Displaying publications 61 - 66 of 66 in total

Abstract:
Sort:
  1. Sadri R, Hosseini M, Kazi SN, Bagheri S, Abdelrazek AH, Ahmadi G, et al.
    J Colloid Interface Sci, 2018 Jan 01;509:140-152.
    PMID: 28898734 DOI: 10.1016/j.jcis.2017.07.052
    In this study, we synthesized covalently functionalized graphene nanoplatelet (GNP) aqueous suspensions that are highly stable and environmentally friendly for use as coolants in heat transfer systems. We evaluated the heat transfer and hydrodynamic properties of these nano-coolants flowing through a horizontal stainless steel tube subjected to a uniform heat flux at its outer surface. The GNPs functionalized with clove buds using the one-pot technique. We characterized the clove-treated GNPs (CGNPs) using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). We then dispersed the CGNPs in distilled water at three particle concentrations (0.025, 0.075 and 0.1wt%) in order to prepare the CGNP-water nanofluids (nano-coolants). We used ultraviolet-visible (UV-vis) spectroscopy to examine the stability and solubility of the CGNPs in the distilled water. There is significant enhancement in thermo-physical properties of CGNPs nanofluids relative those for distilled water. We validated our experimental set-up by comparing the friction factor and Nusselt number for distilled water obtained from experiments with those determined from empirical correlations, indeed, our experimental set-up is reliable and produces results with reasonable accuracy. We conducted heat transfer experiments for the CGNP-water nano-coolants flowing through the horizontal heated tube in fully developed turbulent condition. Our results are indeed promising since there is a significant enhancement in the Nusselt number and convective heat transfer coefficient for the CGNP-water nanofluids, with only a negligible increase in the friction factor and pumping power. More importantly, we found that there is a significant increase in the performance index, which is a positive indicator that our nanofluids have potential to substitute conventional coolants in heat transfer systems because of their overall thermal performance and energy savings benefits.
    Matched MeSH terms: Friction
  2. Leman, A.M., Che Wan Izzudin, Md Zin Ibrahim, Dafit Feriyanto
    MyJurnal
    Brake pad apparatus is designed for help student and instructor in teaching and learning application. The objective
    of this research is to differentiate the pressure effect and braking temperature condition of different pad. This apparatus
    also aimed for learning the safety car and motorcycle braking system. This apparatus can to compare with theoretical
    calculation in order to approve that this apparatus is useful. The main concept in this apparatus is thermocouple use
    to detect the temperature gain while braking process. Speed motor controller used for set the angular velocity of the
    motor in braking process. Pressure applied at brake pedal detected by pressure gauge and data logger function as a
    connector. This apparatus also designed based on valid data for average of teenager in Malaysia which made on a
    sample university student. Result show that the apparatus can function effectively by defines the different temperature
    when applied the different pressure and different pad. Pad C shows the 880C for thermocouple 1 and 790C for
    thermocouple 2 at the 20 psi and infrared thermometer show 1130C for pad C. Graph from calculation shows that the
    pad A have 216.480C at 1000 rpm which have low temperature than pad B, C and D. high efficiency of friction and
    pressure applied will cause more heat generate than low coefficient of friction and pressure applied.
    Matched MeSH terms: Friction
  3. Mohamad Zaky Noh, Luay Bakir Hussain, Zainal Arifin Ahmad
    MyJurnal
    The joining of ceramic-metal could be done through a few techniques: brazing, diffusion bonding, friction welding etc. However, the mechanism of ceramic-metal joining was still not properly understood. In this study, alumina rod was bonded to mild steel rod via friction welding technique by using Al 1100 sheet as interlayer. The diameter of the rods was 10 mm. Friction pressure of 20 MPa and forging pressure of 40 MPa were used. Rotational speeds were maintained at 900 rpm and friction times of 2 to 20 seconds were applied. The joining strength was determined through four point bending test. The maximum bending strength, 240 MPa was obtained at the friction times of 20 seconds. Under optical microscope and SEM observation, the deformation of the aluminum interface was clearly obtained. Mechanical interlocking and close contact between the aluminaaluminum and aluminum-mild steel were observed at magnifications of 3000X. The strength of alumina-steel bonding is much dependent on the wettability of the alumina surface by the molten aluminum and the existing of mechanical interlocking between interlayer and sample materials.
    Matched MeSH terms: Friction
  4. Jafar AB, Shafie S, Ullah I
    Heliyon, 2020 Jun;6(6):e04201.
    PMID: 32637680 DOI: 10.1016/j.heliyon.2020.e04201
    In this article, we numerically investigate the influence of thermal radiation and heat generation on the flow of an electrically conducting nanofluid past a nonlinear stretching sheet through a porous medium with frictional heating. The partial differential equations governing the flow problems are reduced to ordinary differential equations via similarity variables. The reduced equations are then solved numerically with the aid of Keller box method. The influence of physical parameters such as nanoparticle volume fraction ϕ, permeability parameter K, nonlinear stretching sheet parameter n, magnetic field parameter M, heat generation parameter Q and Eckert number Ec on the flow field, temperature distribution, skin friction and Nusselt number are studied and presented in graphical illustrations and tabular forms. The results obtained reveal that there is an enhancement in the rate of heat transfer with the rise in nanoparticle volume fraction and permeability parameter. The temperature distribution is also influenced with the presence of K, Q, R and ϕ. This shows that the solid volume fraction of nanoparticle can be used in controlling the behaviours of heat transfer and nanofluid flows.
    Matched MeSH terms: Friction
  5. Ibrahim MD, Amran SNA, Yunos YS, Rahman MRA, Mohtar MZ, Wong LK, et al.
    Appl Bionics Biomech, 2018;2018:7854321.
    PMID: 29853998 DOI: 10.1155/2018/7854321
    The skin of a fast swimming shark reveals riblet structures that help reduce the shark's skin friction drag, enhancing its efficiency and speed while moving in the water. Inspired by the structure of the shark skin denticles, our team has carried out a study as an effort in improving the hydrodynamic design of marine vessels through hull design modification which was inspired by this riblet structure of shark skin denticle. Our study covers on macroscaled design modification. This is an attempt to propose an alternative for a better economical and practical modification to obtain a more optimum cruising characteristics for marine vessels. The models used for this study are constructed using computer-aided design (CAD) software, and computational fluid dynamic (CFD) simulations are then carried out to predict the effectiveness of the hydrodynamic effects of the biomimetic shark skins on those models. Interestingly, the numerical calculated results obtained show that the presence of biomimetic shark skin implemented on the vessels give about 3.75% reduction of drag coefficient as well as reducing up to 3.89% in drag force experienced by the vessels. Theoretically, as force drag can be reduced, it can lead to a more efficient vessel with a better cruising speed. This will give better impact to shipping or marine industries around the world. However, it can be suggested that an experimental procedure is best to be conducted to verify the numerical result that has been obtained for further improvement on this research.
    Matched MeSH terms: Friction
  6. Rahman, M.M., Nor, S.S.M., Rahman, H.Y.
    ASM Science Journal, 2011;5(1):11-18.
    MyJurnal
    Warm compaction is an advanced manufacturing technique which consists of two consecutive steps, i.e. powder compaction at above ambient temperature and sintering in a controlled environment. Due to the relative movement between the powder mass and die wall as well as sliding among powder particles, frictional force is generated during the compaction stage. Admixed lubricant is used during the compaction step in order to minimize friction and hence improve the uniformity of the density of distribution inside the component. However, during the sintering process, trapped lubricant is often found to be burnt out hence leaving pores or voids which result in the lower strength of the final products. Warm compaction was initiated in the nineties, however not much information has been published about the effects of lubrication on the quality of the components produced through this route. Therefore, this paper presents the outcome of an experimental investigation about the effects of lubrication on manufacturing near-net shape components through the warm compaction route. Iron powder ASC 100.29 was mixed mechanically with zinc stearate to prepare the feedstock. Mixing time, weight percentage of lubricant content and compaction temperature were varied during green compact generation while sintering temperature, heating rate and holding time were manipulated during sintering. The relative densities and strengths of the final products were investigated at every compaction as well as sintering parameter. The results revealed that lubrication could provide significant effects at the compaction temperature of 180ºC while no significant effect of lubrication was observed during sintering. The suitable lubricant content was found to be 0.4 wt% and mixing time was around 30 min and the sintering temperature was around 990ºC.
    Matched MeSH terms: Friction
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links