, but standard sampling protocols have yet to be established. An important question is whether sampling and assessment should focus on microplastic concentrations in the water or the amount deposited on the bed. On three dates, five replicated water and bed sediment samples were collected from each of the eight sites along the upper reach of the Semenyih River, Malaysia. Microplastics were found in all 160 samples, with mean concentrations of 3.12 ± 2.49 particles/L in river water and 6027.39 ± 16,585.87 particles/m2 deposited on the surface of riverbed sediments. Fibres were the dominant type of microplastic in all samples, but fragments made up a greater proportion of the material on the bed than in the water. Within-site variability in microplastic abundance was high for both water and bed sediments, and very often greater than between-site variability. Patterns suggest that microplastic accumulation on the bed is spatially variable, and single samples are therefore inadequate for assessing bed contamination levels at a site. Sites with the highest mean concentrations in samples of water were not those with the highest concentrations on the bed, indicating that monitoring based only on water samples may not provide a good picture of either relative or absolute bed contamination levels, nor the risks posed to benthic organisms.
    Matched MeSH terms: Fresh Water
  7. Tan WT, Tan GS, Nather Khan IS
    Environ Pollut, 1988;52(3):221-35.
    PMID: 15092608
    Chemical forms of copper and lead in river water of the Linggi River Basin have been fractionated into ASV labile, moderately labile, slowly labile, and inert metal species, based on a previously proposed scheme. Free (hydrated) metal ions were identified by a potentiometric method using an ion selective electrode. Speciation results showed that the soluble copper and lead species occurred mainly in the moderately labile and slowly labile fractions. The speciation results are primarily interpreted in terms of organic interaction due to agricultural based and light industries, and urban discharges. The measured metal complexing capacity (MCC) of the samples reveals consistency of the results with the nature of the discharge. MCC correlates reasonably well with the value from the permanganate test on the river water. In general, the speciation pattern was found to be consistent with the findings of other workers.
    Matched MeSH terms: Fresh Water
  8. Nhu TT, Schaubroeck T, Henriksson PJG, Bosma R, Sorgeloos P, Dewulf J
    Environ Pollut, 2016 Dec;219:156-165.
    PMID: 27814531 DOI: 10.1016/j.envpol.2016.10.006
    Pangasius production in Vietnam is widely known as a success story in aquaculture, the fastest growing global food system because of its tremendous expansion by volume, value and the number of international markets to which Pangasius has been exported in recent years. While certification schemes are becoming significant features of international fish trade and marketing, an increasing number of Pangasius producers have followed at least one of the certification schemes recognised by international markets to incorporate environmental and social sustainability practices in aquaculture, typically the Pangasius Aquaculture Dialogue (PAD) scheme certified by the Aquaculture Stewardship Council (ASC). An assessment of the environmental benefit of applying certification schemes on Pangasius production, however, is still needed. This article compared the environmental impact of ASC-certified versus non-ASC certified intensive Pangasius aquaculture, using a statistically supported LCA. We focused on both resource-related (water, land and total resources) and emissions-related (global warming, acidification, freshwater and marine eutrophication) categories. The ASC certification scheme was shown to be a good approach for determining adequate environmental sustainability, especially concerning emissions-related categories, in Pangasius production. However, the non-ASC certified farms, due to the large spread, the impact (e.g., water resources and freshwater eutrophication) was possibly lower for a certain farm. However, this result was not generally prominent. Further improvements in intensive Pangasius production to inspire certification schemes are proposed, e.g., making the implementation of certification schemes more affordable, well-oriented and facilitated; reducing consumed feed amounts and of the incorporated share in fishmeal, especially domestic fishmeal, etc. However, their implementation should be vetted with key stakeholders to assess their feasibility.
    Matched MeSH terms: Fresh Water/chemistry
  9. Panda BP, Mohanta YK, Parida SP, Pradhan A, Mohanta TK, Patowary K, et al.
    Environ Pollut, 2023 Aug 01;330:121796.
    PMID: 37169242 DOI: 10.1016/j.envpol.2023.121796
    Metals are micropollutants that cannot be degraded by microorganisms and are infiltrated into various environmental media, including both freshwater and marine water. Metals from polluted water are absorbed by many aquatic species, especially fish. Fish is a staple food in the diets of many regions in the world; hence, both the type and concentration of metals accumulated and transferred from contaminated water sources to fish must be determined and assessed. In this study, the heavy metal concentration was determined and assessed in fish collected from freshwater sources via published literature and Estimated Daily Intake (EDI), Target hazard quotient (THQ), and Carcinogenic Risk (CR) analyses, aiming to examine the metal pollution in freshwater fish. The fish was used as a bioindicator, and Geographic information system (GIS) was sued to map the polluted regions. The results confirmed that Pb was detected in fish sampled at 28 locations, Cr at 24 locations, Cu and Zn at 30 locations, with values Pb detected ranging from 0.0016 mg kg-1 to 44.3 mg kg-1, Cr detected ranging from 0.07 mg kg-1 to 27 mg kg-1, Cu detected ranging from 0.031 mg kg-1 to 35.54 mg kg-1, and Zn detected ranging from 0.242 mg kg-1 to 103.2 mg kg-1. The strongest positive associations were discovered between Cu-Zn (r = 0.74, p 
    Matched MeSH terms: Fresh Water/analysis
  10. Lim YA, Lai MM, Mahdy MA, Mat Naim HR, Smith HV
    Environ Res, 2009 Oct;109(7):857-9.
    PMID: 19664767 DOI: 10.1016/j.envres.2009.07.007
    We used a combined microscopy-molecular approach to determine the occurrence and identities of waterborne Giardia sp. cysts isolated from 18 separate, 10l grab samples collected from a Malaysian zoo. Microscopy revealed that 17 of 18 samples were Giardia cyst positive with concentrations ranging from 1 to 120 cysts/l. Nine (52.9%) of the 17 cyst positive samples produced amplicons of which 7 (77.8%) could be sequenced. Giardia duodenalis assemblage A (6 of 7) and assemblage B (1 of 7), both infectious to humans, were identified at all sampling sites at the zoo. The presence of human infectious cysts raises public health issues, and their occurrence, abundance and sources should be investigated further. In this zoo setting, our data highlight the importance of incorporating environmental sampling (monitoring) in addition to routine faecal examinations to determine veterinary and public health risks, and water monitoring should be considered for inclusion as a separate element in hazard analysis, as it often has a historical (accumulative) connotation.
    Matched MeSH terms: Fresh Water/parasitology*
  11. Muthukumaravel K, Vasanthi N, Stalin A, Alam L, Santhanabharathi B, Musthafa MS
    Environ Sci Pollut Res Int, 2021 Mar;28(11):13752-13760.
    PMID: 33191468 DOI: 10.1007/s11356-020-11434-3
    Acute toxicity (96 h LC50) of phenol was analyzed in the cat fish Mystus vittatus in static bio-assay over a 96-h exposure period using probit method. The 24, 48, 72, and 96 h LC50 values (with 95% confidence limits) of phenol for fingerling catfish were found out as 13.98, 13.17, 12.62, and 12.21 mg/l respectively. Investigations pertaining to the histopathological sections have shown high degree of pathological lesions observed in various parts like gill, liver intestine, and kidney of the fish species. Analysis of gill section revealed observable changes in the experimental species such as fusion, malformation at the tip of secondary lamellae, vacuolation, hyperplasia, and epithelial damage. Exposure of phenol showed cytoplasmic vacuolation, tissue damage, and loss of hepatic cell wall in the liver of experimental organism. Lesions of tissue damage at the epithelial site, inflammation, and clumping of adjacent villi made of columnar epithelium have been observed in the intestine of fish, and also the excretory part of the fish kidney revealed various changes like glomerular atrophy, damage of Bowman's capsule, vacuolization, and degeneration of renal epithelium. The current study on histological changes observed in the experimental organisms has thrown light on the current scenario which poses threat and danger to the whole aquatic ecosystem, and this study plays a vital role in assessing the aquatic pollution.
    Matched MeSH terms: Fresh Water
  12. Chen HL, Selvam SB, Ting KN, Gibbins CN
    Environ Sci Pollut Res Int, 2021 Oct;28(39):54222-54237.
    PMID: 34386926 DOI: 10.1007/s11356-021-15826-x
    Plastics are synthetic polymers known for their outstanding durability and versatility, and have replaced traditional materials in many applications. Unfortunately, their unique traits ensure that they pose a major threat to the environment. While literature on freshwater microplastic contamination has grown over the recent years, research undertaken in rapidly developing countries, where plastic production and use are increasing dramatically, has lagged behind that in other parts of the world. In the South East Asia (SEA) region, basic information on levels of contamination is very limited and, as a consequence, the risk to human and ecological health remains hard to assess. This review synthesises what is currently known about microplastic contamination of freshwater ecosystems in SEA, with a particular focus on Malaysia. The review 1) summarises published studies that have assessed levels of contamination in freshwater systems in SEA, 2) discusses key sources and transport pathways of microplastic in freshwaters, 3) outlines what is known of the impacts of microplastic on freshwater organisms, and 4) identifies key knowledge gaps related to our understanding of the transport, fate and effects of microplastic.
    Matched MeSH terms: Fresh Water
  13. Niknejad N, Nazari B, Foroutani S, Hussin ARBC
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71849-71863.
    PMID: 35091956 DOI: 10.1007/s11356-022-18705-1
    Freshwater scarcity, a problem that has arisen particularly as a result of the progressive environmental damage caused by human consumption patterns, is strongly associated with a loss of living quality and a drop in global socioeconomic development. Wastewater treatment is one of the measures being taken to mitigate the current situation. However, the majority of existing treatments employ chemicals that have harmful environmental consequences and low effectiveness and are prohibitively expensive in most countries. Therefore, to increase water supplies, more advanced and cost-effective water treatment technologies are required to be developed for desalination and water reuse purposes. Green technologies have been highlighted as a long-term strategy for conserving natural resources, reducing negative environmental repercussions, and boosting social and economic growth. Thus, a bibliometric technique was applied in this study to identifying prominent green technologies utilised in water and wastewater treatment by analysing scientific publications considering authors, keywords, and countries. To do this, the VOSviewer software and Bibliometrix R Package software were employed. The results of this study revealed that constructed wetlands and photocatalysis are two technologies that have been considered as green technologies applicable to the improvement of water and wastewater treatment processes in most scientific articles.
    Matched MeSH terms: Fresh Water
  14. Gao Y, Shimizu K, Amano C, Wang X, Pham TL, Sugiura N, et al.
    Environ Technol, 2019 Nov;40(27):3593-3601.
    PMID: 29806796 DOI: 10.1080/09593330.2018.1482371
    Microcystin-LR (MC-LR), which is one of the most commonly found microcystins (MCs) in fresh water, has been proved to be a potential tumour promoter and classified as 2B by the International Agency for Research on Cancer. MC-LR decomposition and inhibition of MC-LR production in Microcystis aeruginosa were investigated under electrolysis condition using an electrolysis cell consisting of Ti/Pt electrodes and Nafion membrane. The relationship between the decrease in MC-LR concentration and transcription of MC-LR synthesis gene clusters was determined by performing real-time reverse transcription polymerase chain reaction (RT-qPCR) to monitor changes in the levels of transcription encoding mcyB and mcyD (cDNA to DNA) in M. aeruginosa NIES 1086 under electrolysis condition and three different conditions (i.e. oxygenated, air aerated and unaerated) as controls. Cell density decreased from day 2 under electrolysis than under the three controls. Intracellular MC-LR concentration was approximately 33 fg cell-1 under electrolysis from days 4 to 8, while those in the other conditions ranged in 40-50 fg cell-1. The mcyB transcription continuously decreased from day 2 to nondetectable level in day 6 under electrolysis, while this transcription was stabilised under the three controls. This result suggested that oxidative stress, such as hydroxyl radicals, played an important role in the down-regulation of mcyB and mcyD gene transcription level and the MC-LR concentration and cell density of M. aeruginosa.
    Matched MeSH terms: Fresh Water
  15. Saleem AM, Taufik Hidayat M, Mat Jais AM, Fakurazi S, Moklas M, Sulaiman MR, et al.
    Eur Rev Med Pharmacol Sci, 2011 Jul;15(7):795-802.
    PMID: 21780549
    Channa (C.) striatus (Malay-Haruan), is a fresh water snakehead fish, consumed as a rejuvenating diet in post-parturition period in local Malay population. The aqueous extract of C. striatus fillet (AECSF) was reported to act through serotonergic receptor system in a previous study. There is no scientific report on neuropharmacological effects of C. striatus. Based on these data, the antidepressant-like effect of C. striatus was evaluated in mice models of depression.
    Matched MeSH terms: Fresh Water
  16. Bhatt P, Kumaresan V, Palanisamy R, Ravichandran G, Mala K, Amin SMN, et al.
    Fish Shellfish Immunol, 2018 Jan;72:670-678.
    PMID: 29162541 DOI: 10.1016/j.fsi.2017.11.036
    Chemokines are ubiquitous cytokine molecules involved in migration of cells during inflammation and normal physiological processes. Though the study on chemokines in mammalian species like humans have been extensively studied, characterization of chemokines in teleost fishes is still in the early stage. The present review provides an overview of chemokines and its receptors in a teleost fish, Channa striatus. C. striatus is an air breathing freshwater carnivore, which has enormous economic importance. This species is affected by an oomycete fungus, Aphanomyces invadans and a Gram negative bacteria Aeromonas hydrophila is known to cause secondary infection. These pathogens impose immune changes in the host organism, which in turn mounts several immune responses. Of these, the role of cytokines in the immune response is immense, due to their involvement in several activities of inflammation such as cell trafficking to the site of inflammation and antigen presentation. Given that importance, chemokines in fishes do have significant role in the immunological and other physiological functions of the organism, hence there is a need to understand the characteristics, activities and performace of these small molecules in details.
    Matched MeSH terms: Fresh Water
  17. Lim LS, Tan SY, Tuzan AD, Kawamura G, Mustafa S, Rahmah S, et al.
    Fish Physiol Biochem, 2020 Aug;46(4):1621-1629.
    PMID: 32430644 DOI: 10.1007/s10695-020-00817-5
    Oxyeleotris marmorata is an ambush predator. It is known for slow growth rate and high market demand. Farming of O. marmorata still remains a challenge. In order to establish a proper feeding practice to stimulate growth, knowledge of its metabolic processes and cost should be examined. Therefore, this study was designed to investigate the diel osmorespiration rhythms of O. marmorata in response to feeding challenge by using an osmorespirometry assay. The results have shown that oxygen consumption rate of the fed fish was approximately 3 times higher than that of the unfed fish in early evening to support specific dynamic action. Digestion and ingestion processes were likely to be completed within 18-20 h in parallel with the ammonia excretion noticeable in early morning. Under resting metabolism, metabolic oxygen consumption was influenced by diel phase, but no effect was noted in ammonia excretion. As a nocturnal species, O. marmorata exhibited standard aerobic metabolic mode under dark phase followed by light phase, with high oxygen consumption rate found in either fed or unfed fish. It can be confirmed that both the diel phase and feeding have a significant interactive impact on oxygen consumption rate, whereas ammonia metabolism is impacted by feeding state. High metabolic rate of O. marmorata supports the nocturnal foraging activity in this fish. This finding suggested that feeding of O. marmorata should be performed during nighttime and water renewal should be conducted during daytime.
    Matched MeSH terms: Fresh Water
  18. Low KH, Zain SM, Abas MR, Md Salleh K, Teo YY
    Food Chem, 2015 Jun 15;177:390-6.
    PMID: 25660902 DOI: 10.1016/j.foodchem.2015.01.059
    The trace metal concentrations in edible muscle of red tilapia (Oreochromis spp.) sampled from a former tin mining pool, concrete tank and earthen pond in Jelebu were analysed with microwave assisted digestion-inductively coupled plasma-mass spectrometry. Results were compared with established legal limits and the daily ingestion exposures simulated using the Monte Carlo algorithm for potential health risks. Among the metals investigated, arsenic was found to be the key contaminant, which may have arisen from the use of formulated feeding pellets. Although the risks of toxicity associated with consumption of red tilapia from the sites investigated were found to be within the tolerable range, the preliminary probabilistic estimation of As cancer risk shows that the 95th percentile risk level surpassed the benchmark level of 10(-5). In general, the probabilistic health risks associated with ingestion of red tilapia can be ranked as follows: former tin mining pool > concrete tank > earthen pond.
    Matched MeSH terms: Fresh Water
  19. Saleh N, Al-Jassabi S, Eid AH, Nau WM
    Front Chem, 2021;9:660927.
    PMID: 33937198 DOI: 10.3389/fchem.2021.660927
    Microcystis aeruginosa is a cyanobacterium that produces a variety of cyclic heptapeptide toxins in freshwater. The protective effects of the macromolecular container cucurbit[7]uril (CB7) were evaluated using mouse models of cyanotoxin-induced liver damage. Biochemical analysis of liver function was performed to gauge the extent of liver damage after exposure to cyanobacterial crude extract [CCE; LD50 = 35 mg/kg body weight; intraperitoneal (i.p.)] in the absence or presence of CB7 (35 mg/kg body weight, i.p.). CCE injection resulted in liver enlargement, potentiated the activities of alanine aminotransferase (ALT) and glutathione S-transferase (GST), increased lipid peroxidation (LPO), and reduced protein phosphatase 1 (PP1) activity. CCE-induced liver enlargement, ALT and GST activities, and LPO were significantly reduced when CB7 was coadministered. Moreover, the CCE-induced decline of PP1 activity was also ameliorated in the presence of CB7. Treatment with CB7 alone did not affect liver function, which exhibited a dose tolerance of 100 mg/kg body wt. Overall, our results illustrated that the addition of CB7 significantly reduced CCE-induced hepatotoxicity (P < 0.05).
    Matched MeSH terms: Fresh Water
  20. Kemung HM, Tan LT, Khan TM, Chan KG, Pusparajah P, Goh BH, et al.
    Front Microbiol, 2018;9:2221.
    PMID: 30319563 DOI: 10.3389/fmicb.2018.02221
    Methicillin-resistant Staphylococcus aureus (MRSA) pose a significant health threat as they tend to cause severe infections in vulnerable populations and are difficult to treat due to a limited range of effective antibiotics and also their ability to form biofilm. These organisms were once limited to hospital acquired infections but are now widely present in the community and even in animals. Furthermore, these organisms are constantly evolving to develop resistance to more antibiotics. This results in a need for new clinically useful antibiotics and one potential source are the Streptomyces which have already been the source of several anti-MRSA drugs including vancomycin. There remain large numbers of Streptomyces potentially undiscovered in underexplored regions such as mangrove, deserts, marine, and freshwater environments as well as endophytes. Organisms from these regions also face significant challenges to survival which often result in the production of novel bioactive compounds, several of which have already shown promise in drug development. We review the various mechanisms of antibiotic resistance in MRSA and all the known compounds isolated from Streptomyces with anti-MRSA activity with a focus on those from underexplored regions. The isolation of the full array of compounds Streptomyces are potentially capable of producing in the laboratory has proven a challenge, we also review techniques that have been used to overcome this obstacle including genetic cluster analysis. Additionally, we review the in vivo work done thus far with promising compounds of Streptomyces origin as well as the animal models that could be used for this work.
    Matched MeSH terms: Fresh Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links